• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Propagation of chirped solitons on a cw background in a non-Kerr quintic medium with self-steepening effect

    2023-12-28 09:20:02AbdesselamBouguerraHouriaTrikiChunWeiZhenbangLuandQinZhou
    Communications in Theoretical Physics 2023年12期

    Abdesselam Bouguerra ,Houria Triki ,Chun Wei ,Zhenbang Lu and Qin Zhou,?

    1 Radiation and Matter Physics Laboratory,Matter Sciences Department,Mohamed-Cherif Messaadia University,P.O.Box 1553,Souk-Ahras,41000,Algeria

    2 Radiation Physics Laboratory,Department of Physics,Faculty of Sciences,Badji Mokhtar University,P.O.Box 12,23000 Annaba,Algeria

    3 School of Electronics and Information Engineering,Wuhan Donghu University,Wuhan 430212,China

    4 School of Mathematical and Physical Sciences,Wuhan Textile University,Wuhan 430200,China

    Abstract We study the existence and stability of envelope solitons on a continuous-wave background in a non-Kerr quintic optical material exhibiting a self-steepening effect.Light propagation in such a nonlinear medium is governed by the Gerdjikov–Ivanov equation.We find that the system supports a variety of localized waveforms exhibiting an important frequency chirping property which makes them potentially useful in many practical applications to optical communication.This frequency chirp is found to be crucially dependent on the intensity of the wave and its amplitude can be controlled by a suitable choice of self-steepening parameter.The obtained nonlinearly chirped solitons include bright,gray and kink shapes.We also discuss the stability of the chirped solitons numerically under finite initial perturbations.The results show that the main character of chirped localized structures is not influenced by finite initial perturbations such as white noise.

    Keywords: solitons,non-Kerr nonlinearity,self-steepening effect

    1.Introduction

    The dynamics of envelope solitons in dispersive nonlinear media have attracted increased interest in recent years [1–4].Such localized wave packets can propagate in nonlinear dispersive media without any change in their shape over extremely large distances.The formation of these localized waves in single-mode fibers occurs when the pulse broadening of the groupvelocity dispersion and the compressing of the Kerr nonlinearity are exactly balanced[5].Because of their extensive applications to optical communication and all-optical ultrafast switching devices[6],soliton structures have recently become the subject of intense study,especially in the field of nonlinear optics[7,8].

    The main envelope equation that governs the transmission of a soliton pulse inside an optical waveguiding medium is the cubic nonlinear Schr?dinger (NLS) equation,which incorporates the terms representing the effects of group velocity dispersion and self-phase modulation [9].It is worth mentioning that such a model equation rigorously describes the evolution of low-power pulses with durations of a few picoseconds in optical fibers.Within this NLS equation framework,two distinct types of localized solutions,the socalled bright and dark solitons,were shown to exist in the anomalous and normal dispersion regimes,respectively[2].It is noteworthy that such fundamental solitons are chirp-free pulses because the chirp produced by group velocity dispersion is balanced by the chirp produced by the Kerr nonlinearity [10].However,if short pulses have to be injected into the optical material,higher-order effects become important and should be incorporated into the underlying equation.In such a situation,the pulse dynamics can be described by more generalized NLS equations containing various contributions of higher-order dispersive and nonlinear terms.Such equations were found to have a rich variety of soliton solutions [11–13],which may be useful in understanding different physical phenomena and dynamical processes arising in optical systems.We note here that important results have been found with recent works demonstrating soliton dynamics supported by complex parity-time symmetric potentials [14] as well as breathers and rogue waves in spinor Bose–Einstein condensates with space-time modulated potentials [15].In addition to nonlinear waveforms,optical characteristics of a new type of materials that have application prospects in the field of nonlinear optics have been also reported [16].

    Recently,much attention has been directed toward the study of nonlinearly chirped soliton pulses in optical fibers and waveguides[17–22].This is because chirp is very useful in the process of light pulse compression and has potential applications in optical communication systems [23].Notably,chirped pulses are useful in the design of optical devices such as fiberoptic amplifiers,optical pulse compressors and solitary wavebased communication links[18,24].Physically,the chirp of an optical wave is generally known as the time dependence of its instantaneous frequency [10].In this setting,significant results have been obtained with recent studies analyzing the propagation of nonlinearly chirped solitons in optical materials exhibiting different kinds of higher-order effects such as selfsteepening and self-frequency shift processes [18],self-steepening and quintic nonlinearity [17,19,20],self-steepening and quintic-septic-nonic nonlinearities [25].However,all chirped soliton solutions mentioned above are obtained under the influence of cubic nonlinearity.How to find the exact and new kind of chirped solitons in the absence of cubic nonlinearity is interesting work.Such a problem is addressed and clarified in the present work.We demonstrate here that under the vanishing Kerr nonlinearity,different chirped soliton solutions on a cw background are formed in a non-Kerr quintic medium exhibiting a self-steepening effect.In particular,different types of bright,gray,kink solitons on a cw background are found for the first time for the so-called Gerdjikov–Ivanov equation,which is a kind of NLS equation modeling the wave dynamics in the presence of quintic nonlinearity and selfsteepening effects.We will show that under the influence of the self-steepening process,these envelope solitons acquire a frequency chirp that depends strongly on the wave intensity.

    The paper is organized as follows.In section 2,we present the general form of the nonlinearly chirped traveling wave solutions of the Gerdjikov–Ivanov model and their corresponding frequency chirp.In section 3,we find a variety of exact chirped soliton solutions on a cw background for the governing equation and determine the chirp associated with each of these soliton structures.In section 4,we analyze the stability of our chirped solutions against small perturbations such as white noise.Our findings are summarized in section 5.

    2.General traveling wave solutions

    The Gerdjikov–Ivanov equation governing the propagation of the optical field in a non-Kerr quintic medium exhibiting selfsteepening nonlinearity can be written in the form [26–30]:

    where q is the complex amplitude of the electric field,x is the distance and t is the time.Parameters α,β and γ represent the group velocity dispersion,self-steepening effect,and quintic nonlinearity,respectively.

    Model (1) has been used to study stationary solutions by applying the Lie symmetry method[26].The conservation laws for equation (1) have also been derived by means of Lie symmetry analysis[27].In addition,soliton-like solutions have been obtained with the application of Madelung fluid description[28].Moreover,the explicit soliton-like solutions of the Gerdjikov–Ivanov model have been derived by employing its Darboux transformation [29].Several exact localized solutions including bright,kink,and singular soliton solutions have been also found for this model[30].Here,we will find the soliton solutions on a cw background which exhibit a nonlinear frequency chirp,resulting from the self-steepening effect.As previously mentioned,chirped optical localized waves are of practical relevance to achieving pulse amplification or compression [18,23,24].

    To search for exact chirped localized wave solutions of equation (1),we consider a complex traveling-wave solution of the form [18,25],

    where the real amplitudeU(ξ)and phase modificationφ(ξ)are functions of the traveling coordinate ξ=x-vt,with v is the velocity of the traveling wave.Also,the parameter w represents the frequency of the wave oscillation.

    Substitution of the expression of q(x,t)into the model(1)and separation of the real and imaginary parts yield coupled equations in U and φ as,

    where the subscripts indicate partial derivatives.

    Then,we can obtain an evolution equation for the phase modification φ(ξ) using equation (4) by multiplying it by the functionU(ξ)and integration as,

    with A being an integration constant to be determined later.This result shows that dφ/dξ depends on U2,thus indicating that the phase of propagating waves possesses a nontrivial form which leads to the appearance of chirped nonlinear waves in the system.

    The accompanying frequency chirp δω defined asδω=-? [φ(ξ) -ωt]?xis given by

    Scrutinizing the expression(6),we see that the frequency chirp property appears due to the self-steepening effect.One can also observe that chirp-free nonlinear waveforms may exist in the nonlinear medium in the case of vanishing selfsteepening (β →0) if we choose A=0.Importantly,this chirp includes two nonlinear contributions which are dependent on the wave intensity∣q(x,t)∣2=∣U(ξ)∣2.

    Now,substituting equations (5) in (3),one obtains the ordinary nonlinear differential equation:

    which describes the dynamics of the pulse amplitude in the non-Kerr quintic medium.Multiplying the amplitude equation(7)by the function dU/dξ and integrating once with respect to ξ,one gets

    where B is the second integration constant.

    We now make the transformation P=U2and write equation (8) as

    where the coefficients a,b,c,and Ω are given by

    With these results,we find that the general traveling wave solutions of the Gerdjikov–Ivanov equation(1)take the form,

    withP(ξ)obeying the nonlinear differential equation (9) and φ(ξ)can be determined explicitly from equation(5).Also,the resultant frequency chirp across the propagating pulse is given by

    Expression (11) describes various nonlinearly chirped traveling waves that may propagate in a non-Kerr quintic medium wherein the pulse evolution is governed by the Gerdjikov–Ivanov equation (1).These nonlinear waveforms can be generated from the closed-form solutions P(ξ) of equation (9) and the general waveform (11).It is worth pointing out that the case of localized waves on a zero background,which seems to be simple in the Gerdjikov–Ivanov equation case,has been extensively studied using various methods (see,e.g.[26–29]).In what follows,we study several types of localized pulses on a cw background for this model equation that are characterized by a nonlinear chirp.One should note that nonlinear waveforms appearing on a constant background are of practical interest in different physical systems including optical fibers,Bose–Einstein condensates and hydrodynamics,etc [31–33].

    3.Chirped solitons on a cw background

    We have obtained a variety of analytical soliton solutions on a cw background of model (1) which are characterized by a frequency chirp that is intensity dependent.

    3.1.Bright solitons

    We find an exact soliton solution for equation(9)of the form,

    where λ,ρ and η are real parameters defined by

    For this solution,the integration constants A and B are given by

    If we insert these results into equation (11),one obtains an exact chirped soliton pulse solution for the Gerdjikov–Ivanov model (1) as,

    with ξ0being an arbitrary constant.

    Expressions (14) and (15) show that this localized wave exists when a>0,b<0 and 3b2>8ac.Moreover,from equation(16),we can see that the condition 16ac-5b2>0 is required for the constant A to be real.

    The corresponding frequency chirp can be obtained readily as

    Figure 1.Evolution of intensity wave profile of the soliton solution (17) with parameters α=0.1,β=0.15,γ=0.08,v=-0.1,ω=-0.06125,v=-0.1,A=0.08,and ξ0=0(a)bright soliton on a cw background for the+sign and(b)dark soliton for the-sign.The corresponding chirp profiles for the (a) bright soliton and (b) dark soliton.

    Figures 1(a)and(b)display the evolution of the intensity wave profile of the chirped soliton solution (17) with the lower sign and the upper sign,respectively.The adopted parameter values are: α=0.1,β=0.15,γ=0.08,v=-0.1,ω=-0.06125,v=-0.1,A=0.08,and ξ0=0.As seen,this solution represents a bright soliton pulse on a cw background for the upper sign and a dark soliton pulse for the lower sign.The profiles of accompanying frequency chirp for bright and dark solitons are exhibited in figures 1(c)and(d),respectively(for t=0).It is clear that the chirp for the bright pulse has a maximum at the center of the pulse,whereas for the dark pulse,it has a minimum;however,for both cases,it saturates at the same finite value as x →±∞.

    3.2.Gray solitons

    In what follows,we present the nonlinearly chirped gray soliton solutions of the Gerdjikov–Ivanov model (1) in two types.

    (i) Type l

    We obtained an analytical soliton solution for equation (9) as,

    when the balance between the group velocity dispersion,quintic nonlinearity and self-steepening effect satisfies the relation

    In this solution,the real parameters p,?and r are related to the coefficients of the nonlinear differential equation (9) by

    Then,by equating the parameters in equations (10) and (21),one obtains the following expressions of the wave velocity v,frequency w,and integration constants A and B:

    It follows from expressions (24) and (25) that the integration constants A and B can be fixed easily with the pulse parameters p,?and r,and consequently the physical meaning of these constants is very clear.Note that for the constant A in(24) to be real,we must require 0

    By inserting these results into equation (11),one obtains an exact chirped soliton solution for the Gerdjikov–Ivanov model (1) as,

    It should be remarked that this solution has three free parameters p,?and r,and thus it describes a wide class of localized waves that are of great practical importance.Note that this soliton structure exists for the Gerdjikov–Ivanov model (1) with group velocity dispersion,fifth-order nonlinearity and self-steepening subject to the constraint condition(20).The latter condition shows the dispersion parameter α and the quintic parameter γ should be of the same sign(i.e.αγ>0),thus implying that the obtained nonlinearly chirped soliton can exist in anomalous (normal) dispersion for selfdefocusing (-focusing) nonlinearity.Naturally,the solution(26) reduces to a chirped dark-type solitonq(x,t)=±ptanh [r(x-vt-ξ0) exp [i(φ(ξ) -ωt)]for the case when ?=1.

    The frequency chirp associated with the chirped soliton(26) can be obtained readily as

    Figure 2(a) shows the evolution of the intensity wave profile of the nonlinearly chirped soliton solution (26) for the material parameters α=0.25 and γ=0.2.To satisfy the existence condition(20),we set β=0.4.Also,the other soliton parameters are taken as p=1.6,?=0.5,r=1,and ξ0=0.As concerns the pulse velocity v,it can be determined from equation (22) as v ≈-0.48.One can see from this figure that this solution represents a chirped gray pulse with a nonzero dip.The profile of the frequency chirp associated with this graytype solution is shown in figure 2(b)(for t=0).It is clear that this chirp has a minimum at the center of the pulse and saturates at the same finite value as x →±∞.

    Figure 2.(a) Evolution of intensity wave profile of the gray soliton solution (26) with parameters α=0.25,β=0.4,γ=0.2,p=1.6,?=0.5,r=1,ξ0=0 and (b) The corresponding chirp of the gray soliton solution.

    Figure 3.Evolution of intensity wave profile of the soliton solution(29)with parameters α=0.1,γ=0.08(a)bright soliton on a continuouswave background for Λ=0.3,β=0.15,v=-0.1 and (b) gray soliton with a nonzero dip for Λ=-0.3,β=0.18,v=0.1.The corresponding chirp profiles for the (a) bright soliton and (b) gray soliton.

    Figure 4.Evolution of intensity wave profile of the kink soliton solution (36) for different values of β (a) β=0.4 and (b) β=0.6.(c) The corresponding chirp profiles for β=0.4 (dashed line) and β=0.6 (thick line).The other parameters are mentioned in the text.

    Figure 5.The numerical evolution of chirped(a)bright soliton solution(17),(b)gray soliton solution(26)and(c)kink soliton solution(36)under the perturbation with 10% initial white noise.The parameters are the same as those in figures 1(a),2(a) and 4(a),respectively.

    (ii) Type 2

    We find that equation (9) admits an exact closed-form soliton solution of the form,

    which leads to a class of nonlinearly chirped solitary wave solutions for the Gerdjikov–Ivanov equation (1) as,

    with Λ being a free constant which should satisfy Λ>-1.Note that for this chirped soliton solution,one finds that the first integration constant A vanishes while the second integration constant is equal to B=-μ2S2/16Λ,and the accompanying frequency chirp can be obtained readily as,

    Physically,the expression (29) describes a nonlinearly chirped bright soliton on a cw background with an intensitytanh2[μ(x-vt-ξ0)]}for Λ>0 or a nonlinearly chirped gray soliton on a nonzero background and an intensity oftanh2[μ(x-vt-ξ0)]}for-1<Λ<0.As follows from equations(30)and(31),we see that the existence conditions of this chirped waveform are a>0,b<0 for Λ>0 and a<0,b>0 for -1<Λ<0.

    The intensity profile of the chirped soliton (29) is depicted in figures 3(a) and (b) for α=0.1,γ=0.08 and different values of the free constant Λ,0.3 and -0.3,respectively.The other parameters are taken as β=0.15,v=-0.1 for the case when Λ=0.3 and β=0.18,v=0.1 for the case when Λ=-0.3.One can observe that the soliton(29) takes a bright waveform for Λ=0.3 and a gray waveform for Λ=-0.3.The profiles of associated frequency chirp (for t=0) are shown in figures 4(a) and (b),respectively.

    3.3.Kink solitons

    We have found the exact soliton solution of equation(9)to be

    The real parameters R and h in this solution are defined by the expressions

    under the constraint conditionsa<0 and c<0.

    On substitution of the solution equations (34) into (11),we obtain a class of nonlinearly chirped soliton solution for the Gerdjikov–Ivanov equation (1) as,

    Note that for this chirped solitary wave solution,we find that the integration constants A and B vanish and the associated frequency chirp reads,

    The evolution of the intensity wave profile of kink soliton(36) is illustrated in figures 4(a)–(b) for α=0.1,γ=0.425,and different values of the self-steepening parameter β,0.4 and 0.6,respectively.Here the other parameters are taken as v=-0.1,ω=-0.125 for the case when β=0.4 and v=-0.2036,ω=-0.2036 for the case when β=0.6.These profiles show that the intensity of pulses decreases with the increase of the self-steepening parameter β.The chirp profile(for t=0)is shown in figure 4(c)for different values of β.It is seen from the figure that the amplitude of the frequency chirp can be controlled by varying this parameter.

    From the above results,we can see that in the presence of the self-steepening effect,the Gerdjikov–Ivanov equation (1)supports different types of soliton structures on a cw background which exhibit a frequency chirping property.One notes that the novelty of the obtained nonlinear localized waves lies essentially in their functional shapes,which are different from the previously attained results.For example,we see that our chirped bright soliton solution (17) has a platform underneath it and involves a phase modification φ(ξ),markedly different from the soliton solution (3.7) presented in[29]which is unchirped and has a simple sech-type functional form.Moreover,the nonlinearly chirped soliton solutions(26),(29)and(36)obtained here for the Gerdjikov–Ivanov model are first presented in this paper.

    4.Stability analysis

    A distinctive property of localized waves is their stability to perturbations since only stable shape-preserving wave packets can be realized in experiments and utilized in practical applications.It is therefore important to investigate the stability of the derived nonlinearly chirped soliton solutions with respect to the finite initial perturbations.Here,we have performed a direct numerical simulation of model (1) using the split-step Fourier method [34] to verify the stability of solutions(17),(26)and(36)with initial white noise,as compared to figures 1(a),2(a) and 4(a).The evolution plots of chirped bright,gray and kink soliton solutions (17),(26) and (36)under the perturbation of 10% white noise are illustrated in figures 5(a),(b) and (c),respectively.The numerical results show that the chirped soliton structures remain stable after propagating a distance of twenty dispersion lengths.Hence we can conclude that the nonlinearly chirped soliton pulses we obtained are stable.

    Finally,in order to strictly answer the question of stability of the chirped solitons presented here,we will use the stability criterion based on the theory of optical nonlinear dispersive waves [35,36] to analyze their stability analytically.We will also investigate the regimes for the modulation instability of a cw signal propagating inside the optical system by employing the standard linear stability analysis [37].Detailed stability analyses are now under investigation.

    5.Conclusion

    In conclusion,we have obtained the chirped soliton solutions on a cw background for the Gerdjikov–Ivanov model describing pulse evolution in a non-Kerr optical medium with higher-order effects such as self-steepening effect and quintic nonlinearity.The newly found chirped soliton solutions are essentially of the bright,gray and kink types and their accompanying frequency chirp is intensity dependent.The results show that the presence of the self-steepening effect contributes positively to create a nonlinearity in the pulse chirp for which the amplitude can readily be controlled through the change of the self-steepening parameter.We have also demonstrated the stability of the chirped solitons numerically with respect to finite perturbations of the additive white noise.The results showed that the obtained chirped structures can propagate stably under finite initial perturbations,such as white noise.Because of their exact nature,the localized pulses on a cw background obtained here may be profitably exploited in designing the optimal non-Kerr quintic optical material experiments.The present results report the first analytical demonstration of the existence of nonlinearly chirped solitons on a cw background obtained within the Gerdjikov–Ivanov equation framework.

    Acknowledgments

    Chun Wei is supported by the Ministry of Education’s Industry School Cooperation Collaborative Education Project of China under grant number 220405078262706.

    Disclosures

    The authors declare no conflicts of interest.

    久久99热这里只有精品18| 国产三级中文精品| 一卡2卡三卡四卡精品乱码亚洲| 久久久精品欧美日韩精品| 久久国产乱子伦精品免费另类| 亚洲成人免费电影在线观看| 啦啦啦韩国在线观看视频| 国产97色在线日韩免费| tocl精华| 免费观看人在逋| 亚洲精品美女久久久久99蜜臀| 国产精品一区二区三区四区免费观看 | 欧美日韩综合久久久久久 | 动漫黄色视频在线观看| 国内精品一区二区在线观看| 香蕉久久夜色| 很黄的视频免费| 欧美成人一区二区免费高清观看| 亚洲欧美日韩卡通动漫| 一二三四社区在线视频社区8| 亚洲真实伦在线观看| 日韩人妻高清精品专区| 国产免费一级a男人的天堂| 久久久久久久久中文| 观看免费一级毛片| 久久人妻av系列| 国产精品一区二区免费欧美| 校园春色视频在线观看| 国产一区二区亚洲精品在线观看| 亚洲精品亚洲一区二区| 女人高潮潮喷娇喘18禁视频| 国产精品乱码一区二三区的特点| 免费看日本二区| 亚洲精华国产精华精| 亚洲激情在线av| 欧美三级亚洲精品| 国产亚洲精品一区二区www| 成人鲁丝片一二三区免费| 亚洲av一区综合| 3wmmmm亚洲av在线观看| 久久欧美精品欧美久久欧美| 久久久久久久亚洲中文字幕 | 国产亚洲欧美在线一区二区| 国产午夜精品久久久久久一区二区三区 | 男人舔奶头视频| 亚洲成av人片在线播放无| 日本三级黄在线观看| 日本a在线网址| 日本黄色视频三级网站网址| 怎么达到女性高潮| 国产亚洲欧美98| 精品免费久久久久久久清纯| 国产精品久久久人人做人人爽| 国产精品1区2区在线观看.| 国内精品久久久久精免费| 午夜精品久久久久久毛片777| 九九热线精品视视频播放| 一a级毛片在线观看| 国产精品1区2区在线观看.| svipshipincom国产片| 亚洲五月天丁香| 国产精品一及| 成人特级黄色片久久久久久久| 日本一本二区三区精品| 美女 人体艺术 gogo| 免费搜索国产男女视频| 亚洲av日韩精品久久久久久密| www日本黄色视频网| 午夜两性在线视频| 成人永久免费在线观看视频| 国产高清三级在线| 色综合欧美亚洲国产小说| 一边摸一边抽搐一进一小说| 国产亚洲欧美在线一区二区| 久久亚洲精品不卡| ponron亚洲| av天堂中文字幕网| 日日夜夜操网爽| 精品久久久久久成人av| 精品无人区乱码1区二区| 中国美女看黄片| 我要搜黄色片| 99在线人妻在线中文字幕| 国内揄拍国产精品人妻在线| 午夜影院日韩av| 日韩欧美 国产精品| 一本综合久久免费| 淫妇啪啪啪对白视频| 亚洲av不卡在线观看| 黄色片一级片一级黄色片| 午夜亚洲福利在线播放| 88av欧美| 草草在线视频免费看| av国产免费在线观看| 日韩精品青青久久久久久| 大型黄色视频在线免费观看| 美女大奶头视频| 97人妻精品一区二区三区麻豆| 成人三级黄色视频| 国产伦精品一区二区三区视频9 | 91av网一区二区| 日韩免费av在线播放| 国产精品一区二区三区四区免费观看 | 婷婷丁香在线五月| 级片在线观看| 中出人妻视频一区二区| a在线观看视频网站| 亚洲性夜色夜夜综合| 欧美一区二区国产精品久久精品| 天堂影院成人在线观看| 美女 人体艺术 gogo| 国产真实乱freesex| 亚洲人与动物交配视频| 一本一本综合久久| 嫩草影院入口| 99久久无色码亚洲精品果冻| 欧美性猛交╳xxx乱大交人| 亚洲av电影在线进入| 香蕉丝袜av| 51午夜福利影视在线观看| 一个人免费在线观看的高清视频| 久久久久久国产a免费观看| 久久这里只有精品中国| 岛国视频午夜一区免费看| 他把我摸到了高潮在线观看| 精品国产三级普通话版| 午夜福利欧美成人| 亚洲乱码一区二区免费版| 国产免费男女视频| a级一级毛片免费在线观看| 高潮久久久久久久久久久不卡| 久久人妻av系列| 天堂影院成人在线观看| 亚洲av成人精品一区久久| 成人欧美大片| 又黄又粗又硬又大视频| av专区在线播放| 国产精品野战在线观看| 看片在线看免费视频| 亚洲成av人片在线播放无| 国产免费男女视频| 成人高潮视频无遮挡免费网站| 午夜精品一区二区三区免费看| 国产成人av激情在线播放| 99久久成人亚洲精品观看| 首页视频小说图片口味搜索| 高清在线国产一区| 丁香六月欧美| 中文在线观看免费www的网站| 欧美成人免费av一区二区三区| 在线看三级毛片| 亚洲一区高清亚洲精品| 国产视频内射| 国产精品 欧美亚洲| 国产aⅴ精品一区二区三区波| 婷婷丁香在线五月| 亚洲欧美日韩高清在线视频| 看片在线看免费视频| 国产在线精品亚洲第一网站| 最近最新中文字幕大全电影3| 可以在线观看毛片的网站| 免费人成在线观看视频色| 99久久精品一区二区三区| 欧美中文日本在线观看视频| 成人鲁丝片一二三区免费| 午夜激情福利司机影院| 精品欧美国产一区二区三| 亚洲欧美激情综合另类| 国产精品久久电影中文字幕| 欧美中文综合在线视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产午夜福利久久久久久| 亚洲国产高清在线一区二区三| 国产三级中文精品| 国产av在哪里看| 亚洲精品成人久久久久久| 亚洲激情在线av| 亚洲内射少妇av| 精品久久久久久久毛片微露脸| 国产一区二区亚洲精品在线观看| 欧美一区二区亚洲| 久久精品综合一区二区三区| 久久精品综合一区二区三区| 久久久久久大精品| 亚洲欧美一区二区三区黑人| 欧美日韩中文字幕国产精品一区二区三区| 观看美女的网站| 欧美性猛交╳xxx乱大交人| 天堂√8在线中文| 国产三级黄色录像| 淫秽高清视频在线观看| 香蕉丝袜av| 一区二区三区免费毛片| 好男人在线观看高清免费视频| 国产成人影院久久av| 日韩高清综合在线| 久久久国产成人精品二区| 99精品在免费线老司机午夜| 成人高潮视频无遮挡免费网站| 91字幕亚洲| 午夜福利欧美成人| 成年女人永久免费观看视频| 国产高清有码在线观看视频| 在线观看免费午夜福利视频| 国产精品久久电影中文字幕| 免费av观看视频| 黄色成人免费大全| 国产精品久久久久久亚洲av鲁大| 88av欧美| 久久久国产成人免费| 亚洲无线在线观看| 亚洲精品影视一区二区三区av| 成人无遮挡网站| 国产69精品久久久久777片| 制服人妻中文乱码| 日韩欧美在线乱码| 国产高潮美女av| 久久久久久九九精品二区国产| 五月伊人婷婷丁香| 国产黄a三级三级三级人| 亚洲av熟女| 国产中年淑女户外野战色| 成人鲁丝片一二三区免费| 亚洲中文日韩欧美视频| 欧美三级亚洲精品| 人妻夜夜爽99麻豆av| 精品久久久久久,| 黄色女人牲交| 女生性感内裤真人,穿戴方法视频| 国内毛片毛片毛片毛片毛片| 嫩草影院入口| 日韩有码中文字幕| 99久久综合精品五月天人人| 观看免费一级毛片| 中文字幕高清在线视频| www日本在线高清视频| 亚洲 欧美 日韩 在线 免费| 伊人久久大香线蕉亚洲五| 亚洲成人中文字幕在线播放| 天堂动漫精品| 制服丝袜大香蕉在线| 免费看十八禁软件| 午夜激情福利司机影院| 国产亚洲精品av在线| 日本五十路高清| 香蕉av资源在线| 亚洲精品粉嫩美女一区| 国产伦人伦偷精品视频| 午夜福利视频1000在线观看| 黄色片一级片一级黄色片| 成熟少妇高潮喷水视频| 淫妇啪啪啪对白视频| 亚洲国产日韩欧美精品在线观看 | 亚洲欧美日韩无卡精品| 婷婷六月久久综合丁香| 麻豆国产97在线/欧美| 搡老妇女老女人老熟妇| 99riav亚洲国产免费| 99精品久久久久人妻精品| www国产在线视频色| 九色国产91popny在线| 国产熟女xx| 亚洲 欧美 日韩 在线 免费| 国产三级在线视频| 他把我摸到了高潮在线观看| 90打野战视频偷拍视频| 一本久久中文字幕| 中文字幕精品亚洲无线码一区| 日本三级黄在线观看| 99久久99久久久精品蜜桃| av在线蜜桃| 国产主播在线观看一区二区| 听说在线观看完整版免费高清| 狂野欧美白嫩少妇大欣赏| a级一级毛片免费在线观看| 亚洲国产精品合色在线| 欧美+亚洲+日韩+国产| 国产av不卡久久| www.www免费av| 国产综合懂色| 夜夜看夜夜爽夜夜摸| 岛国视频午夜一区免费看| 非洲黑人性xxxx精品又粗又长| 老司机深夜福利视频在线观看| 搡女人真爽免费视频火全软件 | 在线观看av片永久免费下载| 色综合亚洲欧美另类图片| 国产黄色小视频在线观看| 一级黄片播放器| 国内精品久久久久精免费| 色老头精品视频在线观看| 97碰自拍视频| 亚洲无线在线观看| 久9热在线精品视频| 亚洲国产中文字幕在线视频| 日韩欧美在线乱码| 99视频精品全部免费 在线| 国产男靠女视频免费网站| 久久中文看片网| 国产黄a三级三级三级人| 宅男免费午夜| 久久久国产精品麻豆| 19禁男女啪啪无遮挡网站| 一区二区三区免费毛片| 97超级碰碰碰精品色视频在线观看| 亚洲在线观看片| 欧美日韩黄片免| 亚洲内射少妇av| 久久精品91无色码中文字幕| 美女高潮的动态| 一级毛片高清免费大全| 国产精品综合久久久久久久免费| 久久香蕉国产精品| 免费观看的影片在线观看| 欧洲精品卡2卡3卡4卡5卡区| 99国产精品一区二区三区| 国产真人三级小视频在线观看| 亚洲av日韩精品久久久久久密| 国产麻豆成人av免费视频| 国产精品电影一区二区三区| 日韩中文字幕欧美一区二区| 精品国产美女av久久久久小说| 欧美zozozo另类| 欧美成人免费av一区二区三区| 国产乱人伦免费视频| 午夜免费成人在线视频| 亚洲av日韩精品久久久久久密| 久久九九热精品免费| 两个人看的免费小视频| 在线观看66精品国产| 色噜噜av男人的天堂激情| 日本免费a在线| 又爽又黄无遮挡网站| 色老头精品视频在线观看| www.色视频.com| 成人无遮挡网站| 精品人妻一区二区三区麻豆 | 嫁个100分男人电影在线观看| 久久伊人香网站| 婷婷亚洲欧美| 久久精品国产自在天天线| 在线观看美女被高潮喷水网站 | 中文字幕人妻丝袜一区二区| 91久久精品国产一区二区成人 | 国产色婷婷99| av福利片在线观看| 3wmmmm亚洲av在线观看| 免费观看人在逋| xxxwww97欧美| 天堂av国产一区二区熟女人妻| 麻豆久久精品国产亚洲av| 在线免费观看的www视频| 中国美女看黄片| 亚洲不卡免费看| 国产黄片美女视频| 亚洲精品成人久久久久久| 18禁裸乳无遮挡免费网站照片| 国产成人a区在线观看| 婷婷精品国产亚洲av| 亚洲片人在线观看| 成人午夜高清在线视频| www国产在线视频色| 国产伦一二天堂av在线观看| 又粗又爽又猛毛片免费看| 国产一区二区激情短视频| 好男人在线观看高清免费视频| 怎么达到女性高潮| 每晚都被弄得嗷嗷叫到高潮| 日韩有码中文字幕| 午夜精品一区二区三区免费看| 成人av一区二区三区在线看| 久久精品综合一区二区三区| 又爽又黄无遮挡网站| 欧美日韩瑟瑟在线播放| 久久精品夜夜夜夜夜久久蜜豆| 免费看十八禁软件| 成人18禁在线播放| 国产乱人伦免费视频| 国产精品香港三级国产av潘金莲| 天天添夜夜摸| 国产视频内射| 亚洲va日本ⅴa欧美va伊人久久| 欧美av亚洲av综合av国产av| 亚洲av电影在线进入| 99久久精品国产亚洲精品| 国产探花极品一区二区| 久久这里只有精品中国| 中亚洲国语对白在线视频| 亚洲第一电影网av| 国产毛片a区久久久久| 国产免费av片在线观看野外av| 国产精品久久久久久人妻精品电影| 亚洲人成网站在线播| 国产亚洲精品久久久久久毛片| 久久香蕉国产精品| 成人亚洲精品av一区二区| 三级男女做爰猛烈吃奶摸视频| www.色视频.com| 精品一区二区三区视频在线 | 日韩人妻高清精品专区| 国产一区二区在线av高清观看| 日本撒尿小便嘘嘘汇集6| 99国产精品一区二区三区| 国产私拍福利视频在线观看| 色精品久久人妻99蜜桃| 国内久久婷婷六月综合欲色啪| 精品福利观看| 一进一出好大好爽视频| 日本 欧美在线| 亚洲天堂国产精品一区在线| 变态另类成人亚洲欧美熟女| 国产蜜桃级精品一区二区三区| 欧美xxxx黑人xx丫x性爽| 成人18禁在线播放| 色老头精品视频在线观看| 欧美又色又爽又黄视频| 99在线人妻在线中文字幕| 精品一区二区三区视频在线 | 欧美激情久久久久久爽电影| 无遮挡黄片免费观看| 岛国在线免费视频观看| 中出人妻视频一区二区| 波多野结衣巨乳人妻| 日本五十路高清| 淫秽高清视频在线观看| 国产亚洲欧美98| 欧美日韩瑟瑟在线播放| 最新中文字幕久久久久| 日本 欧美在线| 国产成人啪精品午夜网站| 九九在线视频观看精品| 久久香蕉国产精品| 在线观看免费午夜福利视频| 免费人成在线观看视频色| 国产高潮美女av| 淫秽高清视频在线观看| 久9热在线精品视频| 免费观看精品视频网站| 亚洲av成人不卡在线观看播放网| 18禁在线播放成人免费| 亚洲欧美激情综合另类| 小说图片视频综合网站| 久久99热这里只有精品18| 亚洲成av人片免费观看| 两个人看的免费小视频| 亚洲av熟女| 欧美日韩亚洲国产一区二区在线观看| 在线观看66精品国产| 岛国视频午夜一区免费看| 日本黄色片子视频| 婷婷精品国产亚洲av| 亚洲国产欧美人成| 午夜老司机福利剧场| 免费一级毛片在线播放高清视频| 少妇丰满av| 一本一本综合久久| 特级一级黄色大片| 波多野结衣高清作品| 亚洲一区高清亚洲精品| 夜夜躁狠狠躁天天躁| 又紧又爽又黄一区二区| 国产精品野战在线观看| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕人妻丝袜一区二区| 性欧美人与动物交配| 久久久久久人人人人人| 日韩高清综合在线| 亚洲欧美日韩东京热| 国产av不卡久久| 国产在视频线在精品| 国产一区在线观看成人免费| 欧美色视频一区免费| 日本熟妇午夜| 国产成年人精品一区二区| 亚洲欧美日韩高清专用| 美女被艹到高潮喷水动态| 1000部很黄的大片| 亚洲七黄色美女视频| 久久人妻av系列| 亚洲 国产 在线| 免费在线观看影片大全网站| 观看美女的网站| 欧美一级a爱片免费观看看| 久久国产乱子伦精品免费另类| 男插女下体视频免费在线播放| 色综合婷婷激情| 久久久久久久久大av| 精品99又大又爽又粗少妇毛片 | 国产精品一区二区三区四区久久| 亚洲一区高清亚洲精品| 精品人妻偷拍中文字幕| 日日干狠狠操夜夜爽| 人人妻人人看人人澡| 欧美黄色片欧美黄色片| 日本三级黄在线观看| 午夜影院日韩av| 热99re8久久精品国产| 一区二区三区高清视频在线| 啪啪无遮挡十八禁网站| 香蕉久久夜色| 变态另类丝袜制服| 国内久久婷婷六月综合欲色啪| 午夜福利在线在线| 1024手机看黄色片| 波野结衣二区三区在线 | 美女 人体艺术 gogo| 亚洲专区国产一区二区| 一进一出好大好爽视频| e午夜精品久久久久久久| 欧美三级亚洲精品| 99国产精品一区二区蜜桃av| 午夜日韩欧美国产| 亚洲国产欧洲综合997久久,| 精品99又大又爽又粗少妇毛片 | 亚洲最大成人手机在线| 欧美日韩瑟瑟在线播放| 亚洲av电影在线进入| 亚洲人成网站高清观看| 在线观看一区二区三区| 日本撒尿小便嘘嘘汇集6| 国产一区二区三区视频了| 一夜夜www| 小蜜桃在线观看免费完整版高清| 国产精品免费一区二区三区在线| 性欧美人与动物交配| 在线观看av片永久免费下载| 性色avwww在线观看| 久久精品国产亚洲av涩爱 | 成年免费大片在线观看| 国产一级毛片七仙女欲春2| 久久亚洲真实| 在线观看舔阴道视频| 亚洲熟妇中文字幕五十中出| 亚洲不卡免费看| 亚洲精品日韩av片在线观看 | 黄色丝袜av网址大全| 亚洲国产精品sss在线观看| 国产美女午夜福利| 不卡一级毛片| 久久久久九九精品影院| 在线十欧美十亚洲十日本专区| 国内精品美女久久久久久| 99国产精品一区二区蜜桃av| 亚洲18禁久久av| 久久伊人香网站| av中文乱码字幕在线| 国产成人影院久久av| 波野结衣二区三区在线 | 国产精品野战在线观看| 91在线精品国自产拍蜜月 | 久久久久久久久中文| 亚洲av第一区精品v没综合| 国产午夜精品论理片| 久久精品91无色码中文字幕| 日韩欧美 国产精品| 亚洲精品久久国产高清桃花| 午夜福利在线在线| 日本在线视频免费播放| 在线观看一区二区三区| xxx96com| 国产精品爽爽va在线观看网站| 一级毛片女人18水好多| 黄色视频,在线免费观看| 欧美日韩综合久久久久久 | 成人鲁丝片一二三区免费| 欧美不卡视频在线免费观看| 国产三级黄色录像| 看黄色毛片网站| 叶爱在线成人免费视频播放| 亚洲最大成人中文| 国产欧美日韩一区二区精品| 欧美在线黄色| 一本久久中文字幕| 久久国产精品影院| 日韩欧美精品免费久久 | 熟女少妇亚洲综合色aaa.| 伊人久久大香线蕉亚洲五| 黄片大片在线免费观看| 在线天堂最新版资源| 狠狠狠狠99中文字幕| 欧美日韩瑟瑟在线播放| 草草在线视频免费看| 久久久精品欧美日韩精品| 亚洲久久久久久中文字幕| 最好的美女福利视频网| 99热6这里只有精品| 久久精品国产亚洲av涩爱 | 婷婷六月久久综合丁香| 国产精品嫩草影院av在线观看 | 精华霜和精华液先用哪个| 亚洲国产色片| 国产精品综合久久久久久久免费| 久久精品91无色码中文字幕| h日本视频在线播放| 听说在线观看完整版免费高清| 国产激情偷乱视频一区二区| 丰满的人妻完整版| 少妇的丰满在线观看| 在线看三级毛片| 精品一区二区三区人妻视频| 一个人观看的视频www高清免费观看| 国产亚洲精品av在线| 国内揄拍国产精品人妻在线| 午夜福利成人在线免费观看| 人妻夜夜爽99麻豆av| 在线观看午夜福利视频| 精品久久久久久久久久免费视频| 久久中文看片网| 亚洲男人的天堂狠狠| 在线观看一区二区三区| 性欧美人与动物交配| 在线视频色国产色| 亚洲人成电影免费在线| 一区二区三区高清视频在线| 欧美成人一区二区免费高清观看|