• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular dynamics study on the effect of temperature on HCP→FCC phase transition of magnesium alloy

    2023-12-27 12:43:24ChunXueShuiLiZhiingChuQinhuYngYuguiLiLifengLeifengTuo
    Journal of Magnesium and Alloys 2023年10期

    Chun Xue ,Shui Li ,Zhiing Chu,? ,Qinhu Yng ,Yugui Li ,Lifeng M ,Leifeng Tuo

    aCollege of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China

    b College of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China

    Abstract To explore the effect of temperature on the phase transformation of HCP→FCC during compression,the uniaxial compression process of AZ31 magnesium alloy was simulated by the molecular dynamics method,and the changes of crystal structure and dislocation evolution were observed.The effects of temperature on mechanical properties,crystal structure,and dislocation evolution of magnesium alloy during compression were analyzed.It is concluded that some of the Shockley partial dislocation is related to FCC stacking faults.With the help of TEM characterization,the correctness of the correlation between some of the dislocations and FCC stacking faults is verified.Through the combination of simulation and experiment,this paper provides an idea for the in-depth study of the solid-phase transformation of magnesium alloys and provides reference and guidance for the design of magnesium alloys with good plasticity and formability at room temperature.? 2022 Chongqing University.Publishing services provided by Elsevier B.V.on behalf of KeAi Communications Co.Ltd.

    Keywords: Temperature;AZ31 magnesium alloy;FCC stacking fault;Shockley partial dislocation;Phase transformation.

    1.Introduction

    As a new light weight metal material,magnesium alloy has been widely used in aerospace,transportation,electronic information,biomedical and other industries.A large number of researchers focus on strengthening the mechanical properties of magnesium alloys [1–8].The known strengthening mechanisms of crystal materials are "grain boundary strengthening","twin strengthening","solid solution strengthening" and"precipitation strengthening".The basis of these methods is to control defects and prevent dislocation movement [9–10].Because the number of slip systems that can be activated on the substrate of hexagonal close packed crystal structure is limited,and its ductility and formability are poor.[11].With the in-depth study of precipitation strengthening and fine grain strengthening of magnesium alloys,great breakthroughs have been made in the development of high plastic magnesium alloys[12–13].Among them,the grain refinement of the magnesium-aluminum alloy is considered to be one of the effective ways to improve the strength and plasticity of magnesium alloy at the same time [14–16].

    Molecular dynamics methods can be widely used in the structural evolution and dislocation multiplication of materials at a nanometer scale [17–19].Many scholars have studied the effect of phase transition on improving metal strength by molecular dynamics method.Jianwei Xiao [20–21] studied the plastic deformation of nanocrystalline high entropy alloy model by molecular dynamics simulation.It is found that the plastic deformation of nanocrystalline high entropy alloy is mainly caused by partial reversible face-centered cubic transformation (FCC) to hexagonal compact packing phase transition (HCP) caused by stacking faults and partial dislocations,which is induced by stress and occurs through the nucleation and diffusion of partial dislocations.Hao Zhang [22] has studied the effects of uniaxial stretching directions [20],[010] and [0001]on the deformation mechanism of hexagonal dense packing(HCP) titanium crystals by molecular dynamics simulation.It is found that the phase transition behavior is different in different loading directions.N.Amadou [23] used molecular dynamics simulation to study the relationship between deformation,BCC-HCP phase transformation and orientation,initial defects,and temperature conditions of single-crystal iron under compression.Yuming Qi [24] analyzed the plastic deformation of single crystal and polycrystalline high entropy alloys under tensile and compression conditions by molecular dynamics simulation.It was found that FCC-HCP phase transition occurred in the process of plastic deformation.At the same time,under the action of compression load,the grain is refined,which leads to the inconsistency of crystal orientation,which effectively improves the strength of the material.Aleksandr V.Korchuganova [25] simulated the uniaxial tensile process of nano-copper crystals by molecular dynamics.It was found that the nucleation and slip of some dislocations on the free surface were due to the FCC→BCC→HCP phase transition.

    At present,most of the researches on plastic deformation of magnesium alloys are at the micro-level.The room temperature deformation tests of AZ31 hot-rolled sheet and extruded bar were carried out by T.Ebeling [26],and the results were compared with the simulation results of the viscoplastic self-consistent model.Kenneth J.Tam [27] established a temperature-sensitive viscoplastic self-consistent(VPSC) model.The effects of temperature and texture on the deformation mechanism of hot-rolled AZ31 magnesium alloy were studied,and the deformation mode of magnesium alloy was predicted.Kai Zhang [28] compressed AZ31 magnesium alloy at room temperature and low temperature.The effects of twins and dislocations on flow stress,plastic strain,and strain hardening were studied.It was found that low-temperature deformation inhibited dislocation activity.Progress has also been made in the study of the atomic level of magnesium alloys.Xiangli Liu [29] has studied the dislocation structures of<0001>tilted and twisted grain boundaries in magnesium alloys at the atomic level.It is found that both symmetrically inclined and twisted grain boundaries have ordered atomic structures in the whole rotation angle range ofθ=0° -60°,which can be described by the grain boundary dislocation model.Ki-Hyun Kima [30] explained the role of alloying elements in improving the room temperature ductility of magnesium alloy by molecular dynamics simulation.It was found that as long as the alloy content was controlled,any solute element with a different particle size from magnesium could improve the room temperature ductility of magnesium alloy.A.M.Vlasova [31] has carried out an atomic simulation of the deformation of ideal magnesium crystal along the crystal axis and studied the evolution process of structural defects at T=300 -350 K.

    Although there have been a lot of studies on molecular dynamics simulations in material deformation,few studies have focused on the role of stacking faults in the deformation mechanism of HCP metal [32–33].To explore the effect of temperature on the phase transformation of HCP→FCC during compression,the uniaxial compression process of AZ31 magnesium alloy was simulated by the molecular dynamics method,and the changes of crystal structure and dislocation evolution were observed.The effects of temperature on mechanical properties,crystal structure,and dislocation evolution of magnesium alloy during compression were analyzed.It is concluded that some of Shockley’s dislocations are related to FCC stacking faults.Through TEM characterization,the correctness of the correlation between Shockley dislocations and FCC stacking faults is verified.Through the combination of simulation and experiment,this paper provides an idea for the in-depth study of the solid-phase transformation of magnesium alloys and provides reference and guidance for the design of magnesium alloys with good plasticity and formability at room temperature.

    2.Simulation and experimental scheme

    2.1.Simulation scheme

    In the study of molecular dynamics,the potential function is usually used to describe the relationship between the model particle total energyEand the particle coordinate (r)[34–37].The improved embedded atom method potential function (MEAM) is more suitable for the calculation of metals and alloys with FCC,BCC,HCP,and Diamond structures[38–44].Its function is as follows:

    Fig.1.MD simulation diagram.

    Fig.2.Experimental equipment and samples (a) Gleeble-3800 thermal simulator;(b) Hot compression process;(c) Compression pattern;(d) JEM-F200 transmission electron microscope.

    Fig.3.MD simulated force and energy parameters (a) Stress-strain curves;(b) Potential energy curves;(c) Total dislocation density curves.

    Fig.4.Mechanical properties (a) Stress-strain curves of compression test;(b) Yield stress curves.

    In the function,Eis the total energy of atomi;Fis the embedded energy and is the Function of atomic electron densityρ;ρis the atomic electron density;γand?is a pair of potential interactions;αandβis the element type of atomsiandj.

    The model of AZ31 magnesium alloy with the size of?200 ?A × 300 ?A is established,and the X-axis,Y-axis,and Z-axis are set to correspond to the crystal directions [20],[010] and [0001],respectively.The model is introduced into a large-scale atomic/molecular massively parallel simulator (LAMMPS) [45] for molecular dynamics simulation.X,Y,and Z are all periodic boundary conditions,NPT(constant-pressure,constant-temperature) ensemble is adopted,and the time step is 0.001ps.The NPT ensemble and the nose-hoover thermostat maintain the stability of the entire system at constant pressure and temperature.The calculation is carried out by using the potential function developed by Hyo-Sun Jang [46].This potential function can be used to study the deformation and recrystallization characteristics of Mg-Al-Zn alloy in the whole processing temperature range.The conjugate gradient (CG) algorithm is used to minimize the model energy to obtain the equilibrium structure at a given temperature in the NPT ensemble.First,relax the 10ps at a given temperature,and then compress the 40ps at the strain rate of 0.01ps-1,so that the deformation of the magnesium alloy reaches 40%,as shown in Fig.1.The mathematical formula of deformation is:

    In the formula,εis strain;L1is the initial length of the model in [0001] crystal direction;L2is the length of the model compressed along the [0001] crystal direction.

    The calculation results are imported into the visualization software OVITO,and the functions such as CNA (Common neighbor analysis),DXA (Dislocation analysis),GS (Grain segmentation) are used to analyze the structural change and dislocation evolution [47–53].

    2.2.Experimental scheme

    The cylindrical compression sample of ?10 mm × 15 mm in AZ31 magnesium alloy extruded bar was taken by WEDM,and the surface of the sample was polished with sandpaper to make the side of the cylindrical sample show metallic luster,remove the oxide scale on the end face and eliminate obvious scratches.The Gleeble-3800 thermal simulator was selected to carry out uniaxial compression along the axial direction of the sample,and the heating rate was 5 °C/s.To ensure the uniform distribution of the temperature field in the sample,the sample was kept at the experimental temperature for 100s before deformation.The setting temperature is 500 K,600 K,and 700 K respectively.Because of the difference between the molecular dynamics simulation and the macroscopic experiment,the strain rate of the experiment is not consistent with that of the molecular dynamics,so the experimental strain rate is chosen as 1 s-1.To reduce the friction between the sample and the compression fixture during deformation,the two ends of the sample are coated with graphite lubricant.

    To further study the dislocation,atomic arrangement,crystal structure,and phase transformation,TEM experiments were carried out on 200 kV’s transmission electron microscope (model: JEM-F200).The atomic arrangement in AZ31 magnesium alloy after hot compression was observed,the diffraction pattern was obtained,and the dislocation and phase transformation mechanism in the process of hot compression were analyzed.

    3.Results and analysis

    3.1.MD analysis

    Fig.3 shows the force and energy parameter curves in MD simulation.Fig.3(a)shows the stress-strain curves.The yield stress decreases with the increase of temperature.Fig.3 (b)shows the potential energy curves,which increases with the increase of temperature.Fig.3 (c) shows the curves of total dislocation density,which decreases with the increase of temperature.In the process of compression,with the increase of the amount of compression,the atomic position changes,the potential energy of the model increases,the total dislocation density decreases,and the stress increases.When the yield strain is reached,the total dislocation density begins to increase,and the model reaches the maximum yield stress.Enter the plastic stage.With the continuous increase of the amount of squeezing,the atomic position continues to change,and the potential energy still increases.With the increase of temperature,more potential energy is provided to the model,and the model is easier to deform,so the higher the temperature is,the smaller the yield stress is.

    Fig.6.Crystal structure evolution.(a)~(c) CNA diagram: (a) 500 K;(b) 600 K;(c) 700 K.(d)~(f) Fraction curves of different structure: (d) 500 K;(e)600 K;(f) 700 K.

    Fig.4 (a) shows the stress-strain curves of the compression test,which is consistent with the MD simulation,that is,the higher the temperature,the smaller the stress.Fig.4 (b)shows the yield stress curves.Due to the difference between MD simulation and experiment,the yield stress is not equal.However,no matter in the experiment or the MD simulation,the yield stress decreases with the increase of temperature,which proves the unity of the experiment and the MD simulation.

    Fig.6.Continued

    Fig.5 (a)~(c) is the diagram of grain evolution in MD simulation,and Fig.5 (d) is the curves of grain number.With the increase of the amount of compression,the grain refinement of magnesium alloy occurs in different degrees,but the degree of grain refinement decreases with the increase of temperature.Therefore,the high temperature can inhibit the grain refinement of magnesium alloy.

    Fig.7.Dislocation evolution.(a)~(c) Dislocation diagram: (a) 500 K;(b) 600 K;(c) 700 K;(d)~(f) Dislocation density curves: (d) 500 K;(e) 600 K;(f) 700 K.

    Fig.7.Continued

    Fig.6 (a)~(c) is a CNA diagram.The red atom represents the HCP structure atom,the green atom represents the FCC stacking fault atom,and the white atom represents the OTHER atom including the grain boundary and the unrecognized structure.With the increase of the amount of compression,the grains are refined and the atomic structure changes.Whenε=0%,there are only HCP structure and OTHER structure in magnesium alloy.With the increase of compression amount,HCP structure decreases,OTHER structure increases,and FCC stacking fault occur.Because the number of atoms does not change,the phase transformation of magnesium alloy takes place in the process of compression.As the amount of compression continues to increase,so does the number of FCC stacking faults.Fig.6 (e)~(f) is a structural fractional curves.It can be found that when the strain is close to the yield strain,the FCC stacking fault occurs in the magnesium alloy,so the FCC stacking fault is related to the plasticity of the magnesium alloy.With the increase of temperature,the degree of transition from HCP structure to OTHER structure decreases,so the temperature can inhibit the phase transition.

    Table 1 Bergson marks of common dislocations in closely packed hexagonal crystals[55]

    Fig.7 (a)~(c) is a dislocation diagram.As the number of compression increases, the length and number of dislocation lines increase, and the dislocation density increases.Fig.7 (e)~(f) shows the dislocation density curves.It can be found that the100 dislocations and other dislocations have the highest dislocation density.Table 1 shows the Bergson markings of common dislocations in closely packed hexagonal crystals.Whereis a basal complete dislocation, -→T S([0001]) is a cylindrical full dislocation,is an incomplete dislocation,is a Shockley partial dislocation [54].According to Table 1, it is found that the strain of Shockley partial dislocation is similar to that of FCC stacking fault, so it is inferred that Shockley partial dislocation is closely related to the phase transformation of magnesium alloy.

    To explore the correlation between Shockley partial dislocation and HCP alloy FCC phase transition, the HCP structure fraction curve, FCC stacking fault fraction curve, and Shockley partial dislocation density curves are combined into

    Fig.9.TEM and SEAD images at different temperatures (a) 500 K;(b) 600 K;(c) 700 K.

    To explore the correlation between Shockley partial dislocation and HCP alloy FCC phase transition,the HCP structure fraction curve,FCC stacking fault fraction curve,and Shockley partial dislocation density curves are combined into Fig.8 (a).It is found that with the increase of strain,whenε=2.6%,the HCP structure fraction first decreases.Whenε=4.6%,the density of Shockley partial dislocations begins to increase.Whenε=5.6%,the FCC stacking fault score begins to increase.However,this change occurs before yield,so the phase transformation of magnesium alloy occurs before the plastic stage.Fig.8 (b) shows the evolution of Shockley partial dislocations and the HCP→FCC phase transition at 600 K.There are atoms of HCP structure on one side of Shockley partial dislocations and atoms of FCC stacking faults on the other.With the increase of the amount of compression,the atomic position of the HCP structure changes,forming Shockley partial dislocations and forming grain boundaries.With the progress of compression,the atomic position continues to change,Shockley partial dislocations multiply and move,and the atoms of FCC stacking faults increase.Therefore,the specific law of phase transformation of magnesium alloy is HCP→GB→FCC,and Shockley partial dislocation is accompanied by the whole phase transformation process.

    3.2.Experimental analysis

    Fig.9 (a)~(c) shows the TEM and SEAD images under 500~700 K,respectively.It can be seen that the number of dislocations in the sample decreases with the increase in temperature.This is because in the hot compression process,with the increase of temperature,the deformation process begins to be accompanied by dynamic recrystallization,and the dislocation is no longer excited when the strain increases.

    Fig.10 (a) is the HRTEM image of the sample.It is found that there are both FCC structure and HCP structure in the image,so there is a phase transition of HCP→FCC in the compression at 500 K.Fig.10 (b) for the lattice stripe image obtained by FFT and IFFT on the HRTEM image,it is found that there is a dislocation between the FCC structure and the HCP structure.Fig.10 (c) when the HRTEM image near the dislocation is enlarged,the atomic arrangement between the HCC structure and the HCP structure can be observed.Fig.10(d)and(f)calibrate the FCC structure and HCP structure,respectively.Fig.10 (e) shows the lattice stripes and atomic spacing of the FCC structure,and the atomic spacing in the two directions is 0.2403 and 0.2502 nm,respectively,which confirms the FCC structure.Fig.10 (g) shows the lattice stripes and atomic spacing of the HCP structure,and the atomic spacing in the two directions is 0.2447 and 0.4997 nm,respectively,which confirms the HCP structure.Therefore,this experiment verifies the conclusion obtained by MD simulation,that is,there is a phase transition of HCP→FCC in the hot compression deformation of magnesium alloy,and the FCC structure multiplies and moves with the progress of compression,and the atoms of FCC stacking faults increase.Therefore,the specific law of phase transformation of magnesium alloy can be summarized as HCP→Shockley partial dislocation→FCC.

    Fig.11 (a) is the HRTEM image of the sample.It is found that there are both FCC structure and HCP structure in the image,so there is a phase transition of HCP→FCC in the compression at 500 K.Fig.11 (b) for the lattice fringe image obtained by FFT and IFFT on the HRTEM image,it is found that there is a dislocation between the FCC structure and the HCP structure.Fig.11 (c) the enlarged image of the lattice stripes near the dislocation,the Shockley partial dislocation between the HCC structure and the HCP structure can be observed.Fig.11 (d) and (f) calibrate the FCC structure and HCP structure respectively.Fig.11 (e) shows the lattice stripes and atomic spacing of the FCC structure,and the atomic spacing in the two directions is 0.2688 and 0.2857 nm,respectively,which confirms the FCC structure.Fig.11 (g) shows the lattice stripes and atomic spacing of the HCP structure,and the atomic spacing in the two directions is 0.5281 and 0.2840 nm,respectively,which confirms the HCP structure.

    Fig.12 (a) is the HRTEM image of the sample.It is found that there are both FCC structure and HCP structure in the image,so there is a phase transition of HCP→FCC in the compression at 500 K.Fig.12 (b) for the lattice stripe image obtained by FFT and IFFT on the HRTEM image,it is found that there is a dislocation between the FCC structure and the HCP structure.Fig.12 (c) an enlarged image of the lattice stripes near the dislocation,the Shockley partial dislocation between the HCC structure and the HCP structure can be observed.Fig.12 (d) and (f) calibrate the FCC structure and the HCP structure,respectively.Fig.12 (e) shows the lattice stripes and atomic spacing of the FCC structure,and the atomic spacing in the two directions is 0.2655 and 0.2529 nm,respectively,which confirms the FCC structure.Fig.12 (g) shows the lattice stripes and atomic spacing of the HCP structure,and the atomic spacing in the two directions is 0.5278 and 0.2515 nm,respectively,which confirms the HCP structure.

    Fig.10.Transmission experimental image at 500 K.(a) HRTEM image;(b) Lattice fringe image;(c) HRTEM magnified image near dislocation;(d) FFT image of FCC structure;(e) Lattice fringe and atomic spacing of FCC structure;(f) FFT image of HCP structure;(g) Lattice fringe and atomic spacing of HCP structure.

    Fig.11.Transmission experimental images at 600 K.(a) HRTEM image;(b) Lattice fringe image;(c) HRTEM magnified image near dislocation;(d) FFT image of FCC structure;(e) Lattice fringe and atomic spacing of FCC structure;(f) FFT image of HCP structure;(g) Lattice fringe and atomic spacing of HCP structure.

    Fig.12.Transmission experimental images at 700 K (a) HRTEM image;(b) Lattice fringe image;(c) HRTEM magnified image near dislocation;(d) FFT image of FCC structure;(e) Lattice fringe and atomic spacing of FCC structure;(f) FFT image of HCP structure;(g) Lattice fringe and atomic spacing of HCP structure.

    4.Conclusion

    In this paper,to explore the effect of temperature on the phase transformation of HCP→FCC during compression,the uniaxial compression process of AZ31 magnesium alloy was simulated by the molecular dynamics method,and the changes of crystal structure and dislocation evolution were observed.The effects of temperature on mechanical properties,crystal structure,and dislocation evolution of magnesium alloy during compression were analyzed.It is concluded that some of the Shockley dislocations are related to FCC stacking faults.Through hot compression experiments,with the help of TEM characterization means.The correctness of the correlation between some dislocations of Shockley partial dislocation and FCC stacking faults is verified.In this paper,through the combination of simulation and experiment,the following conclusions are obtained:

    (A) In both experiments and MD simulations,the yield stress decreases with the increase of temperature,and temperature can restrain the grain refinement and phase transformation of magnesium alloy.

    (B) The phase transition of HCP→GB→FCC occurs in magnesium alloy,which occurs before the plastic stage.At the same time,the Shockley partial dislocation is accompanied by the whole phase transformation process,with the atoms of the HCP structure on one side and the atoms of FCC stacking fault on the other.

    (C) The experiment verifies the conclusion obtained by MD simulation,that is,there is a phase transition of HCP→FCC in the hot compression deformation of magnesium alloy,and the FCC structure multiplies and moves with the progress of compression,and the atoms of FCC stacking faults increase.Therefore,the specific law of phase transformation of magnesium alloy can be summarized as HCP→Shockley partial dislocation→FCC.(Fig.2)

    Declaration of competing interest

    The authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria;educational grants;participation in speakers’ bureaus;membership,employment,consultancies,stock ownership,or other equity interest;and expert testimony or patent-licensing arrangements),or non-financial interest (such as personal or professional relationships,affiliations,knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

    Acknowledgments

    This work was supported by the National Key Research and Development Project (2018YFB1307902),Shanxi Province Joint Student Training Base Talent Training Project(No.2018JD33),Shanxi young top talent project,Shanxi Province Science Foundation for Youths(201901D211312),Excellent young academic leaders in Shanxi colleges and universities(No.2019045),Excellent Achievements Cultivation Project of Shanxi Higher Education Institutions(No.2019KJ028),Shanxi Province emerging industry leader talent project,Shanxi Graduate Education Innovation Project(No.2019SY482).

    成在线人永久免费视频| 久久久久久人人人人人| 老鸭窝网址在线观看| 久久精品熟女亚洲av麻豆精品| 激情视频va一区二区三区| 最近最新中文字幕大全电影3 | 午夜福利一区二区在线看| 久久久久久人人人人人| 亚洲一区中文字幕在线| 欧美久久黑人一区二区| 国产高清国产精品国产三级| 少妇的丰满在线观看| 中文字幕人妻熟女乱码| 欧美在线一区亚洲| 91成年电影在线观看| 久久亚洲精品不卡| 午夜福利视频在线观看免费| 国产一区二区三区视频了| 欧美性长视频在线观看| 香蕉国产在线看| 国产精品影院久久| 妹子高潮喷水视频| 一本大道久久a久久精品| 久久亚洲精品不卡| 人人妻,人人澡人人爽秒播| 成人av一区二区三区在线看| 女性被躁到高潮视频| 欧美成狂野欧美在线观看| 大香蕉久久成人网| 波多野结衣一区麻豆| 成人黄色视频免费在线看| 两性夫妻黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 黑人欧美特级aaaaaa片| 成人18禁在线播放| 大码成人一级视频| 亚洲精品国产色婷婷电影| 自拍欧美九色日韩亚洲蝌蚪91| 成人影院久久| √禁漫天堂资源中文www| 窝窝影院91人妻| 亚洲情色 制服丝袜| 一区二区三区国产精品乱码| 欧美乱码精品一区二区三区| 午夜福利影视在线免费观看| 国产成+人综合+亚洲专区| 看免费av毛片| 国产高清videossex| 淫妇啪啪啪对白视频| 色综合婷婷激情| 亚洲欧美精品综合一区二区三区| 国产高清视频在线播放一区| 午夜影院日韩av| 亚洲国产看品久久| 日韩欧美国产一区二区入口| 黄网站色视频无遮挡免费观看| 丝袜美足系列| 国产精品欧美亚洲77777| 欧美日韩成人在线一区二区| 大型av网站在线播放| 麻豆国产av国片精品| 国产单亲对白刺激| 免费在线观看日本一区| 欧美国产精品va在线观看不卡| 一边摸一边做爽爽视频免费| 国产精品乱码一区二三区的特点 | 亚洲国产欧美网| 国产1区2区3区精品| 精品高清国产在线一区| 91在线观看av| 国产片内射在线| 色综合欧美亚洲国产小说| 嫁个100分男人电影在线观看| 丰满饥渴人妻一区二区三| 人人妻人人添人人爽欧美一区卜| 日本撒尿小便嘘嘘汇集6| 一区二区三区精品91| 99re6热这里在线精品视频| 国产真人三级小视频在线观看| 国产精品久久久久成人av| 91精品国产国语对白视频| 国产人伦9x9x在线观看| 中出人妻视频一区二区| 最新美女视频免费是黄的| av国产精品久久久久影院| xxx96com| 丝袜美足系列| 成年人午夜在线观看视频| 中文字幕精品免费在线观看视频| 欧美日韩精品网址| 亚洲精品中文字幕在线视频| 国产欧美日韩一区二区三区在线| 999久久久国产精品视频| 中文亚洲av片在线观看爽 | 在线免费观看的www视频| 亚洲国产毛片av蜜桃av| av中文乱码字幕在线| 老熟女久久久| 91字幕亚洲| 久久精品亚洲熟妇少妇任你| 一区二区三区国产精品乱码| 久久青草综合色| 搡老乐熟女国产| 很黄的视频免费| 亚洲成a人片在线一区二区| aaaaa片日本免费| 久久草成人影院| 久久久精品国产亚洲av高清涩受| 黄色片一级片一级黄色片| 久久精品91无色码中文字幕| 久久人妻福利社区极品人妻图片| 久久精品aⅴ一区二区三区四区| 麻豆成人av在线观看| 老司机深夜福利视频在线观看| 日日爽夜夜爽网站| 欧美大码av| 中文亚洲av片在线观看爽 | 999久久久国产精品视频| 亚洲va日本ⅴa欧美va伊人久久| 淫妇啪啪啪对白视频| 亚洲欧美激情综合另类| 午夜精品在线福利| 丝袜人妻中文字幕| 亚洲av欧美aⅴ国产| 99国产综合亚洲精品| 五月开心婷婷网| 一本一本久久a久久精品综合妖精| 午夜福利欧美成人| 婷婷精品国产亚洲av在线 | 国产成人精品久久二区二区91| 亚洲av电影在线进入| 男女床上黄色一级片免费看| 亚洲精品久久成人aⅴ小说| 国产xxxxx性猛交| 村上凉子中文字幕在线| 无遮挡黄片免费观看| 欧美+亚洲+日韩+国产| 国产一区有黄有色的免费视频| 少妇粗大呻吟视频| 丝袜在线中文字幕| 天堂俺去俺来也www色官网| 国产精品一区二区精品视频观看| 国产免费男女视频| 91在线观看av| 午夜91福利影院| 脱女人内裤的视频| 久久人人爽av亚洲精品天堂| 国产精品欧美亚洲77777| 夫妻午夜视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人欧美在线观看 | 亚洲三区欧美一区| 国产精品1区2区在线观看. | 亚洲va日本ⅴa欧美va伊人久久| 亚洲 欧美一区二区三区| 欧美大码av| 最近最新中文字幕大全电影3 | 黄色女人牲交| 国产精品香港三级国产av潘金莲| 一级a爱片免费观看的视频| 亚洲av成人不卡在线观看播放网| 曰老女人黄片| 国产成+人综合+亚洲专区| 高清欧美精品videossex| xxxhd国产人妻xxx| 91老司机精品| 91九色精品人成在线观看| 一区二区三区激情视频| 成人特级黄色片久久久久久久| 亚洲国产欧美日韩在线播放| 亚洲av成人不卡在线观看播放网| 国产精品香港三级国产av潘金莲| 欧美日本中文国产一区发布| 视频区欧美日本亚洲| 极品教师在线免费播放| 中亚洲国语对白在线视频| 中文字幕另类日韩欧美亚洲嫩草| 午夜亚洲福利在线播放| 满18在线观看网站| 这个男人来自地球电影免费观看| 波多野结衣一区麻豆| 精品无人区乱码1区二区| 久久久久视频综合| 欧美另类亚洲清纯唯美| 久久久久久久久免费视频了| 看免费av毛片| 国产亚洲精品一区二区www | 亚洲精品美女久久av网站| 露出奶头的视频| 这个男人来自地球电影免费观看| 亚洲人成电影免费在线| 大码成人一级视频| av天堂久久9| 中文字幕高清在线视频| 亚洲午夜精品一区,二区,三区| 变态另类成人亚洲欧美熟女 | 精品福利永久在线观看| 黄片大片在线免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 狂野欧美激情性xxxx| 国产精品欧美亚洲77777| 黑人欧美特级aaaaaa片| 王馨瑶露胸无遮挡在线观看| 黑人巨大精品欧美一区二区mp4| 少妇粗大呻吟视频| 一区福利在线观看| 岛国毛片在线播放| 在线看a的网站| 亚洲色图综合在线观看| 久久精品国产99精品国产亚洲性色 | 亚洲欧美激情在线| 日韩免费av在线播放| 久热这里只有精品99| 免费女性裸体啪啪无遮挡网站| 亚洲国产欧美一区二区综合| 久久久国产成人免费| 国产精品久久电影中文字幕 | 91老司机精品| 中文字幕高清在线视频| 一二三四在线观看免费中文在| 国产精品影院久久| avwww免费| 精品国产美女av久久久久小说| 视频区欧美日本亚洲| 高清视频免费观看一区二区| www.999成人在线观看| 久久精品人人爽人人爽视色| 午夜亚洲福利在线播放| 午夜精品在线福利| 亚洲精品乱久久久久久| 黄片播放在线免费| 亚洲专区国产一区二区| 12—13女人毛片做爰片一| 久久精品国产a三级三级三级| avwww免费| 亚洲少妇的诱惑av| 欧美在线黄色| 欧美黑人欧美精品刺激| 捣出白浆h1v1| 国产午夜精品久久久久久| 黑丝袜美女国产一区| 中文字幕人妻丝袜一区二区| 午夜影院日韩av| 人妻一区二区av| 极品教师在线免费播放| 国产精品自产拍在线观看55亚洲 | 中文字幕色久视频| 成人18禁在线播放| av国产精品久久久久影院| 一本综合久久免费| 亚洲专区字幕在线| 超碰成人久久| 天堂俺去俺来也www色官网| 极品少妇高潮喷水抽搐| 丁香欧美五月| 少妇被粗大的猛进出69影院| 亚洲av日韩精品久久久久久密| 在线天堂中文资源库| 老司机影院毛片| 男女免费视频国产| 男人操女人黄网站| 性少妇av在线| 久久国产精品人妻蜜桃| 亚洲av成人一区二区三| 黄色成人免费大全| 身体一侧抽搐| 日韩 欧美 亚洲 中文字幕| 国产91精品成人一区二区三区| 国产一区二区三区综合在线观看| 99国产综合亚洲精品| 久久久精品国产亚洲av高清涩受| 高清在线国产一区| av免费在线观看网站| 精品亚洲成a人片在线观看| 一进一出好大好爽视频| 久久99一区二区三区| 亚洲成a人片在线一区二区| 国产1区2区3区精品| 纯流量卡能插随身wifi吗| 99国产精品免费福利视频| 老鸭窝网址在线观看| 成人国语在线视频| 中出人妻视频一区二区| 少妇猛男粗大的猛烈进出视频| 久久婷婷成人综合色麻豆| 久久久久精品人妻al黑| 久久香蕉激情| 国产99久久九九免费精品| 亚洲中文字幕日韩| 欧美午夜高清在线| 亚洲aⅴ乱码一区二区在线播放 | 一级a爱视频在线免费观看| 乱人伦中国视频| 久久中文看片网| 久久99一区二区三区| 波多野结衣一区麻豆| 免费观看精品视频网站| 曰老女人黄片| 日本欧美视频一区| 女性生殖器流出的白浆| 亚洲黑人精品在线| 国产国语露脸激情在线看| 正在播放国产对白刺激| 精品国产超薄肉色丝袜足j| avwww免费| 亚洲九九香蕉| 在线观看日韩欧美| 熟女少妇亚洲综合色aaa.| 亚洲欧美一区二区三区久久| 国产精品1区2区在线观看. | 国产淫语在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 999精品在线视频| 国产免费av片在线观看野外av| 国产精品av久久久久免费| 这个男人来自地球电影免费观看| 国产区一区二久久| 50天的宝宝边吃奶边哭怎么回事| 亚洲专区字幕在线| 亚洲av成人不卡在线观看播放网| 亚洲av成人av| 日韩人妻精品一区2区三区| 18禁裸乳无遮挡动漫免费视频| 久久青草综合色| 黑人巨大精品欧美一区二区mp4| 国产主播在线观看一区二区| 午夜亚洲福利在线播放| x7x7x7水蜜桃| 男男h啪啪无遮挡| 午夜两性在线视频| 两个人免费观看高清视频| 国产精品av久久久久免费| 女警被强在线播放| 久久人人爽av亚洲精品天堂| av免费在线观看网站| 99re在线观看精品视频| 少妇裸体淫交视频免费看高清 | 国产成人免费无遮挡视频| 久久久久久久国产电影| 久久精品熟女亚洲av麻豆精品| 久久精品国产亚洲av高清一级| 制服诱惑二区| 国产人伦9x9x在线观看| 九色亚洲精品在线播放| 亚洲片人在线观看| 日本a在线网址| 极品人妻少妇av视频| 免费一级毛片在线播放高清视频 | 一级片免费观看大全| av网站在线播放免费| 一本综合久久免费| av天堂在线播放| 一个人免费在线观看的高清视频| 精品国产一区二区久久| 少妇猛男粗大的猛烈进出视频| 日韩免费av在线播放| 视频区欧美日本亚洲| 午夜老司机福利片| 午夜日韩欧美国产| 亚洲伊人色综图| 成人免费观看视频高清| 欧美人与性动交α欧美精品济南到| 夜夜躁狠狠躁天天躁| 老司机靠b影院| 亚洲精品国产精品久久久不卡| 欧美日韩一级在线毛片| 91精品国产国语对白视频| 午夜精品国产一区二区电影| 天堂√8在线中文| 在线观看日韩欧美| 一级毛片精品| 久久精品国产a三级三级三级| 免费高清在线观看日韩| 首页视频小说图片口味搜索| 国产亚洲精品一区二区www | 男人操女人黄网站| 免费观看精品视频网站| 国产欧美日韩一区二区三区在线| av有码第一页| 免费在线观看亚洲国产| 日韩免费高清中文字幕av| 波多野结衣av一区二区av| 亚洲av第一区精品v没综合| 欧美另类亚洲清纯唯美| 在线观看66精品国产| 18禁国产床啪视频网站| 1024视频免费在线观看| 黑人欧美特级aaaaaa片| 成人av一区二区三区在线看| 五月开心婷婷网| 99久久精品国产亚洲精品| 精品久久久精品久久久| 精品亚洲成a人片在线观看| 精品免费久久久久久久清纯 | 精品国产超薄肉色丝袜足j| 99精品欧美一区二区三区四区| 亚洲色图 男人天堂 中文字幕| xxxhd国产人妻xxx| 亚洲专区中文字幕在线| 国产一区二区三区在线臀色熟女 | 99精品久久久久人妻精品| 啦啦啦视频在线资源免费观看| 久久精品国产a三级三级三级| 一夜夜www| 国产男女内射视频| 麻豆乱淫一区二区| 天堂√8在线中文| 国产麻豆69| 色老头精品视频在线观看| 午夜免费观看网址| 久久香蕉激情| 天天躁日日躁夜夜躁夜夜| 国产一区在线观看成人免费| 一级,二级,三级黄色视频| 国内久久婷婷六月综合欲色啪| 热re99久久精品国产66热6| 成人亚洲精品一区在线观看| 久久久国产成人精品二区 | 一级毛片精品| 精品亚洲成a人片在线观看| 久久99一区二区三区| 中文字幕最新亚洲高清| 久久久久久人人人人人| 丝袜美腿诱惑在线| 国产激情久久老熟女| 国产亚洲一区二区精品| 国产一区二区三区综合在线观看| bbb黄色大片| 99国产精品一区二区三区| 亚洲片人在线观看| tocl精华| 91九色精品人成在线观看| 在线视频色国产色| 超色免费av| 国产精品免费视频内射| 亚洲av美国av| 中文字幕色久视频| 老司机靠b影院| 人成视频在线观看免费观看| 亚洲精品久久午夜乱码| 无遮挡黄片免费观看| a级毛片在线看网站| av国产精品久久久久影院| 日韩成人在线观看一区二区三区| 麻豆av在线久日| 久久 成人 亚洲| avwww免费| 无人区码免费观看不卡| 国产精品1区2区在线观看. | a级毛片在线看网站| 一区二区三区国产精品乱码| 一a级毛片在线观看| 黄色片一级片一级黄色片| 水蜜桃什么品种好| 国产免费现黄频在线看| 夫妻午夜视频| 国产精品综合久久久久久久免费 | 日本wwww免费看| 欧美日韩瑟瑟在线播放| 久久久国产精品麻豆| 日韩免费av在线播放| 一级片免费观看大全| 日日夜夜操网爽| 精品人妻在线不人妻| 日本一区二区免费在线视频| 九色亚洲精品在线播放| 国产三级黄色录像| 国产成人啪精品午夜网站| 亚洲三区欧美一区| 黄频高清免费视频| 久久午夜综合久久蜜桃| 新久久久久国产一级毛片| 成年人黄色毛片网站| 美女国产高潮福利片在线看| 日本黄色日本黄色录像| 一级片'在线观看视频| 久久人人97超碰香蕉20202| 这个男人来自地球电影免费观看| 色综合婷婷激情| 亚洲视频免费观看视频| 操美女的视频在线观看| 精品国产亚洲在线| 男女下面插进去视频免费观看| 国产成人免费无遮挡视频| 一进一出好大好爽视频| 少妇的丰满在线观看| 悠悠久久av| 1024视频免费在线观看| 欧美精品啪啪一区二区三区| 精品久久久久久久毛片微露脸| av天堂久久9| 久久国产乱子伦精品免费另类| 亚洲五月婷婷丁香| 下体分泌物呈黄色| 中文字幕另类日韩欧美亚洲嫩草| 怎么达到女性高潮| 国产精品香港三级国产av潘金莲| 国产国语露脸激情在线看| 激情视频va一区二区三区| 高清黄色对白视频在线免费看| 免费一级毛片在线播放高清视频 | 久久性视频一级片| 亚洲一区中文字幕在线| 日韩熟女老妇一区二区性免费视频| 久久ye,这里只有精品| 亚洲欧美色中文字幕在线| 国产国语露脸激情在线看| 亚洲熟女毛片儿| 亚洲av欧美aⅴ国产| 国产在视频线精品| 亚洲中文av在线| 亚洲情色 制服丝袜| 国产不卡一卡二| 精品国产一区二区久久| 妹子高潮喷水视频| 母亲3免费完整高清在线观看| 超碰成人久久| 国产一区二区三区在线臀色熟女 | 成人三级做爰电影| 国产野战对白在线观看| 桃红色精品国产亚洲av| 亚洲专区国产一区二区| 中文字幕人妻丝袜制服| 日日爽夜夜爽网站| 国产一卡二卡三卡精品| 精品久久蜜臀av无| 日韩制服丝袜自拍偷拍| 成人黄色视频免费在线看| 中文亚洲av片在线观看爽 | 日韩免费高清中文字幕av| 在线天堂中文资源库| 制服人妻中文乱码| 欧美黑人精品巨大| 成熟少妇高潮喷水视频| 99国产极品粉嫩在线观看| 成人黄色视频免费在线看| 亚洲精品在线美女| 最近最新中文字幕大全免费视频| xxxhd国产人妻xxx| 国产又色又爽无遮挡免费看| 午夜精品久久久久久毛片777| 热99国产精品久久久久久7| 久久香蕉国产精品| av一本久久久久| 村上凉子中文字幕在线| 免费观看a级毛片全部| 侵犯人妻中文字幕一二三四区| 狠狠婷婷综合久久久久久88av| 亚洲色图综合在线观看| 在线永久观看黄色视频| 亚洲成国产人片在线观看| 亚洲精品国产区一区二| 男女免费视频国产| 在线国产一区二区在线| 国产一卡二卡三卡精品| 欧美成人免费av一区二区三区 | 亚洲成人免费电影在线观看| 国产伦人伦偷精品视频| 看片在线看免费视频| 久久亚洲精品不卡| 91麻豆av在线| 欧美在线黄色| 欧美日韩亚洲国产一区二区在线观看 | av免费在线观看网站| 国产av精品麻豆| 最近最新中文字幕大全电影3 | 母亲3免费完整高清在线观看| 丝袜美足系列| 国产精品一区二区在线观看99| 9191精品国产免费久久| 亚洲av成人av| 国产精品电影一区二区三区 | 欧美精品一区二区免费开放| 欧美激情久久久久久爽电影 | 一边摸一边抽搐一进一小说 | 99re在线观看精品视频| 黄色片一级片一级黄色片| 国产无遮挡羞羞视频在线观看| 亚洲黑人精品在线| 国产免费男女视频| 久久国产精品大桥未久av| 亚洲精品久久午夜乱码| 另类亚洲欧美激情| 国产亚洲欧美精品永久| av线在线观看网站| 久久天躁狠狠躁夜夜2o2o| 国产精品乱码一区二三区的特点 | 一区在线观看完整版| 国产乱人伦免费视频| 俄罗斯特黄特色一大片| 丁香六月欧美| 国产欧美亚洲国产| 免费一级毛片在线播放高清视频 | 最近最新免费中文字幕在线| 成年版毛片免费区| 中国美女看黄片| a级毛片黄视频| 母亲3免费完整高清在线观看| 国产免费男女视频| 日韩视频一区二区在线观看| 国产成人精品久久二区二区免费| 亚洲,欧美精品.| 首页视频小说图片口味搜索| 中文字幕制服av| 成人手机av| 久热爱精品视频在线9| cao死你这个sao货| 国产精品99久久99久久久不卡| 99国产精品一区二区蜜桃av | 国产av一区二区精品久久| 国产亚洲欧美精品永久| 在线观看一区二区三区激情| 三级毛片av免费| 日韩制服丝袜自拍偷拍| 精品无人区乱码1区二区|