• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular dynamics study on the effect of temperature on HCP→FCC phase transition of magnesium alloy

    2023-12-27 12:43:24ChunXueShuiLiZhiingChuQinhuYngYuguiLiLifengLeifengTuo
    Journal of Magnesium and Alloys 2023年10期

    Chun Xue ,Shui Li ,Zhiing Chu,? ,Qinhu Yng ,Yugui Li ,Lifeng M ,Leifeng Tuo

    aCollege of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China

    b College of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China

    Abstract To explore the effect of temperature on the phase transformation of HCP→FCC during compression,the uniaxial compression process of AZ31 magnesium alloy was simulated by the molecular dynamics method,and the changes of crystal structure and dislocation evolution were observed.The effects of temperature on mechanical properties,crystal structure,and dislocation evolution of magnesium alloy during compression were analyzed.It is concluded that some of the Shockley partial dislocation is related to FCC stacking faults.With the help of TEM characterization,the correctness of the correlation between some of the dislocations and FCC stacking faults is verified.Through the combination of simulation and experiment,this paper provides an idea for the in-depth study of the solid-phase transformation of magnesium alloys and provides reference and guidance for the design of magnesium alloys with good plasticity and formability at room temperature.? 2022 Chongqing University.Publishing services provided by Elsevier B.V.on behalf of KeAi Communications Co.Ltd.

    Keywords: Temperature;AZ31 magnesium alloy;FCC stacking fault;Shockley partial dislocation;Phase transformation.

    1.Introduction

    As a new light weight metal material,magnesium alloy has been widely used in aerospace,transportation,electronic information,biomedical and other industries.A large number of researchers focus on strengthening the mechanical properties of magnesium alloys [1–8].The known strengthening mechanisms of crystal materials are "grain boundary strengthening","twin strengthening","solid solution strengthening" and"precipitation strengthening".The basis of these methods is to control defects and prevent dislocation movement [9–10].Because the number of slip systems that can be activated on the substrate of hexagonal close packed crystal structure is limited,and its ductility and formability are poor.[11].With the in-depth study of precipitation strengthening and fine grain strengthening of magnesium alloys,great breakthroughs have been made in the development of high plastic magnesium alloys[12–13].Among them,the grain refinement of the magnesium-aluminum alloy is considered to be one of the effective ways to improve the strength and plasticity of magnesium alloy at the same time [14–16].

    Molecular dynamics methods can be widely used in the structural evolution and dislocation multiplication of materials at a nanometer scale [17–19].Many scholars have studied the effect of phase transition on improving metal strength by molecular dynamics method.Jianwei Xiao [20–21] studied the plastic deformation of nanocrystalline high entropy alloy model by molecular dynamics simulation.It is found that the plastic deformation of nanocrystalline high entropy alloy is mainly caused by partial reversible face-centered cubic transformation (FCC) to hexagonal compact packing phase transition (HCP) caused by stacking faults and partial dislocations,which is induced by stress and occurs through the nucleation and diffusion of partial dislocations.Hao Zhang [22] has studied the effects of uniaxial stretching directions [20],[010] and [0001]on the deformation mechanism of hexagonal dense packing(HCP) titanium crystals by molecular dynamics simulation.It is found that the phase transition behavior is different in different loading directions.N.Amadou [23] used molecular dynamics simulation to study the relationship between deformation,BCC-HCP phase transformation and orientation,initial defects,and temperature conditions of single-crystal iron under compression.Yuming Qi [24] analyzed the plastic deformation of single crystal and polycrystalline high entropy alloys under tensile and compression conditions by molecular dynamics simulation.It was found that FCC-HCP phase transition occurred in the process of plastic deformation.At the same time,under the action of compression load,the grain is refined,which leads to the inconsistency of crystal orientation,which effectively improves the strength of the material.Aleksandr V.Korchuganova [25] simulated the uniaxial tensile process of nano-copper crystals by molecular dynamics.It was found that the nucleation and slip of some dislocations on the free surface were due to the FCC→BCC→HCP phase transition.

    At present,most of the researches on plastic deformation of magnesium alloys are at the micro-level.The room temperature deformation tests of AZ31 hot-rolled sheet and extruded bar were carried out by T.Ebeling [26],and the results were compared with the simulation results of the viscoplastic self-consistent model.Kenneth J.Tam [27] established a temperature-sensitive viscoplastic self-consistent(VPSC) model.The effects of temperature and texture on the deformation mechanism of hot-rolled AZ31 magnesium alloy were studied,and the deformation mode of magnesium alloy was predicted.Kai Zhang [28] compressed AZ31 magnesium alloy at room temperature and low temperature.The effects of twins and dislocations on flow stress,plastic strain,and strain hardening were studied.It was found that low-temperature deformation inhibited dislocation activity.Progress has also been made in the study of the atomic level of magnesium alloys.Xiangli Liu [29] has studied the dislocation structures of<0001>tilted and twisted grain boundaries in magnesium alloys at the atomic level.It is found that both symmetrically inclined and twisted grain boundaries have ordered atomic structures in the whole rotation angle range ofθ=0° -60°,which can be described by the grain boundary dislocation model.Ki-Hyun Kima [30] explained the role of alloying elements in improving the room temperature ductility of magnesium alloy by molecular dynamics simulation.It was found that as long as the alloy content was controlled,any solute element with a different particle size from magnesium could improve the room temperature ductility of magnesium alloy.A.M.Vlasova [31] has carried out an atomic simulation of the deformation of ideal magnesium crystal along the crystal axis and studied the evolution process of structural defects at T=300 -350 K.

    Although there have been a lot of studies on molecular dynamics simulations in material deformation,few studies have focused on the role of stacking faults in the deformation mechanism of HCP metal [32–33].To explore the effect of temperature on the phase transformation of HCP→FCC during compression,the uniaxial compression process of AZ31 magnesium alloy was simulated by the molecular dynamics method,and the changes of crystal structure and dislocation evolution were observed.The effects of temperature on mechanical properties,crystal structure,and dislocation evolution of magnesium alloy during compression were analyzed.It is concluded that some of Shockley’s dislocations are related to FCC stacking faults.Through TEM characterization,the correctness of the correlation between Shockley dislocations and FCC stacking faults is verified.Through the combination of simulation and experiment,this paper provides an idea for the in-depth study of the solid-phase transformation of magnesium alloys and provides reference and guidance for the design of magnesium alloys with good plasticity and formability at room temperature.

    2.Simulation and experimental scheme

    2.1.Simulation scheme

    In the study of molecular dynamics,the potential function is usually used to describe the relationship between the model particle total energyEand the particle coordinate (r)[34–37].The improved embedded atom method potential function (MEAM) is more suitable for the calculation of metals and alloys with FCC,BCC,HCP,and Diamond structures[38–44].Its function is as follows:

    Fig.1.MD simulation diagram.

    Fig.2.Experimental equipment and samples (a) Gleeble-3800 thermal simulator;(b) Hot compression process;(c) Compression pattern;(d) JEM-F200 transmission electron microscope.

    Fig.3.MD simulated force and energy parameters (a) Stress-strain curves;(b) Potential energy curves;(c) Total dislocation density curves.

    Fig.4.Mechanical properties (a) Stress-strain curves of compression test;(b) Yield stress curves.

    In the function,Eis the total energy of atomi;Fis the embedded energy and is the Function of atomic electron densityρ;ρis the atomic electron density;γand?is a pair of potential interactions;αandβis the element type of atomsiandj.

    The model of AZ31 magnesium alloy with the size of?200 ?A × 300 ?A is established,and the X-axis,Y-axis,and Z-axis are set to correspond to the crystal directions [20],[010] and [0001],respectively.The model is introduced into a large-scale atomic/molecular massively parallel simulator (LAMMPS) [45] for molecular dynamics simulation.X,Y,and Z are all periodic boundary conditions,NPT(constant-pressure,constant-temperature) ensemble is adopted,and the time step is 0.001ps.The NPT ensemble and the nose-hoover thermostat maintain the stability of the entire system at constant pressure and temperature.The calculation is carried out by using the potential function developed by Hyo-Sun Jang [46].This potential function can be used to study the deformation and recrystallization characteristics of Mg-Al-Zn alloy in the whole processing temperature range.The conjugate gradient (CG) algorithm is used to minimize the model energy to obtain the equilibrium structure at a given temperature in the NPT ensemble.First,relax the 10ps at a given temperature,and then compress the 40ps at the strain rate of 0.01ps-1,so that the deformation of the magnesium alloy reaches 40%,as shown in Fig.1.The mathematical formula of deformation is:

    In the formula,εis strain;L1is the initial length of the model in [0001] crystal direction;L2is the length of the model compressed along the [0001] crystal direction.

    The calculation results are imported into the visualization software OVITO,and the functions such as CNA (Common neighbor analysis),DXA (Dislocation analysis),GS (Grain segmentation) are used to analyze the structural change and dislocation evolution [47–53].

    2.2.Experimental scheme

    The cylindrical compression sample of ?10 mm × 15 mm in AZ31 magnesium alloy extruded bar was taken by WEDM,and the surface of the sample was polished with sandpaper to make the side of the cylindrical sample show metallic luster,remove the oxide scale on the end face and eliminate obvious scratches.The Gleeble-3800 thermal simulator was selected to carry out uniaxial compression along the axial direction of the sample,and the heating rate was 5 °C/s.To ensure the uniform distribution of the temperature field in the sample,the sample was kept at the experimental temperature for 100s before deformation.The setting temperature is 500 K,600 K,and 700 K respectively.Because of the difference between the molecular dynamics simulation and the macroscopic experiment,the strain rate of the experiment is not consistent with that of the molecular dynamics,so the experimental strain rate is chosen as 1 s-1.To reduce the friction between the sample and the compression fixture during deformation,the two ends of the sample are coated with graphite lubricant.

    To further study the dislocation,atomic arrangement,crystal structure,and phase transformation,TEM experiments were carried out on 200 kV’s transmission electron microscope (model: JEM-F200).The atomic arrangement in AZ31 magnesium alloy after hot compression was observed,the diffraction pattern was obtained,and the dislocation and phase transformation mechanism in the process of hot compression were analyzed.

    3.Results and analysis

    3.1.MD analysis

    Fig.3 shows the force and energy parameter curves in MD simulation.Fig.3(a)shows the stress-strain curves.The yield stress decreases with the increase of temperature.Fig.3 (b)shows the potential energy curves,which increases with the increase of temperature.Fig.3 (c) shows the curves of total dislocation density,which decreases with the increase of temperature.In the process of compression,with the increase of the amount of compression,the atomic position changes,the potential energy of the model increases,the total dislocation density decreases,and the stress increases.When the yield strain is reached,the total dislocation density begins to increase,and the model reaches the maximum yield stress.Enter the plastic stage.With the continuous increase of the amount of squeezing,the atomic position continues to change,and the potential energy still increases.With the increase of temperature,more potential energy is provided to the model,and the model is easier to deform,so the higher the temperature is,the smaller the yield stress is.

    Fig.6.Crystal structure evolution.(a)~(c) CNA diagram: (a) 500 K;(b) 600 K;(c) 700 K.(d)~(f) Fraction curves of different structure: (d) 500 K;(e)600 K;(f) 700 K.

    Fig.4 (a) shows the stress-strain curves of the compression test,which is consistent with the MD simulation,that is,the higher the temperature,the smaller the stress.Fig.4 (b)shows the yield stress curves.Due to the difference between MD simulation and experiment,the yield stress is not equal.However,no matter in the experiment or the MD simulation,the yield stress decreases with the increase of temperature,which proves the unity of the experiment and the MD simulation.

    Fig.6.Continued

    Fig.5 (a)~(c) is the diagram of grain evolution in MD simulation,and Fig.5 (d) is the curves of grain number.With the increase of the amount of compression,the grain refinement of magnesium alloy occurs in different degrees,but the degree of grain refinement decreases with the increase of temperature.Therefore,the high temperature can inhibit the grain refinement of magnesium alloy.

    Fig.7.Dislocation evolution.(a)~(c) Dislocation diagram: (a) 500 K;(b) 600 K;(c) 700 K;(d)~(f) Dislocation density curves: (d) 500 K;(e) 600 K;(f) 700 K.

    Fig.7.Continued

    Fig.6 (a)~(c) is a CNA diagram.The red atom represents the HCP structure atom,the green atom represents the FCC stacking fault atom,and the white atom represents the OTHER atom including the grain boundary and the unrecognized structure.With the increase of the amount of compression,the grains are refined and the atomic structure changes.Whenε=0%,there are only HCP structure and OTHER structure in magnesium alloy.With the increase of compression amount,HCP structure decreases,OTHER structure increases,and FCC stacking fault occur.Because the number of atoms does not change,the phase transformation of magnesium alloy takes place in the process of compression.As the amount of compression continues to increase,so does the number of FCC stacking faults.Fig.6 (e)~(f) is a structural fractional curves.It can be found that when the strain is close to the yield strain,the FCC stacking fault occurs in the magnesium alloy,so the FCC stacking fault is related to the plasticity of the magnesium alloy.With the increase of temperature,the degree of transition from HCP structure to OTHER structure decreases,so the temperature can inhibit the phase transition.

    Table 1 Bergson marks of common dislocations in closely packed hexagonal crystals[55]

    Fig.7 (a)~(c) is a dislocation diagram.As the number of compression increases, the length and number of dislocation lines increase, and the dislocation density increases.Fig.7 (e)~(f) shows the dislocation density curves.It can be found that the100 dislocations and other dislocations have the highest dislocation density.Table 1 shows the Bergson markings of common dislocations in closely packed hexagonal crystals.Whereis a basal complete dislocation, -→T S([0001]) is a cylindrical full dislocation,is an incomplete dislocation,is a Shockley partial dislocation [54].According to Table 1, it is found that the strain of Shockley partial dislocation is similar to that of FCC stacking fault, so it is inferred that Shockley partial dislocation is closely related to the phase transformation of magnesium alloy.

    To explore the correlation between Shockley partial dislocation and HCP alloy FCC phase transition, the HCP structure fraction curve, FCC stacking fault fraction curve, and Shockley partial dislocation density curves are combined into

    Fig.9.TEM and SEAD images at different temperatures (a) 500 K;(b) 600 K;(c) 700 K.

    To explore the correlation between Shockley partial dislocation and HCP alloy FCC phase transition,the HCP structure fraction curve,FCC stacking fault fraction curve,and Shockley partial dislocation density curves are combined into Fig.8 (a).It is found that with the increase of strain,whenε=2.6%,the HCP structure fraction first decreases.Whenε=4.6%,the density of Shockley partial dislocations begins to increase.Whenε=5.6%,the FCC stacking fault score begins to increase.However,this change occurs before yield,so the phase transformation of magnesium alloy occurs before the plastic stage.Fig.8 (b) shows the evolution of Shockley partial dislocations and the HCP→FCC phase transition at 600 K.There are atoms of HCP structure on one side of Shockley partial dislocations and atoms of FCC stacking faults on the other.With the increase of the amount of compression,the atomic position of the HCP structure changes,forming Shockley partial dislocations and forming grain boundaries.With the progress of compression,the atomic position continues to change,Shockley partial dislocations multiply and move,and the atoms of FCC stacking faults increase.Therefore,the specific law of phase transformation of magnesium alloy is HCP→GB→FCC,and Shockley partial dislocation is accompanied by the whole phase transformation process.

    3.2.Experimental analysis

    Fig.9 (a)~(c) shows the TEM and SEAD images under 500~700 K,respectively.It can be seen that the number of dislocations in the sample decreases with the increase in temperature.This is because in the hot compression process,with the increase of temperature,the deformation process begins to be accompanied by dynamic recrystallization,and the dislocation is no longer excited when the strain increases.

    Fig.10 (a) is the HRTEM image of the sample.It is found that there are both FCC structure and HCP structure in the image,so there is a phase transition of HCP→FCC in the compression at 500 K.Fig.10 (b) for the lattice stripe image obtained by FFT and IFFT on the HRTEM image,it is found that there is a dislocation between the FCC structure and the HCP structure.Fig.10 (c) when the HRTEM image near the dislocation is enlarged,the atomic arrangement between the HCC structure and the HCP structure can be observed.Fig.10(d)and(f)calibrate the FCC structure and HCP structure,respectively.Fig.10 (e) shows the lattice stripes and atomic spacing of the FCC structure,and the atomic spacing in the two directions is 0.2403 and 0.2502 nm,respectively,which confirms the FCC structure.Fig.10 (g) shows the lattice stripes and atomic spacing of the HCP structure,and the atomic spacing in the two directions is 0.2447 and 0.4997 nm,respectively,which confirms the HCP structure.Therefore,this experiment verifies the conclusion obtained by MD simulation,that is,there is a phase transition of HCP→FCC in the hot compression deformation of magnesium alloy,and the FCC structure multiplies and moves with the progress of compression,and the atoms of FCC stacking faults increase.Therefore,the specific law of phase transformation of magnesium alloy can be summarized as HCP→Shockley partial dislocation→FCC.

    Fig.11 (a) is the HRTEM image of the sample.It is found that there are both FCC structure and HCP structure in the image,so there is a phase transition of HCP→FCC in the compression at 500 K.Fig.11 (b) for the lattice fringe image obtained by FFT and IFFT on the HRTEM image,it is found that there is a dislocation between the FCC structure and the HCP structure.Fig.11 (c) the enlarged image of the lattice stripes near the dislocation,the Shockley partial dislocation between the HCC structure and the HCP structure can be observed.Fig.11 (d) and (f) calibrate the FCC structure and HCP structure respectively.Fig.11 (e) shows the lattice stripes and atomic spacing of the FCC structure,and the atomic spacing in the two directions is 0.2688 and 0.2857 nm,respectively,which confirms the FCC structure.Fig.11 (g) shows the lattice stripes and atomic spacing of the HCP structure,and the atomic spacing in the two directions is 0.5281 and 0.2840 nm,respectively,which confirms the HCP structure.

    Fig.12 (a) is the HRTEM image of the sample.It is found that there are both FCC structure and HCP structure in the image,so there is a phase transition of HCP→FCC in the compression at 500 K.Fig.12 (b) for the lattice stripe image obtained by FFT and IFFT on the HRTEM image,it is found that there is a dislocation between the FCC structure and the HCP structure.Fig.12 (c) an enlarged image of the lattice stripes near the dislocation,the Shockley partial dislocation between the HCC structure and the HCP structure can be observed.Fig.12 (d) and (f) calibrate the FCC structure and the HCP structure,respectively.Fig.12 (e) shows the lattice stripes and atomic spacing of the FCC structure,and the atomic spacing in the two directions is 0.2655 and 0.2529 nm,respectively,which confirms the FCC structure.Fig.12 (g) shows the lattice stripes and atomic spacing of the HCP structure,and the atomic spacing in the two directions is 0.5278 and 0.2515 nm,respectively,which confirms the HCP structure.

    Fig.10.Transmission experimental image at 500 K.(a) HRTEM image;(b) Lattice fringe image;(c) HRTEM magnified image near dislocation;(d) FFT image of FCC structure;(e) Lattice fringe and atomic spacing of FCC structure;(f) FFT image of HCP structure;(g) Lattice fringe and atomic spacing of HCP structure.

    Fig.11.Transmission experimental images at 600 K.(a) HRTEM image;(b) Lattice fringe image;(c) HRTEM magnified image near dislocation;(d) FFT image of FCC structure;(e) Lattice fringe and atomic spacing of FCC structure;(f) FFT image of HCP structure;(g) Lattice fringe and atomic spacing of HCP structure.

    Fig.12.Transmission experimental images at 700 K (a) HRTEM image;(b) Lattice fringe image;(c) HRTEM magnified image near dislocation;(d) FFT image of FCC structure;(e) Lattice fringe and atomic spacing of FCC structure;(f) FFT image of HCP structure;(g) Lattice fringe and atomic spacing of HCP structure.

    4.Conclusion

    In this paper,to explore the effect of temperature on the phase transformation of HCP→FCC during compression,the uniaxial compression process of AZ31 magnesium alloy was simulated by the molecular dynamics method,and the changes of crystal structure and dislocation evolution were observed.The effects of temperature on mechanical properties,crystal structure,and dislocation evolution of magnesium alloy during compression were analyzed.It is concluded that some of the Shockley dislocations are related to FCC stacking faults.Through hot compression experiments,with the help of TEM characterization means.The correctness of the correlation between some dislocations of Shockley partial dislocation and FCC stacking faults is verified.In this paper,through the combination of simulation and experiment,the following conclusions are obtained:

    (A) In both experiments and MD simulations,the yield stress decreases with the increase of temperature,and temperature can restrain the grain refinement and phase transformation of magnesium alloy.

    (B) The phase transition of HCP→GB→FCC occurs in magnesium alloy,which occurs before the plastic stage.At the same time,the Shockley partial dislocation is accompanied by the whole phase transformation process,with the atoms of the HCP structure on one side and the atoms of FCC stacking fault on the other.

    (C) The experiment verifies the conclusion obtained by MD simulation,that is,there is a phase transition of HCP→FCC in the hot compression deformation of magnesium alloy,and the FCC structure multiplies and moves with the progress of compression,and the atoms of FCC stacking faults increase.Therefore,the specific law of phase transformation of magnesium alloy can be summarized as HCP→Shockley partial dislocation→FCC.(Fig.2)

    Declaration of competing interest

    The authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria;educational grants;participation in speakers’ bureaus;membership,employment,consultancies,stock ownership,or other equity interest;and expert testimony or patent-licensing arrangements),or non-financial interest (such as personal or professional relationships,affiliations,knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

    Acknowledgments

    This work was supported by the National Key Research and Development Project (2018YFB1307902),Shanxi Province Joint Student Training Base Talent Training Project(No.2018JD33),Shanxi young top talent project,Shanxi Province Science Foundation for Youths(201901D211312),Excellent young academic leaders in Shanxi colleges and universities(No.2019045),Excellent Achievements Cultivation Project of Shanxi Higher Education Institutions(No.2019KJ028),Shanxi Province emerging industry leader talent project,Shanxi Graduate Education Innovation Project(No.2019SY482).

    老司机福利观看| 99精品在免费线老司机午夜| 精品不卡国产一区二区三区| 午夜福利欧美成人| 亚洲欧美日韩卡通动漫| 成人二区视频| 亚洲性久久影院| 嫩草影视91久久| 亚洲18禁久久av| 日本 欧美在线| 精品无人区乱码1区二区| 美女被艹到高潮喷水动态| 波野结衣二区三区在线| 国产精品久久久久久精品电影| 搡老妇女老女人老熟妇| 99久国产av精品| 色5月婷婷丁香| 亚洲精品亚洲一区二区| 99在线人妻在线中文字幕| 春色校园在线视频观看| 国产在线精品亚洲第一网站| 身体一侧抽搐| 精品久久久久久久久av| 可以在线观看的亚洲视频| 欧美一级a爱片免费观看看| 欧美区成人在线视频| 日韩精品有码人妻一区| 国产精品久久视频播放| 国产高清三级在线| 我的老师免费观看完整版| 深夜精品福利| 日本一二三区视频观看| 午夜精品一区二区三区免费看| 全区人妻精品视频| 波多野结衣高清作品| 嫁个100分男人电影在线观看| 欧美国产日韩亚洲一区| 黄色日韩在线| 亚洲精品色激情综合| 亚洲va在线va天堂va国产| 日本在线视频免费播放| 日本黄色视频三级网站网址| 天堂√8在线中文| 最后的刺客免费高清国语| 国产精品永久免费网站| 国产精品久久久久久久电影| 丰满人妻一区二区三区视频av| 久久天躁狠狠躁夜夜2o2o| 欧美高清性xxxxhd video| 色综合色国产| 我的女老师完整版在线观看| 俺也久久电影网| 国产又黄又爽又无遮挡在线| 免费观看在线日韩| 国产一区二区亚洲精品在线观看| 能在线免费观看的黄片| 韩国av一区二区三区四区| 午夜福利高清视频| 亚洲无线在线观看| 国产精品伦人一区二区| 伦理电影大哥的女人| 一a级毛片在线观看| 成人午夜高清在线视频| 久久久久精品国产欧美久久久| 黄色日韩在线| 久久精品影院6| 久9热在线精品视频| 成人综合一区亚洲| 亚洲精品在线观看二区| 日日干狠狠操夜夜爽| 成年女人毛片免费观看观看9| 成人永久免费在线观看视频| 国产精品久久久久久亚洲av鲁大| 精品久久久久久久久亚洲 | 18禁黄网站禁片免费观看直播| 成人特级黄色片久久久久久久| 身体一侧抽搐| 亚洲成人精品中文字幕电影| 亚洲综合色惰| a级毛片免费高清观看在线播放| 99国产精品一区二区蜜桃av| 国产精品嫩草影院av在线观看 | 亚洲精华国产精华液的使用体验 | 三级毛片av免费| 内地一区二区视频在线| 国产亚洲精品综合一区在线观看| 亚洲中文字幕日韩| 少妇丰满av| 亚洲无线在线观看| 精品99又大又爽又粗少妇毛片 | 亚洲精品久久国产高清桃花| 免费人成在线观看视频色| 国内少妇人妻偷人精品xxx网站| 色哟哟·www| 国产中年淑女户外野战色| 中文字幕av在线有码专区| 婷婷精品国产亚洲av在线| 美女xxoo啪啪120秒动态图| 亚洲精品456在线播放app | 久久久色成人| 久久久久免费精品人妻一区二区| 久久婷婷人人爽人人干人人爱| 18禁裸乳无遮挡免费网站照片| 男女那种视频在线观看| 大又大粗又爽又黄少妇毛片口| 免费在线观看影片大全网站| 欧美性感艳星| 久久久久久久久久久丰满 | 成人午夜高清在线视频| 别揉我奶头 嗯啊视频| 九九在线视频观看精品| 免费不卡的大黄色大毛片视频在线观看 | 中亚洲国语对白在线视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人久久性| 亚洲国产欧美人成| 一卡2卡三卡四卡精品乱码亚洲| 婷婷精品国产亚洲av| 美女黄网站色视频| 桃色一区二区三区在线观看| 在线a可以看的网站| 深夜精品福利| 又爽又黄无遮挡网站| 老熟妇乱子伦视频在线观看| АⅤ资源中文在线天堂| 久久久国产成人精品二区| 国产精品一区二区三区四区免费观看 | 欧美黑人欧美精品刺激| 在线免费十八禁| 日日摸夜夜添夜夜添av毛片 | 国产高清三级在线| 精品人妻1区二区| 观看美女的网站| 九九爱精品视频在线观看| 亚洲中文字幕日韩| 我要搜黄色片| 亚洲三级黄色毛片| 一a级毛片在线观看| 午夜免费激情av| 免费一级毛片在线播放高清视频| 国产av在哪里看| 日日干狠狠操夜夜爽| 乱码一卡2卡4卡精品| 12—13女人毛片做爰片一| 露出奶头的视频| 亚洲av电影不卡..在线观看| 不卡一级毛片| 亚洲欧美日韩卡通动漫| 精品国内亚洲2022精品成人| 3wmmmm亚洲av在线观看| 成人av在线播放网站| 国产精品99久久久久久久久| 亚洲熟妇中文字幕五十中出| 精品日产1卡2卡| 全区人妻精品视频| 18禁在线播放成人免费| 精品久久久久久成人av| 亚洲 国产 在线| av视频在线观看入口| 又爽又黄a免费视频| 12—13女人毛片做爰片一| 免费看美女性在线毛片视频| 在线播放国产精品三级| 日韩精品青青久久久久久| 狠狠狠狠99中文字幕| 国产aⅴ精品一区二区三区波| 22中文网久久字幕| 色播亚洲综合网| 亚洲人成网站高清观看| 少妇被粗大猛烈的视频| 美女 人体艺术 gogo| 黄色一级大片看看| 露出奶头的视频| 亚洲男人的天堂狠狠| 永久网站在线| 美女xxoo啪啪120秒动态图| 色尼玛亚洲综合影院| 1000部很黄的大片| 色播亚洲综合网| 精品国内亚洲2022精品成人| 男女做爰动态图高潮gif福利片| 欧美色视频一区免费| 韩国av一区二区三区四区| 久久久成人免费电影| 成人av在线播放网站| 少妇熟女aⅴ在线视频| 在线免费观看的www视频| 国产中年淑女户外野战色| h日本视频在线播放| 国产成人福利小说| 中文在线观看免费www的网站| 在线观看av片永久免费下载| 午夜老司机福利剧场| 欧美高清成人免费视频www| 九九久久精品国产亚洲av麻豆| 乱系列少妇在线播放| 又黄又爽又免费观看的视频| 综合色av麻豆| av在线老鸭窝| 国产午夜精品久久久久久一区二区三区 | 日韩欧美免费精品| 窝窝影院91人妻| 黄片wwwwww| 最近在线观看免费完整版| 搞女人的毛片| 五月玫瑰六月丁香| 免费黄网站久久成人精品| 国产高清视频在线播放一区| 18禁裸乳无遮挡免费网站照片| 亚洲午夜理论影院| 国产精品一区二区三区四区久久| 亚洲av不卡在线观看| 国产一区二区三区视频了| 天美传媒精品一区二区| 午夜视频国产福利| 日韩精品有码人妻一区| 99久久无色码亚洲精品果冻| 免费在线观看成人毛片| 亚洲不卡免费看| 亚洲成人免费电影在线观看| 黄色女人牲交| 亚洲精品影视一区二区三区av| 亚洲avbb在线观看| 成年版毛片免费区| 国产av在哪里看| 美女xxoo啪啪120秒动态图| 亚洲一区高清亚洲精品| 成人永久免费在线观看视频| 少妇人妻一区二区三区视频| 国产黄色小视频在线观看| 美女高潮的动态| 亚洲最大成人中文| 国产主播在线观看一区二区| 夜夜爽天天搞| 久久久久久久久久久丰满 | 久久久久久久久久黄片| 在线免费十八禁| 国产亚洲精品av在线| 亚洲精品成人久久久久久| 91在线精品国自产拍蜜月| 免费人成在线观看视频色| 成人国产麻豆网| 国产麻豆成人av免费视频| 婷婷精品国产亚洲av| 国产精品精品国产色婷婷| 一本精品99久久精品77| 久久精品国产自在天天线| 国产麻豆成人av免费视频| 三级毛片av免费| av福利片在线观看| 嫩草影院新地址| av专区在线播放| 婷婷六月久久综合丁香| 日本撒尿小便嘘嘘汇集6| 熟女电影av网| 成人午夜高清在线视频| 国产精品99久久久久久久久| 舔av片在线| 国产综合懂色| 黄色女人牲交| 免费黄网站久久成人精品| 午夜免费成人在线视频| 51国产日韩欧美| 小说图片视频综合网站| 成人特级av手机在线观看| 国产大屁股一区二区在线视频| 国产 一区精品| 别揉我奶头~嗯~啊~动态视频| 国产精品国产高清国产av| 淫秽高清视频在线观看| 国产激情偷乱视频一区二区| 亚洲av成人av| 久久久精品大字幕| 久久精品国产亚洲av香蕉五月| 久久99热6这里只有精品| 免费在线观看影片大全网站| 亚洲av免费高清在线观看| 黄色一级大片看看| 两个人视频免费观看高清| 小蜜桃在线观看免费完整版高清| 亚洲精品色激情综合| 亚洲久久久久久中文字幕| av在线观看视频网站免费| 久久久国产成人免费| 国产老妇女一区| 亚洲av熟女| 日韩欧美在线乱码| 男女边吃奶边做爰视频| 观看免费一级毛片| 久久久成人免费电影| 国产精品伦人一区二区| 亚洲欧美日韩无卡精品| 美女高潮的动态| 大型黄色视频在线免费观看| 久久久国产成人免费| 国产精品亚洲一级av第二区| 天天躁日日操中文字幕| 国语自产精品视频在线第100页| 日韩欧美免费精品| 国产精品亚洲美女久久久| 国产一区二区在线av高清观看| 久久人妻av系列| 久久婷婷人人爽人人干人人爱| 中出人妻视频一区二区| 美女大奶头视频| 午夜激情欧美在线| 在线观看av片永久免费下载| 熟女人妻精品中文字幕| 日本免费一区二区三区高清不卡| 别揉我奶头~嗯~啊~动态视频| 成人特级黄色片久久久久久久| 久久亚洲真实| 婷婷亚洲欧美| 亚洲av第一区精品v没综合| 日韩欧美在线乱码| 中文字幕熟女人妻在线| 亚洲中文日韩欧美视频| 欧美性猛交黑人性爽| 啦啦啦观看免费观看视频高清| 色吧在线观看| 黄色丝袜av网址大全| 最新中文字幕久久久久| 内地一区二区视频在线| 久久精品国产亚洲av香蕉五月| 人妻久久中文字幕网| 日韩欧美精品v在线| 午夜激情欧美在线| 99国产极品粉嫩在线观看| 国产成人aa在线观看| 色哟哟哟哟哟哟| 国产成人影院久久av| 波野结衣二区三区在线| 亚洲七黄色美女视频| 亚洲,欧美,日韩| 精品乱码久久久久久99久播| 欧美丝袜亚洲另类 | 国产男人的电影天堂91| 亚洲欧美日韩卡通动漫| 免费在线观看日本一区| 国产午夜精品久久久久久一区二区三区 | 免费看a级黄色片| 中亚洲国语对白在线视频| 日韩在线高清观看一区二区三区 | 日本爱情动作片www.在线观看 | 色尼玛亚洲综合影院| 人妻夜夜爽99麻豆av| 久久久久久大精品| 亚洲欧美精品综合久久99| 在线观看免费视频日本深夜| 欧美日韩中文字幕国产精品一区二区三区| 特大巨黑吊av在线直播| 国内精品美女久久久久久| 欧美日韩乱码在线| 亚洲欧美日韩高清在线视频| 国产精品无大码| 亚洲欧美清纯卡通| 中国美白少妇内射xxxbb| 一进一出好大好爽视频| 桃色一区二区三区在线观看| 又紧又爽又黄一区二区| or卡值多少钱| 日韩欧美在线二视频| 亚洲精品亚洲一区二区| 最后的刺客免费高清国语| 亚洲无线观看免费| 五月玫瑰六月丁香| 亚洲欧美精品综合久久99| 日本与韩国留学比较| 亚洲欧美激情综合另类| 国产午夜精品久久久久久一区二区三区 | 日韩高清综合在线| 国产一级毛片七仙女欲春2| 美女cb高潮喷水在线观看| 国产老妇女一区| 俺也久久电影网| 一区二区三区激情视频| 久9热在线精品视频| 成人av一区二区三区在线看| 亚洲成人久久爱视频| 亚洲 国产 在线| 国产成人av教育| 精品人妻偷拍中文字幕| 韩国av在线不卡| 欧美又色又爽又黄视频| 男人狂女人下面高潮的视频| 在线观看一区二区三区| 日韩欧美国产在线观看| 国产成年人精品一区二区| 国产色婷婷99| 综合色av麻豆| 久久精品国产亚洲av涩爱 | 国产精品爽爽va在线观看网站| 99久久精品一区二区三区| 麻豆国产97在线/欧美| 午夜视频国产福利| 免费大片18禁| 老熟妇乱子伦视频在线观看| 国产成人影院久久av| 动漫黄色视频在线观看| 人妻少妇偷人精品九色| 最好的美女福利视频网| 欧美极品一区二区三区四区| 久久99热这里只有精品18| 亚洲图色成人| 丰满人妻一区二区三区视频av| 国产成人a区在线观看| 亚洲自偷自拍三级| 波多野结衣巨乳人妻| 听说在线观看完整版免费高清| 色5月婷婷丁香| 亚洲av第一区精品v没综合| 黄色一级大片看看| 亚洲va在线va天堂va国产| 成年女人看的毛片在线观看| 可以在线观看的亚洲视频| 日韩精品青青久久久久久| 麻豆av噜噜一区二区三区| 一级a爱片免费观看的视频| 亚洲久久久久久中文字幕| 亚洲综合色惰| 窝窝影院91人妻| 亚洲狠狠婷婷综合久久图片| 欧美日韩瑟瑟在线播放| 午夜免费激情av| 精品一区二区三区av网在线观看| 国产精品久久久久久精品电影| 国产高清三级在线| 亚洲国产欧洲综合997久久,| 国产亚洲精品综合一区在线观看| 一区二区三区四区激情视频 | 内射极品少妇av片p| 亚洲国产精品成人综合色| 在线a可以看的网站| 久久九九热精品免费| 一区二区三区高清视频在线| 久久99热6这里只有精品| 日韩中字成人| 老女人水多毛片| 久久久久久伊人网av| 国产aⅴ精品一区二区三区波| 国产欧美日韩精品亚洲av| 赤兔流量卡办理| 天美传媒精品一区二区| 小说图片视频综合网站| 能在线免费观看的黄片| 国产午夜精品久久久久久一区二区三区 | 国产成人av教育| 亚洲自拍偷在线| 欧美高清性xxxxhd video| 亚洲一级一片aⅴ在线观看| 国产精品电影一区二区三区| 亚洲av一区综合| 欧美不卡视频在线免费观看| 国产成人影院久久av| 12—13女人毛片做爰片一| 男女之事视频高清在线观看| 国产乱人伦免费视频| 春色校园在线视频观看| 日韩欧美国产一区二区入口| 精品日产1卡2卡| 久久精品国产清高在天天线| 国产在线男女| 国内毛片毛片毛片毛片毛片| 变态另类成人亚洲欧美熟女| 午夜爱爱视频在线播放| 亚洲精品日韩av片在线观看| 久久国产精品人妻蜜桃| 欧美一区二区国产精品久久精品| 欧美激情久久久久久爽电影| 亚洲四区av| 欧美+亚洲+日韩+国产| 欧美中文日本在线观看视频| 高清日韩中文字幕在线| 看黄色毛片网站| 欧美成人性av电影在线观看| 成年女人看的毛片在线观看| 99热这里只有是精品在线观看| 男女下面进入的视频免费午夜| 亚洲av成人精品一区久久| 淫秽高清视频在线观看| 国产白丝娇喘喷水9色精品| 男人和女人高潮做爰伦理| 国产精品久久久久久亚洲av鲁大| 亚洲久久久久久中文字幕| 亚洲自偷自拍三级| 国产成人一区二区在线| 国产精品久久视频播放| 国产爱豆传媒在线观看| 精品日产1卡2卡| 国产成年人精品一区二区| 在线播放无遮挡| 欧美成人a在线观看| 国产免费一级a男人的天堂| 欧美色欧美亚洲另类二区| 亚洲美女视频黄频| 国产精品电影一区二区三区| 一区二区三区四区激情视频 | 黄色日韩在线| 乱系列少妇在线播放| 18禁黄网站禁片免费观看直播| 久久国产精品人妻蜜桃| 欧美一区二区亚洲| 全区人妻精品视频| 桃色一区二区三区在线观看| 高清日韩中文字幕在线| netflix在线观看网站| 毛片一级片免费看久久久久 | 性色avwww在线观看| 成人国产一区最新在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区亚洲精品在线观看| 伦理电影大哥的女人| 麻豆成人午夜福利视频| av国产免费在线观看| 亚洲av成人精品一区久久| 欧美性感艳星| 夜夜看夜夜爽夜夜摸| 久久久久性生活片| 他把我摸到了高潮在线观看| 亚洲午夜理论影院| 性色avwww在线观看| 日日啪夜夜撸| 中文字幕人妻熟人妻熟丝袜美| 国国产精品蜜臀av免费| 国产白丝娇喘喷水9色精品| 国产精品一区www在线观看 | 99精品在免费线老司机午夜| 99国产精品一区二区蜜桃av| 精品不卡国产一区二区三区| 给我免费播放毛片高清在线观看| 国产精品一区二区性色av| 免费观看的影片在线观看| 999久久久精品免费观看国产| 美女cb高潮喷水在线观看| 国产老妇女一区| 亚洲五月天丁香| 婷婷精品国产亚洲av| 成年人黄色毛片网站| 日本黄大片高清| 亚洲av免费高清在线观看| 永久网站在线| 国产成人影院久久av| 动漫黄色视频在线观看| 欧美色视频一区免费| 中文字幕av成人在线电影| 在线看三级毛片| 欧美日本亚洲视频在线播放| 国产v大片淫在线免费观看| 少妇被粗大猛烈的视频| 别揉我奶头 嗯啊视频| 国产私拍福利视频在线观看| 国产精品一区二区免费欧美| 免费高清视频大片| 精品久久久久久久人妻蜜臀av| 欧美性猛交╳xxx乱大交人| 国产探花极品一区二区| 免费搜索国产男女视频| 国产老妇女一区| 1024手机看黄色片| 日日啪夜夜撸| 国产精品久久久久久久久免| 久久这里只有精品中国| 十八禁国产超污无遮挡网站| 九色成人免费人妻av| 在线国产一区二区在线| 少妇裸体淫交视频免费看高清| 又紧又爽又黄一区二区| 日本黄色片子视频| 国产高清视频在线观看网站| 国产精品国产高清国产av| 18禁黄网站禁片午夜丰满| 色综合亚洲欧美另类图片| 色5月婷婷丁香| 在现免费观看毛片| 午夜福利欧美成人| 亚洲中文日韩欧美视频| 桃红色精品国产亚洲av| 国产真实伦视频高清在线观看 | 美女xxoo啪啪120秒动态图| 欧美日韩黄片免| 亚洲av不卡在线观看| 欧美日韩中文字幕国产精品一区二区三区| 变态另类成人亚洲欧美熟女| 最新在线观看一区二区三区| 国产亚洲91精品色在线| 亚洲av二区三区四区| bbb黄色大片| 日本 av在线| 日日摸夜夜添夜夜添av毛片 | 亚洲欧美日韩无卡精品| 联通29元200g的流量卡| 色精品久久人妻99蜜桃| 午夜福利18| 成人一区二区视频在线观看| 色精品久久人妻99蜜桃| 亚洲美女黄片视频| 欧美潮喷喷水| 最后的刺客免费高清国语| 亚洲成人中文字幕在线播放| a级一级毛片免费在线观看| 午夜老司机福利剧场| 美女免费视频网站| 少妇的逼水好多| 给我免费播放毛片高清在线观看| 午夜a级毛片| 亚洲成av人片在线播放无| 一本一本综合久久| 婷婷六月久久综合丁香| 久久久久久久久久成人| 久99久视频精品免费| 99久久中文字幕三级久久日本| 欧美日韩瑟瑟在线播放| 久久久久性生活片| 天堂√8在线中文| 欧美日韩综合久久久久久 |