• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Facet-dependent catalytic activity of two-dimensional Ti3C2Tx MXene on hydrogen storage performance of MgH2

    2023-12-27 12:43:16HaiguangGaoRuiShiYanaLiuYunfengZhuJiguangZhangLiquanLiXiaohuiHu
    Journal of Magnesium and Alloys 2023年10期

    Haiguang Gao ,Rui Shi ,Yana Liu,? ,Yunfeng Zhu,? ,Jiguang Zhang ,Liquan Li ,Xiaohui Hu

    aCollege of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China

    bJiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China

    Abstract Two-dimensional Ti3C2Tx MXenes exposing different active facets are introduced into MgH2,and their catalytic effects are systematically investigated in depth through experimental and theoretical approaches.Excluding factors such as interlayer space,surface functional groups and experimental contingency,the exposed facets is considered to be the dominant factor for catalytic activity of Ti3C2Tx towards MgH2.More exposed edge facets of Ti3C2Tx displays higher catalytic activity than that with more exposed basal facets,which also leads to different rate-controlling steps of MgH2 in the de/hydrogenation process.The low work function,strong hydrogen affinity and high content of in situ metallic Ti for the edge facet contribute the high catalytic activity.This work will give insights into the structural design of two-dimensional Ti3C2Tx MXene used for enhancing the catalytic activity in various fields.

    Keywords: Hydrogen storage materials;Magnesium hydride;MXene;Catalyst;Facet design.

    1.Introduction

    Hydrogen is widely regarded as one of the most promising energy carriers in studies on clean energy.However,the low density at standard atmospheric and temperature conditions for hydrogen gas brings a great challenge for storage [1].The high energy consumption and insecurity of traditional storage technology have stimulated the appearance of materialsbased hydrogen storage featuring high hydrogen capacity and safety.As a typical representative of hydrogen storage materials,magnesium hydride (MgH2) has owned great attention due to its high hydrogen content (7.6 wt.%),good reversibility and low cost.However,the high thermodynamic stability and kinetic barrier lead to the high operating temperature and sluggish reaction kinetics,limiting its practical application [2,3].Various methods such as catalysts doping [4,5],nanosizing [6,7],alloying [8,9] have been widely used to alleviate these problems,of which catalysts doping is deemed as the most effective method [10].

    As an important branch of catalysts,transition metal-based catalysts (transition metals,their chloride,oxide and composites) such as Ni@rGO [11],TiNb2O7[12],Co@C [13],VB2[14] and so on [15–17],have been proved experimentally to play a positive role for enhancing hydrogen storage performance of MgH2.Wang et al.reported that the peak dehydrogenation temperature for MgH2doped with Ni90@PHCNSs is 242 °C,which is 75 °C lower than that for pure MgH2[18].The MgH2–Ni3S2@C-4 composite prepared by Zeng et al.shows faster dehydrogenation kinetics than pure MgH2,releasing 6.15 wt.% hydrogen in 8 min at 300 °C [19].Theoretical researches confirm that the transitional metals with special 3d orbital states tend to form covalent bonds with hydrogen atoms,affecting the stability of ionic bond Mg-H and destabilizing the MgH2[20,21].The dissociation and recombination of hydrogen molecules on the transitional metals surface can be effectively accelerated,enhancing the hydrogen ab/desorption kinetics of MgH2[22–24].As another important branch of catalysts,catalysts with special morphology have also shown superb catalytic activity for enhancing hydrogen storage performance of MgH2[25–27].Chen et al.reported that 5.32 wt.% hydrogen can be rapidly absorbed at 50 °C by MgH2doped with two-dimensional graphene-like TiO2due to the in-situ formed Ti and wrinkled Ti2O3[25].ZrO2wrapped in carbon can reduce the initial dehydrogenation temperature of MgH2from 309 °C to 208 °C due to the synergistic effect of ZrO2and C [26].The morphology of catalysts is closely related to its catalytic activity [28,29].The TiO2nanosheets exposed with high surface energy {001}facets show better catalytic activity than other TiO2nanoparticles for improving hydrogen storage performance of MgH2[30,31].Among four carbon materials,the layered structural carbon materials with interconnected wrinkles (coconut shell charcoal)show the largest promotion for the de/hydrogenation kinetics of MgH2[32].The large surface area,the exposure of active surface brought by the special morphology can explain its excellent catalytic activity [25,29].

    Recently,two-dimensional transitional metal carbide,nitride or carbonitrides (MXene) have attracted a lot of attentions due to its unique structure,rich element composition,functional surface in super capacitors,optoelectronics,purifiers,etc [33,34].Luckily,development in the field of hydrogen storage have also been attained by MXene,showing excellent catalytic activity in many hydrogen storage systems such as LiAlH4[35],NaAlH4[36],2LiH+MgB2[37] and MgH2[38].Especially in MgH2system,various MXene and its derivatives,composites have been introduced to greatly improve the hydrogen storage performance,such as Ti2CTx[39],Nb4C3Tx[40],NbTiCTx[41],TiVO3.5[42],(Ti0.5V0.5)3C2Tx[43],K2Ti6O13[44] and Ni/Ti3C2Tx[45,46].However,the catalytic mechanism is mainly attributed to the in situ formed transitional metal or transitional metal hydride,and the unique layered structure which has not been thoroughly explored.Although an indelible effect on the catalytic activity for the layered structure has been further proved via our previous research [47],the specific relationship between structure and catalytic activity is unclear.

    Herein,Ti3C2TxMXenes exposing with different amounts of basal and edge facets were designed and then were introduced into MgH2via ball milling.The different structures of Ti3C2TxMXenes make a great difference for enhancing hydrogen storage performance of MgH2.The different exposed facets of Ti3C2TxMXenes are verified to be the dominant factor through excluding the other structural parameters (interlayer space and functional groups) and experimental contingency.To our knowledge,this is the first in-depth study of the mechanism behind the effect of Ti3C2TxMXenes on MgH2from the perspective of Ti3C2Txstructure,both experimentally and theoretically.The proposed mechanism here provides far-reaching guidance for further designing MXene materials and improving its effects on hydrogen storage materials.

    2.Experimental

    2.1.Sample preparation

    The F-Ti3C2Txstands for the Ti3C2Txobtained by etching Ti3AlC2MAX (MAX: ternary transitional metal carbide,nitride or carbonitrides) with hydrofluoric acid.1 g Ti3AlC2powder (400 mesh,Jilin 11 technology Co.,Ltd.) was added into 10 ml hydrofluoric acid(HF,≥40%,Sinopharm Chemical Reagent Co.,Ltd.),fully stirred and reacted at room temperature for 72 h Then,the reactant was cleaned several times with deionized water (DI) to ensure that the supernatant pH was above 6.The F-Ti3C2Txcould be obtained after filtration and freeze drying [47].

    The E-F-Ti3C2Txstands for the F-Ti3C2Txafter exfoliating,filtering and drying.0.5 g F-Ti3C2Txpowder was dispersed in 25 ml dimethyl sulfoxide (DMSO,>99.8%,Aladdin) and stirred at room temperature overnight for further treatments.The intercalated F-Ti3C2Txwas collected by centrifugation and washed multiple times with ethanol and DI water to remove the residual DMSO.Then the intercalated F-Ti3C2Txwas dispersed in DI water and sonicated under ice bath to express oxidation.After centrifugation (3500 rpm for 1 h),the E-F-Ti3C2Txcould be obtained via filtration and freeze drying of supernatant [48].

    The L-F-Ti3C2Txstands for the F-Ti3C2Txwith expanded layers.The intercalated F-Ti3C2Txwas dispersed in DI water and sonicated under ice bath to express oxidation.After centrifugation (3500 rpm for 1 h),the L-F-Ti3C2Txcould be obtained via filtration and freeze drying of sediment.

    The S-Ti3C2Txstands for the Ti3C2Txobtained by etching Ti3AlC2MAX with in situ hydrochloric acid method.Firstly,2 g of lithium fluoride (LiF,99%,Aladdin) powers were dispersed in 40 ml 9 M hydrochloric acid(HCl,36–38%,Shanghai lingfeng chemical reagent Co.,Ltd.) and stirred for 30 min.Then 2 g Ti3AlC2powders were slowly added into the above mixed solution and stirred for 48 h at 50 °C.Following on,the reactant was washed with DI water for several times to ensure that the supernatant pH was above 6.After filtration and freeze drying,the S-Ti3C2Txcould be obtained.

    The E-S-Ti3C2Txstands for the S-Ti3C2Txafter exfoliating,filtering and drying.The prepared S-Ti3C2Txpowders were added into the ethanol and were sonicated under ice bath for 1 h.After centrifugation (10,000 rpm for 10 min),DI water was used instead of ethanol and the sonication was once again under the same conditions.Finally,the E-S-Ti3C2Txcould be obtained via centrifugation (3500 rpm for 1 h),filtration and freeze drying of supernatant [45].

    MgH2powders were prepared through hydriding combustion synthesis,with a purity of about 98 wt.% [49];.Under Ar atmosphere,5 wt.% as-synthesized catalysts were added into MgH2to prepare catalyzed-MgH2composites through a planetary ball mill.The detailed ball milling parameters can be found in our previous reports [47].The procedure was carried out in a glovebox with the oxygen/water concentrations below 1 ppm.

    Fig.1.Schematic digram for the preparation of F-Ti3C2Tx,E-F-Ti3C2Tx and their combination with MgH2.

    Fig.2.(a) XRD curves of Ti3AlC2,F-Ti3C2Tx and E-F-Ti3C2Tx.SEM images of (b) Ti3AlC2,(c) F-Ti3C2Tx and (d) E-F-Ti3C2Tx (inset is the corresponding image under high magnification).

    2.2.Characterization

    The crystal structure of the samples was analyzed via X-ray diffraction (XRD,ARL X’TRA diffractometer,Cu-Kαradiation,40 kV and 35 mA).Scanning electron microscope (SEM,JEOL JSM-7600F) and transmission electron microscopy (TEM,FEI Titan80–300Cs) were used to analyze the chemical composition and microstructure characteristics of the samples.X-ray photoelectron spectroscopy (XPS) was carried out in a Kratos AXIS ULTRA DLD system.

    Hydrogen storage performances of samples including isothermal hydrogen ab/desorption kinetics (an initial hydrogen pressure of 3.0 MPa and 0.005 MPa for isothermal hydrogen ab/desorption,respectively) and thermal desorption profiles (heat up from 30 °C to 360 °C at a rate of 10 °C/min)were carried out in a Sieverts type volumetric apparatus(GRC,Advanced Materials Co.).The dehydrogenation behavior was investigated by differential scanning calorimetry(DSC,TA Q2000) at different heating rates (5,8,10 and 12 °C/min) from 30 °C to 500 °C at a flow rate of 50 ml/min Ar.The detailed test information can be found in our previous works [40].

    Fig.3.(a) XRD patterns of MgH2-5 wt.% F-Ti3C2Tx and MgH2-5 wt.% E-F-Ti3C2Tx.(b) TPD curves of MgH2-5 wt.% F-Ti3C2Tx and MgH2-5 wt.%E-F-Ti3C2Tx.Comparison of hydrogen storage properties between MgH2-5 wt.% F-Ti3C2Tx and the MgH2-5 wt.% E-F-Ti3C2Tx: (c) desorption curves at different temperatures with an initial hydrogen pressure of 0.005 MPa.(d) absorption curves at different temperatures with an initial hydrogen pressure of 3.0 MPa.

    2.3.Calculation methods

    The density functional theory(DFT)calculations were performed via VASP 5.4.4 software package [50].The projectoraugmented wave (PAW) method [51] and the generalized gradient approximation (GGA) within Perdew–Burke–Ernzerhof(PBE) were selected to perform the electronic structure calculations [52].The Ti3C2Tx(001) slab and (010) slab were constructed and further optimized.The position of hydrogen atoms on Ti3C2Txslabs were the most stable position determined by optimization.In order to avoid the interactions between repeating images,a~15 ?A vacuum space was set.The convergence criteria for energy and force are set to 10-5eV and 0.02 eV/?A,respectively.

    3.Results and discussion

    The schematic diagram for the preparation of two kinds of Ti3C2Txwith different morphologies and their combination with MgH2is shown in Fig.1.Firstly,accordion-like Ti3C2Txdenoted as F-Ti3C2Txwas obtained by etching Ti3AlC2,selectively removing the Al layer in Ti3AlC2with HF [38].In order to facilitate the exfoliation of the F-Ti3C2Tx,DMSO was used to interlaminate F-Ti3C2Txto extend the distance between layers [48].After ultrasonic exfoliation and filtration,paper-like Ti3C2Txdenoted as E-F-Ti3C2Txcould be obtained.Then two different morphologies of Ti3C2Txwere introduced into MgH2through ball milling separately.The F-Ti3C2Txmay have more edge facets contact with MgH2while the E-F-Ti3C2Txmay have more basal facets contact with MgH2.

    The XRD curves and SEM images of Ti3AlC2,F-Ti3C2Txand E-F-Ti3C2Txare displayed in Fig.2.In Fig.2a,the strongest diffraction peak of Ti3AlC2(2θ=39°) disappearing and the peak of (002) shifting to a lower angle (2θ=8.8°),prove the formation of F-Ti3C2Txderived from Ti3AlC2[38].In Fig.2b and c,the distinct accordion-like morphology of F-Ti3C2Txis completely different from that of the precursor Ti3AlC2,further indicating the successful preparation of FTi3C2Txby the selective etching of Al layers in Ti3AlC2via HF.Through ultrasonic exfoliation and filtration,the peak of(002) shifts further to the left from 2θ=8.8° (F-Ti3C2Tx) to 2θ=7.1° (E-F-Ti3C2Tx),indicating that the interlayer space is expanded.The increase in interlayer space is consistent with the results reported in reference [48] regarding Ti3C2Txexfoliation.As shown in Fig.2d,E-F-Ti3C2Txpresents a paperlike morphology,with a large basal/edge ratio.The exposed basal facets size of E-F-Ti3C2Txis significantly different from that of F-Ti3C2Tx,while the exposed edge facets size of E-FTi3C2Txis similar to that of F-Ti3C2Tx.Although F-Ti3C2Txand E-F-Ti3C2Txshare the same chemical composition,exposed active facets are distinctly different.

    Fig.4.HRTEM images of (a) MgH2-5 wt.% F-Ti3C2Tx (b) MgH2-5 wt.% E-F-Ti3C2Tx.

    Fig.5.(a) and (b) DSC curves of MgH2-5 wt.% F-Ti3C2Tx and MgH2-5 wt.% E-F-Ti3C2Tx at different heating rates;(c) and (d) the corresponding Kissinger plots of activation energy.

    To explore the effects of different exposed active facets on the catalytic activity,5 wt.% F-Ti3C2Txand E-F-Ti3C2Txwere introduced into MgH2via ball milling,respectively.The XRD curves of MgH2-5 wt.% F-Ti3C2Txand MgH2-5 wt.%E-F-Ti3C2Txare shown in Fig.3(a).For the two composites,the main diffraction peaks are the same,belonging to the MgH2.The existence of small quantity of MgO is ascribed to the inevitable oxidation during testing or preparation.Consistent with our previous researches [45,47],the absence of the diffraction peaks of F-Ti3C2Txand E-F-Ti3C2Txmay be due to poor crystallization or restricted contents.In the highresolution transmission electron microscope(HRTEM)images(Fig.4),the appearance of small-sized F-Ti3C2Txand E-FTi3C2Txindicates that the structure of F-Ti3C2Txand E-FTi3C2Txcan be retained to a certain extent during ball milling process.This phenomenon is consistent with our previously reported results that the Ti3C2Txcould be always present during ball milling process and hydrogen ab/desorption tests[45,47].Besides,the contact between MgH2matrix and FTi3C2Txor E-F-Ti3C2Txcan also be found according to the corresponding HRTEM images.

    Fig.6.(a) XRD pattern of L-F-Ti3C2Tx (inset image is the corresponding SEM image).(b) DSC curve of MgH2-5 wt.% L-F-Ti3C2Tx.The heating rate is 10 °C/min.(c) XRD patterns of S-Ti3C2Tx and E-S-Ti3C2Tx (inset images are the corresponding SEM images).(d) DSC curves of MgH2-5 wt.% S-Ti3C2Tx and the MgH2-5 wt.% E-S-Ti3C2Tx.The heating rate is 10 °C/min.

    The temperature-programmed desorption (TPD) and isothermal hydrogen ab/desorption kinetics tests were conducted to investigate the difference of catalytic activity between F-Ti3C2Txand E-F-Ti3C2Txon the hydrogen storage performance of MgH2Fig.3.b shows the TPD curves of MgH2-5 wt.% F-Ti3C2Txand MgH2-5 wt.% E-F-Ti3C2Tx.The onset dehydrogenation temperature for MgH2-5 wt.% FTi3C2Txand MgH2-5 wt.% E-F-Ti3C2Txare reduced to 199 and 255 °C,respectively,both lower than that of as-milled MgH2(300 °C) [31].The MgH2-5 wt.% F-Ti3C2Txshows the lowest onset dehydrogenation temperature,indicating that the catalytic activity of F-Ti3C2Txis better than that of EF-Ti3C2TxFig.3.c shows the isothermal dehydrogenation kinetics of MgH2-5 wt.% F-Ti3C2Txand MgH2-5 wt.% E-FTi3C2Txat different temperatures (225,250 and 275 °C).At 275°C,the faster dehydrogenation kinetics is obtained for the MgH2-5 wt.% F-Ti3C2Tx,releasing about 5.95 wt.% hydrogen within 1000 s,while only 4.97 wt.% hydrogen is released for the MgH2-5 wt.% E-F-Ti3C2Tx.Notably,a little hydrogen can be desorbed by as-milled MgH2within 7200 s at 275 °C,indicating the superb catalytic activity of F-Ti3C2Txand E-F-Ti3C2Tx[31].By calculating the tangent slope of the linear region of hydrogen desorption at 275 °C,the rate value of the MgH2-5 wt.% F-Ti3C2Tx(0.504 wt.%/min) is 1.52 times larger than that of the MgH2-5 wt.% E-F-Ti3C2Tx(0.331 wt.%/min).Similarly,the F-Ti3C2Txstill shows the better catalytic activity than the E-F-Ti3C2Txat 225 and 250 °C.The isothermal hydrogenation kinetics of dehydrogenated MgH2-5 wt.% F-Ti3C2Txand MgH2-5 wt.% E-FTi3C2Txat different temperatures (100,125 and 150 °C) are shown in Fig.3d.At 125 °C,the dehydrogenated MgH2-5 wt.% F-Ti3C2Txabsorbs approximately 4.57 wt.% hydrogen while only 3.46 wt.% hydrogen is stored by the dehydrogenated MgH2-5 wt.% E-F-Ti3C2Txwithin 1200 s.Notably,about 3 wt.% hydrogen can be stored by Mg within 1200 s even at 200 °C,indicating the superb catalytic activity of F-Ti3C2Txand E-F-Ti3C2Tx[31].Through calculating the tangent slope of the linear region of hydrogen absorption at 125 °C,the rate value of the dehydrogenated MgH2-5 wt.% F-Ti3C2Tx(0.559 wt.%/min) is 4.3 times faster than that of the dehydrogenated MgH2-5 wt.% E-F-Ti3C2Tx(0.130 wt.%/min).Compared with E-F-Ti3C2Tx,F-Ti3C2Txdisplays the better catalytic activity on the hydrogen absorption kinetics of Mg,which is also verified at 100 and 150 °C.To sum up,the remarkable improvement in the hydrogen ab/desorption kinetics is obtained by the MgH2-5 wt.% FTi3C2Tx,indicating the better catalytic activity of F-Ti3C2Tx,which may be due to the different exposed active facets of Ti3C2Tx.

    Fig.7.(t/t0.5)theo vs.(t/t0.5)exp of composites for various kinetic models: (a) MgH2-5 wt.% F-Ti3C2Tx and (b) MgH2-5 wt.% E-F-Ti3C2Tx at 250 °C.Time dependence of kinetic modeling equations g(α) for composites at different temperatures: (c) MgH2-5 wt.% F-Ti3C2Tx and (d) MgH2-5 wt.% E-F-Ti3C2Tx with 0.2<α<0.7.

    The Kissinger method was used to calculate the activation energy (Ea) of the hydrogen desorption [25,53].The DSC curves and the corresponding Kissinger plots of the MgH2-5 wt.% F-Ti3C2Txand the MgH2-5 wt.% E-F-Ti3C2Txare shown in Fig.5.The apparent activation energies for the MgH2-5 wt.% F-Ti3C2Txand the MgH2-5 wt.% E-F-Ti3C2Txcan be delivered from the linear fitting of the data points to be 78.2 and 89.6 KJ mol-1,respectively,which are both lower than some of other catalysts doping MgH2system [4,28].The lower apparent activation energy of MgH2-5 wt.% F-Ti3C2Txsuggests higher catalytic efficiency for the F-Ti3C2Tx,which further verifies that the catalytic activity for enhancing the hydrogen storage performance of MgH2is influenced by the different exposed active facets of Ti3C2Tx.

    In order to confirm that the different exposed active facets are the main point explaining the significant difference in catalytic activity between F-Ti3C2Txand E-F-Ti3C2Tx,other factors have also been explored in depth.The surface functional groups and interlayer space of Ti3C2Txare firstly excluded as the factors causing the significant difference of the catalytic activity between F-Ti3C2Txand E-F-Ti3C2Tx.As shown in Fig.6a,for F-Ti3C2Txwith larger interlayer space denoted as L-F-Ti3C2Tx,the peak of (002) shifts from 2θ=8.8° (Fig.2a) to 2θ=8.1° and the similar accordion-like morphology keeps stable after the expansion process [48].In Fig.6b,the peak dehydrogenation temperature of the MgH2-5 wt.% L-F-Ti3C2Txis 339 °C,which is similar to that of the MgH2-5 wt.% F-Ti3C2Tx(Fig.5a).According to references,further layer expansion and exfoliation of MXenes can lead to the increase of interlayer space and the change of surface functional groups [48,54].From F-Ti3C2Txto L-FTi3C2Txto E-F-Ti3C2Tx,the interlayer space and the ratio of-O/-F functional groups increase gradually.When Ti3C2Txis in accordion-like morphology (F-Ti3C2Txand L-F-Ti3C2Tx),the catalytic activity of Ti3C2Txbarely changes.Only when Ti3C2Txis in paper-like morphology (E-F-Ti3C2Tx),the substantial changes appear in the catalytic activity of Ti3C2Tx.These results indicate that the significant difference of the catalytic activity between F-Ti3C2Txand E-F-Ti3C2Txis dominated by the change of exposed active facets rather than the change of surface functional groups and interlayer space of Ti3C2Txhere.To avoid experimental contingency,another experiment was also carried out.The accordion-like and paperlike Ti3C2TxMXenes,which can be denoted as S-Ti3C2Txand E-S-Ti3C2Tx,respectively,were prepared through in situ HF etching (LiF and HCl as the precursor) and the same post-processing(ultrasonic exfoliation and filtration)methods.The difference of exposed facets (basal/edge ratio) between the S-Ti3C2Txand E-S-Ti3C2Txis the same as that between F-Ti3C2Txand E-F-Ti3C2Tx.Similar to the XRD curves of F-Ti3C2Txand E-F-Ti3C2Txin Fig.2a,the successful preparation of S-Ti3C2Txand E-S-Ti3C2Txare verified via the XRD curves as shown in Fig.6c.The accordion-like morphology of S-Ti3C2Txand paper-like morphology of E-S-Ti3C2Txare shown in the inset of Fig.6c.In Fig.6d,the peak dehydrogenation temperature of the MgH2-5 wt.% S-Ti3C2Tx(331.2 °C) is much lower than that of the MgH2-5 wt.% E-STi3C2Tx(360.82°C),indicating the higher catalytic activity of S-Ti3C2Tx.The same trend in two different preparation methods further indicates that the significant difference of the catalytic activity between F-Ti3C2Txand E-F-Ti3C2Txis mainly dominated by two different morphologies.The greater difference in catalytic activity between S-Ti3C2Txand E-S-Ti3C2Txmay be due to the more different exposed active facets.

    Fig.8.(t/t0.5)theo vs.(t/t0.5)exp of composites for various kinetic models: (a) MgH2-5 wt.% F-Ti3C2Tx and (b) MgH2-5 wt.% E-F-Ti3C2Tx at 125 °C.Time dependence of kinetic modeling equations g(α) for composites at different temperatures: (c) MgH2-5 wt.% F-Ti3C2Tx and (d) MgH2-5 wt.% E-F-Ti3C2Tx with 0.7<α<0.9.

    To further explore the reasons behind the significant difference of the catalytic activity between F-Ti3C2Txand EF-Ti3C2Txcaused by the different exposed active facets,the analysis of solid-state reaction mechanism models,XPS measurements and DFT calculation were performed.According to the experimental results of isothermal de/hydrogenation kinetics at different temperatures,the corresponding solid-state reaction mechanism model and rate-controlling step can be identified.The general kinetics equation can be shown as follows [53]:

    in Eq.(1),whereα,T,k(T) andf(α) represent the reaction extent,the reaction temperature,the reaction rate constant and the function depending on the specific kinetic mechanism,respectively.f(α) can also be described as the following equation [55]:

    Fig.9.Ti 2p XPS spectra of (a) the F-Ti3C2Tx,MgH2-5 wt.% F-Ti3C2Tx and (b) E-F-Ti3C2Tx,MgH2-5 wt.% E-F-Ti3C2Tx.

    Fig.10.The electrostatic potentials along c axis of Ti3C2Tx (001) and (010) slabs.The Ev and Ef denote the Fermi and vacuum energy levels,respectively.The red,black and blue balls represent oxygen,carbon and titanium atoms respectively.

    in Eq.(2),whereA,t0.5represent the constant related to the kinetic mechanism,the time whenαequals 0.5,respectively.Through plotting the experimental values of t/t0.5against the theoretical values of t/t0.5for the composites from nine different kinetic models respectively,the corresponding reliable kinetic model can be obtained.The line with a slope closest to 1 is the reliable kinetic model.Based on the isothermal dehydrogenation curves of the MgH2-5 wt.% F-Ti3C2Txand the MgH2-5 wt.% E-F-Ti3C2Txat 250 °C (Fig.3c),nine curves derived from nine different kinetic models are shown in Fig.7a and 7b,respectively.The R3 (three-dimensional phase boundary) and D1 (one-dimensional diffusion) models are best matched to the MgH2-5 wt.% F-Ti3C2Txand the MgH2-5 wt.% E-F-Ti3C2Tx,respectively.As shown in Fig.7c and 7d,the R3 and D1 models are further verified through plotting the relatedf(α) against the reaction time at 225 and 275 °C (0.2<α<0.7),showing good linearity (R2>0.999) [56].Therefore,the dehydrogenation kinetics of MgH2-5 wt.% F-Ti3C2Txis influenced by the threedimensional phase boundary,while that of MgH2-5 wt.%E-F-Ti3C2Txis influenced by the one-dimensional diffusion process [53,55].The different dehydrogenation mechanism is consistent with different dehydrogenation performance,explaining the huge impact of the different exposed active faces between F-Ti3C2Txand E-F-Ti3C2Txon the dehydrogenation of MgH2.Similarly,the hydrogenation mechanism for the dehydrogenated MgH2-5 wt.% F-Ti3C2Txand MgH2-5 wt.% EF-Ti3C2Txis also explored via the same method.Based on the isothermal hydrogenation curves of the dehydrogenated MgH2-5 wt.% F-Ti3C2Txand MgH2-5 wt.% E-F-Ti3C2Txat 125 °C (Fig.3d),nine curves derived from nine different kinetic models are shown in Fig.8a and 8b,respectively.The hydrogenation process of the dehydrogenated MgH2-5 wt.%F-Ti3C2Txis controlled by the D3 (three-dimensional diffusion) model with a faster reaction rate while that of the dehydrogenated MgH2-5 wt.% E-F-Ti3C2Txis controlled by the D1 model with a slower reaction rate,which is further confirmed by the good linearity (R2>0.99) between the relatedf(α) and the reaction time at 100 and 150 °C (0.7<α<0.9)as shown in Fig.8c and 8d [25,56].The phenomenon is consistent with the performance of the experimentally obtained hydrogenation data,explaining the huge impact of the different exposed active facets between F-Ti3C2Txand E-F-Ti3C2Txon the hydrogenation of Mg.

    Fig.11.Optimized adsorption configuration of H atom over the (a) Ti3C2Tx (001) and (b) Ti3C2Tx (010) surface slabs.The red,brown and blue balls represent oxygen,carbon and titanium atoms respectively.

    The valence state of Ti in F-Ti3C2Txand the as-milled MgH2-5 wt.% F-Ti3C2Tx,E-F-Ti3C2Txand the as-milled MgH2-5 wt.% E-F-Ti3C2Txwere measured by XPS analysis.As shown in Fig.9,the Ti 2p spectrum of F-Ti3C2Txand E-F-Ti3C2Txboth can be resolved into four sets of 2p1/2–2p3/2spin-orbit doublets at 457.9/463.3,457.0/462.4,455.9/461.5,and 454.9/460.6 eV which can be fitted to TiO2,Ti3+,Ti2+and Ti-C,separately [38,57].For MgH2-5 wt.% F-Ti3C2Txand MgH2-5 wt.% E-F-Ti3C2Tx,new peaks corresponding to Ti0(454.2/460.2) appear on the basis of the above peaks.The in situ formed metallic Ti may be due to the reduction of partial F-Ti3C2Txand E-F-Ti3C2Txby MgH2during ball milling process,which is consistent with previous reports[38,47].And the peaks of TiO2,Ti3+,Ti2+and Ti-C indicate the existence of partial F-Ti3C2Txand E-F-Ti3C2Tx,which is consistent with HRTEM results in Fig.4.Notably,the in situ formed metallic Ti and partial Ti3C2Txcould exist stably in the subsequent hydrogen ab/desorption tests according to our previous reports [45,47].The contents of various Ti components are listed in Table 1.The content of the in situ formedmetallic Ti in the as-milled MgH2-5 wt.% F-Ti3C2Tx(20.2%)is almost twice as much as that in the as-milled MgH2-5 wt.%E-F-Ti3C2Tx(11.3%),which may be ascribed to the different exposed active facets between F-Ti3C2Txand E-F-Ti3C2Tx.This phenomenon further demonstrates that the Ti atoms on the edge facets may be reduced more easily by MgH2than that on the basal facets.The in situ formed Ti can disintegrate and recombine hydrogen molecules on its surface more efficiently,and thus enhance the dehydrogenation kinetics of MgH2significantly [22,23].Therefore,the as-milled MgH2-5 wt.% F-Ti3C2Txwith more contents of the in situ formed metallic Ti should exhibit the faster dehydrogenation kinetics than the as-milled MgH2-5 wt.% E-F-Ti3C2Tx,which is consistent with experimental dehydrogenation kinetics data.

    Table 1 The content of various Ti in the F-Ti3C2Tx,MgH2-5 wt.% F-Ti3C2Tx,E-FTi3C2Tx and MgH2-5 wt.%E-F-Ti3C2Tx according to the Ti 2p XPS spectra.

    In order to simulate the different exposed facets between F-Ti3C2Txand E-F-Ti3C2Tx,the Ti3C2Tx(001) and Ti3C2Tx(010) slabs representing the basal facet and edge facet of Ti3C2Txwere built respectively.For Ti3C2TxMXenes,the basal facets cover with terminal groups while the edge facets expose middle Ti sites,which may affect the activity of two facets to some extent [58].To further confirm the differences in activity due to structure and composition,the work functions (Φ) of the two facets of Ti3C2Txwere calculated.As shown in Fig.10,the lowerΦvalue of edge facet (5.64 eV)than basal facet (5.86 eV) based on Fermi levels and vacuum energy levels,indicates that it is easier for an electron to escape from edge facet into the vacuum[45].This result verifies that the edge facet is more active than the basal facet,which is consistent with the XPS results and the literature [59].

    The hydrogen adsorption energy (Ead) of Ti3C2Tx(001)and Ti3C2Tx(010) slabs was further compared via DFT calculations.Eadcan be calculated from the equation as follows[60]:

    in Eq.(3),whereEslabH,EslabandEHrepresent the energy of the surface slab after hydrogen absorption,the energy of the surface slab and the energy of single hydrogen atom.Optimized adsorption configuration of H atom over the Ti3C2Tx(001) and Ti3C2Tx(010) surface slabs are shown in Fig.11.After calculation,the Eadof Ti3C2Tx(001)(-2.76 eV) is lower than that of Ti3C2Tx(010) (-3.48 eV),indicating that the edge facet of Ti3C2Txshows a better hydrogen affinity than the basal facet of Ti3C2Tx.The different catalytic activity between the edge and basal facets of Ti3C2Txwas also verified in the electrochemical nitrogen fixation[59].The calculation results above are consistent with the experimental results that the F-Ti3C2Txshows better catalytic activity than E-F-Ti3C2Txon the hydrogen ab/desorption kinetics of MgH2.

    Combining the results above,the reasons behind the significant difference of the catalytic activity between F-Ti3C2Txand E-F-Ti3C2Txcan be uncovered.After combining with MgH2,the different exposed facets between F-Ti3C2Txand E-F-Ti3C2Txcause the different hydrogen ab/desorption kinetics mechanism and rate-controlling step of MgH2.The FTi3C2Txexposing more high active edge facets shows higher hydrogen affinity and facilitates the formation of metallic Ti,which can effectively accelerate the hydrogen ab/desorption kinetics of MgH2.

    4.Conclusions

    In this work,the Ti3C2TxMXenes exposing different facets are investigated about their catalytic activity on the hydrogen ab/desorption kinetics of MgH2.The F-Ti3C2Txexposing more edge facets shows better catalytic activity than E-FTi3C2Txexposing more basal facets.For example,the MgH2-5 wt.% F-Ti3C2Txshows the lower onset dehydrogenation temperature,the faster hydrogen ab/desorption kinetics and the lower dehydrogenation activation energies than the MgH2-5 wt.% E-F-Ti3C2Tx.Through investigating other structural parameters(interlayer space and functional groups)and experimental contingency,the different exposed facets are verified to be the dominant factor for affecting the catalytic activity of Ti3C2Tx.The F-Ti3C2Txexposing more high activity edge facets shows higher hydrogen affinity and facilitates the formation of metallic Ti.These two points can effectively accelerate the hydrogen ab/desorption kinetics of MgH2.Therefore,the different hydrogen ab/desorption kinetics mechanism and rate-controlling step for the MgH2-5 wt.% F-Ti3C2Txand MgH2-5 wt.% E-F-Ti3C2Txoccurs,due to the significant difference of the catalytic activity between F-Ti3C2Txand E-FTi3C2Tx.

    Declaration of competing interest

    The authors declare that they have no conflicts of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (51801100,51771092,21975125,51801099),Natural Science Foundation of the Jiangsu Higher Education Institutions of China (18KJB430014),Six Talent Peaks Project in Jiangsu Province (2018,XNY-020),and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.We are grateful to the High-Performance Computing Center of Nanjing Tech University for supporting the computational resources.

    精华霜和精华液先用哪个| 99视频精品全部免费 在线| 日韩电影二区| 欧美丝袜亚洲另类| 久久人人爽人人片av| 国产视频内射| 又爽又黄无遮挡网站| 久久精品夜色国产| 啦啦啦啦在线视频资源| 国产人妻一区二区三区在| 99热这里只有是精品在线观看| 国产亚洲一区二区精品| av女优亚洲男人天堂| 国产美女午夜福利| 青春草国产在线视频| 天堂俺去俺来也www色官网| 色视频www国产| 国产中年淑女户外野战色| 国模一区二区三区四区视频| 日本猛色少妇xxxxx猛交久久| 国产成人精品久久久久久| 亚洲欧美一区二区三区黑人 | 中文字幕人妻熟人妻熟丝袜美| 国产在线一区二区三区精| 秋霞在线观看毛片| 国产精品一区www在线观看| 人妻少妇偷人精品九色| 国产精品99久久99久久久不卡 | 青春草视频在线免费观看| 成人亚洲精品一区在线观看 | 亚洲精品乱久久久久久| 国产免费视频播放在线视频| 超碰97精品在线观看| 日韩欧美一区视频在线观看 | 国产精品一区二区在线观看99| 日韩av在线免费看完整版不卡| 亚洲精品色激情综合| 一本久久精品| 国产 一区 欧美 日韩| kizo精华| 十八禁网站网址无遮挡 | 久久久久精品性色| 老司机影院成人| 在线免费观看不下载黄p国产| a级毛色黄片| 久久99热6这里只有精品| 国产精品伦人一区二区| 国产v大片淫在线免费观看| 免费看日本二区| a级毛色黄片| 特大巨黑吊av在线直播| 精品久久久噜噜| 精品一区二区三卡| 国产日韩欧美亚洲二区| 亚洲天堂国产精品一区在线| 涩涩av久久男人的天堂| 午夜免费观看性视频| 国产精品久久久久久久电影| 18禁裸乳无遮挡动漫免费视频 | 亚洲精品自拍成人| 舔av片在线| 一级黄片播放器| 午夜免费男女啪啪视频观看| 午夜福利网站1000一区二区三区| 少妇人妻久久综合中文| 日韩欧美精品免费久久| 亚洲丝袜综合中文字幕| 国产精品偷伦视频观看了| 男女国产视频网站| 国产精品国产三级国产专区5o| 一级毛片aaaaaa免费看小| 欧美精品人与动牲交sv欧美| 亚洲欧洲日产国产| 少妇人妻精品综合一区二区| 国产伦理片在线播放av一区| 亚洲av国产av综合av卡| 日韩强制内射视频| 秋霞在线观看毛片| 久久久久久久久久成人| 亚洲精品日韩av片在线观看| videossex国产| 免费黄频网站在线观看国产| 国产精品一区二区性色av| 大片电影免费在线观看免费| 亚洲欧美一区二区三区国产| 夜夜爽夜夜爽视频| 男女边摸边吃奶| 男女边吃奶边做爰视频| 一级av片app| 国产欧美亚洲国产| 欧美日韩视频精品一区| 久久久久久久精品精品| 狠狠精品人妻久久久久久综合| 精品少妇黑人巨大在线播放| 99热国产这里只有精品6| 嫩草影院新地址| 在线亚洲精品国产二区图片欧美 | 简卡轻食公司| 亚洲在久久综合| 蜜臀久久99精品久久宅男| 青青草视频在线视频观看| 人妻系列 视频| 亚洲人成网站在线观看播放| 婷婷色综合大香蕉| 午夜福利视频1000在线观看| 亚洲丝袜综合中文字幕| 免费观看a级毛片全部| 在线观看美女被高潮喷水网站| 久热久热在线精品观看| 十八禁网站网址无遮挡 | 欧美日韩精品成人综合77777| 女人十人毛片免费观看3o分钟| 精品99又大又爽又粗少妇毛片| 在线a可以看的网站| 我的女老师完整版在线观看| 久久久久国产精品人妻一区二区| 国产综合懂色| 国产成人freesex在线| 十八禁网站网址无遮挡 | 亚洲国产精品成人综合色| 国产免费一区二区三区四区乱码| 亚洲欧美日韩卡通动漫| 午夜老司机福利剧场| 免费黄色在线免费观看| 99热这里只有是精品在线观看| 尤物成人国产欧美一区二区三区| 欧美潮喷喷水| 99久久九九国产精品国产免费| 两个人的视频大全免费| 99热网站在线观看| 好男人在线观看高清免费视频| 80岁老熟妇乱子伦牲交| 日本与韩国留学比较| 最近中文字幕高清免费大全6| 别揉我奶头 嗯啊视频| 欧美三级亚洲精品| 欧美一区二区亚洲| 久久久久久久国产电影| 肉色欧美久久久久久久蜜桃 | 日本熟妇午夜| 国产精品久久久久久精品电影| 国内精品宾馆在线| 搞女人的毛片| 亚洲怡红院男人天堂| 亚洲高清免费不卡视频| 日韩一区二区视频免费看| 街头女战士在线观看网站| 一级二级三级毛片免费看| 婷婷色av中文字幕| 天天一区二区日本电影三级| 中文精品一卡2卡3卡4更新| 国产 精品1| 国产又色又爽无遮挡免| 街头女战士在线观看网站| av在线播放精品| 最近最新中文字幕大全电影3| 91久久精品电影网| 久久久久久久精品精品| 亚洲精品一区蜜桃| 成年女人看的毛片在线观看| 欧美另类一区| 精品99又大又爽又粗少妇毛片| 亚洲电影在线观看av| 激情五月婷婷亚洲| 蜜桃久久精品国产亚洲av| 天堂中文最新版在线下载 | 免费人成在线观看视频色| av播播在线观看一区| 国产av国产精品国产| 国产乱人偷精品视频| 永久免费av网站大全| 有码 亚洲区| 国产精品久久久久久精品古装| 成年版毛片免费区| 久久久久久国产a免费观看| 一级av片app| 亚洲经典国产精华液单| 久久影院123| 久久久久久久大尺度免费视频| 久久久久久久久久久免费av| 爱豆传媒免费全集在线观看| 成年免费大片在线观看| 两个人的视频大全免费| 亚洲精品影视一区二区三区av| 国产色婷婷99| 少妇人妻 视频| 亚洲精品影视一区二区三区av| 精品人妻一区二区三区麻豆| 精品国产一区二区三区久久久樱花 | 汤姆久久久久久久影院中文字幕| 卡戴珊不雅视频在线播放| 黄色欧美视频在线观看| 最新中文字幕久久久久| 国产乱来视频区| 免费大片黄手机在线观看| 99久久精品热视频| 少妇人妻精品综合一区二区| 免费av不卡在线播放| 有码 亚洲区| 在线亚洲精品国产二区图片欧美 | 男人狂女人下面高潮的视频| 精品熟女少妇av免费看| 午夜福利视频精品| 久久97久久精品| 日日啪夜夜爽| 亚洲真实伦在线观看| 欧美成人a在线观看| tube8黄色片| 久久久久久久久久人人人人人人| 免费观看a级毛片全部| 激情 狠狠 欧美| 久久久久网色| 国产精品蜜桃在线观看| 久久精品熟女亚洲av麻豆精品| 国产黄片美女视频| 搡女人真爽免费视频火全软件| 欧美另类一区| 一区二区三区乱码不卡18| 国产视频内射| 亚洲丝袜综合中文字幕| 全区人妻精品视频| 亚洲av成人精品一二三区| 国产视频首页在线观看| 色婷婷久久久亚洲欧美| 精品人妻一区二区三区麻豆| 99视频精品全部免费 在线| 18禁裸乳无遮挡动漫免费视频 | 菩萨蛮人人尽说江南好唐韦庄| 日韩亚洲欧美综合| 国产黄片美女视频| 激情 狠狠 欧美| 国产亚洲av片在线观看秒播厂| 亚洲av中文av极速乱| 丰满少妇做爰视频| 国产伦在线观看视频一区| 黑人高潮一二区| 如何舔出高潮| av在线观看视频网站免费| 一级毛片我不卡| 亚洲无线观看免费| 97在线视频观看| 精品亚洲乱码少妇综合久久| 汤姆久久久久久久影院中文字幕| 国内精品宾馆在线| 欧美日韩综合久久久久久| 久久影院123| 国产日韩欧美亚洲二区| 蜜臀久久99精品久久宅男| 最近手机中文字幕大全| 三级经典国产精品| 久久久精品欧美日韩精品| 真实男女啪啪啪动态图| 久久国产乱子免费精品| 久久午夜福利片| 夜夜爽夜夜爽视频| 久久久久久九九精品二区国产| 国产精品人妻久久久影院| 美女内射精品一级片tv| 亚洲国产精品国产精品| 国产高清不卡午夜福利| 九九久久精品国产亚洲av麻豆| 亚洲国产精品成人综合色| 最近最新中文字幕大全电影3| 精品酒店卫生间| 久久99蜜桃精品久久| 在线观看国产h片| 日韩亚洲欧美综合| 久久精品熟女亚洲av麻豆精品| 亚洲第一区二区三区不卡| 国产亚洲91精品色在线| 狂野欧美激情性bbbbbb| 国产探花在线观看一区二区| 纵有疾风起免费观看全集完整版| 精品久久久久久久久av| 建设人人有责人人尽责人人享有的 | 我要看日韩黄色一级片| 婷婷色av中文字幕| 在线精品无人区一区二区三 | 久久久久久久久大av| 亚洲精品国产av成人精品| 狠狠精品人妻久久久久久综合| 伦精品一区二区三区| 街头女战士在线观看网站| 国产男女内射视频| 中文乱码字字幕精品一区二区三区| 久久精品国产a三级三级三级| 三级经典国产精品| 日日撸夜夜添| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久国产电影| 中文资源天堂在线| 婷婷色综合大香蕉| 大片免费播放器 马上看| 成年av动漫网址| 亚洲欧美一区二区三区黑人 | 超碰97精品在线观看| 久久久精品免费免费高清| 成年女人看的毛片在线观看| 亚洲国产欧美人成| 最近的中文字幕免费完整| kizo精华| 日韩一本色道免费dvd| 一级毛片久久久久久久久女| 麻豆乱淫一区二区| 天天一区二区日本电影三级| 黄片无遮挡物在线观看| 免费大片18禁| 午夜精品国产一区二区电影 | 国产成人精品婷婷| 国产精品一区www在线观看| 免费看光身美女| 又大又黄又爽视频免费| 最近手机中文字幕大全| 一个人看视频在线观看www免费| 亚洲av男天堂| 精品人妻熟女av久视频| 亚洲精品一二三| 国产真实伦视频高清在线观看| 午夜亚洲福利在线播放| 直男gayav资源| 波野结衣二区三区在线| 国产av不卡久久| 精品人妻熟女av久视频| kizo精华| 亚洲欧美日韩无卡精品| 插阴视频在线观看视频| 国产淫语在线视频| av.在线天堂| 国产av不卡久久| 少妇 在线观看| 99久久精品一区二区三区| 成人亚洲欧美一区二区av| 久久ye,这里只有精品| 久久久久九九精品影院| 欧美一级a爱片免费观看看| 亚洲欧美精品专区久久| 欧美高清成人免费视频www| 视频区图区小说| 色婷婷久久久亚洲欧美| 日本免费在线观看一区| 亚洲高清免费不卡视频| 国产成人精品福利久久| 深爱激情五月婷婷| 欧美高清成人免费视频www| 一级a做视频免费观看| 久久久久久久久久久丰满| av免费观看日本| 国产黄色视频一区二区在线观看| 五月开心婷婷网| 最近最新中文字幕免费大全7| 大香蕉97超碰在线| 亚洲精华国产精华液的使用体验| 少妇人妻一区二区三区视频| 久久韩国三级中文字幕| 高清视频免费观看一区二区| 国产精品三级大全| 免费人成在线观看视频色| 日韩三级伦理在线观看| 精品久久久噜噜| 97超视频在线观看视频| 国产成人精品一,二区| 亚洲av成人精品一二三区| 色视频www国产| freevideosex欧美| 简卡轻食公司| 精品人妻偷拍中文字幕| 水蜜桃什么品种好| 国产女主播在线喷水免费视频网站| 美女内射精品一级片tv| 夫妻性生交免费视频一级片| 一二三四中文在线观看免费高清| 亚洲欧美成人精品一区二区| 久久精品综合一区二区三区| av线在线观看网站| 色综合色国产| 国产大屁股一区二区在线视频| 夫妻性生交免费视频一级片| 亚洲av国产av综合av卡| 一级毛片电影观看| 国产精品一区www在线观看| 内射极品少妇av片p| 又粗又硬又长又爽又黄的视频| 狂野欧美激情性bbbbbb| 十八禁网站网址无遮挡 | 又黄又爽又刺激的免费视频.| 亚洲精品亚洲一区二区| 欧美xxxx黑人xx丫x性爽| 久久这里有精品视频免费| 亚洲精品乱码久久久久久按摩| 亚洲国产欧美人成| 亚洲图色成人| 22中文网久久字幕| 丝袜美腿在线中文| 午夜免费观看性视频| 欧美日韩视频精品一区| 一本久久精品| 麻豆成人av视频| av一本久久久久| 美女被艹到高潮喷水动态| 国产亚洲91精品色在线| 日韩欧美一区视频在线观看 | 我的女老师完整版在线观看| 国产一区有黄有色的免费视频| 久久久久精品久久久久真实原创| 久久久久久久大尺度免费视频| 街头女战士在线观看网站| 秋霞在线观看毛片| 欧美日韩在线观看h| 美女视频免费永久观看网站| 国产午夜福利久久久久久| 一区二区三区四区激情视频| 天堂网av新在线| 婷婷色综合大香蕉| 久久人人爽人人片av| 一级毛片黄色毛片免费观看视频| 精品少妇久久久久久888优播| 人人妻人人爽人人添夜夜欢视频 | 在线观看一区二区三区| av线在线观看网站| 久久久久久伊人网av| 日本一本二区三区精品| 欧美少妇被猛烈插入视频| 波多野结衣巨乳人妻| 亚洲av电影在线观看一区二区三区 | 丰满人妻一区二区三区视频av| 亚洲av成人精品一区久久| 一级片'在线观看视频| 欧美一级a爱片免费观看看| 国产亚洲午夜精品一区二区久久 | 亚洲精品影视一区二区三区av| 99精国产麻豆久久婷婷| 大片免费播放器 马上看| 国产精品一区二区三区四区免费观看| 久久韩国三级中文字幕| 永久网站在线| 秋霞在线观看毛片| 26uuu在线亚洲综合色| 亚洲精品国产av蜜桃| 日韩中字成人| 亚洲天堂国产精品一区在线| 精品久久国产蜜桃| 欧美+日韩+精品| 一个人观看的视频www高清免费观看| 大陆偷拍与自拍| 午夜福利视频1000在线观看| 深爱激情五月婷婷| 亚洲欧美成人精品一区二区| 免费观看无遮挡的男女| 夫妻性生交免费视频一级片| 国产亚洲av嫩草精品影院| 国内少妇人妻偷人精品xxx网站| 日韩一区二区三区影片| 免费观看a级毛片全部| 在线亚洲精品国产二区图片欧美 | 99久久精品一区二区三区| 18禁在线播放成人免费| 欧美最新免费一区二区三区| 午夜爱爱视频在线播放| 久久99精品国语久久久| 老司机影院成人| 亚洲欧美精品自产自拍| 一级毛片我不卡| 三级经典国产精品| 免费观看无遮挡的男女| 国产伦精品一区二区三区四那| 日韩强制内射视频| 大香蕉久久网| 日本欧美国产在线视频| av在线观看视频网站免费| 在线亚洲精品国产二区图片欧美 | 麻豆乱淫一区二区| 免费高清在线观看视频在线观看| 一级黄片播放器| 亚洲精品日韩在线中文字幕| 亚洲av免费高清在线观看| 人妻夜夜爽99麻豆av| 久久久久性生活片| 精品国产三级普通话版| 亚洲丝袜综合中文字幕| 免费观看性生交大片5| h日本视频在线播放| 五月天丁香电影| 亚洲精品自拍成人| 如何舔出高潮| 五月玫瑰六月丁香| 欧美人与善性xxx| 六月丁香七月| 国产爱豆传媒在线观看| 男人狂女人下面高潮的视频| 国产精品国产三级国产av玫瑰| 80岁老熟妇乱子伦牲交| 嫩草影院新地址| 夜夜看夜夜爽夜夜摸| 99热全是精品| 日韩制服骚丝袜av| 久久这里有精品视频免费| 美女xxoo啪啪120秒动态图| 欧美最新免费一区二区三区| 狂野欧美激情性bbbbbb| 日本午夜av视频| 婷婷色综合www| 永久免费av网站大全| 麻豆精品久久久久久蜜桃| 亚洲欧洲国产日韩| 日本一本二区三区精品| 免费大片18禁| 成年女人看的毛片在线观看| 热re99久久精品国产66热6| 又大又黄又爽视频免费| 成人美女网站在线观看视频| 舔av片在线| 成人亚洲欧美一区二区av| 久久精品夜色国产| 亚洲国产av新网站| 成人综合一区亚洲| av在线播放精品| 日本黄大片高清| 超碰97精品在线观看| 久久99热这里只有精品18| 国产欧美日韩精品一区二区| 一二三四中文在线观看免费高清| 国产成人精品久久久久久| 成人鲁丝片一二三区免费| 亚洲一级一片aⅴ在线观看| 亚洲欧美成人精品一区二区| 精品久久久精品久久久| 亚洲精品视频女| 18禁动态无遮挡网站| 亚洲精品乱久久久久久| 97超碰精品成人国产| 亚洲婷婷狠狠爱综合网| 神马国产精品三级电影在线观看| 高清在线视频一区二区三区| 国国产精品蜜臀av免费| h日本视频在线播放| 亚洲成人久久爱视频| 免费播放大片免费观看视频在线观看| 黄色欧美视频在线观看| 国产av国产精品国产| av.在线天堂| 亚洲精品中文字幕在线视频 | 日韩欧美 国产精品| 成人亚洲精品av一区二区| 国产成人福利小说| h日本视频在线播放| 少妇人妻精品综合一区二区| 视频区图区小说| 欧美潮喷喷水| 性插视频无遮挡在线免费观看| 精品熟女少妇av免费看| 国产视频内射| 免费电影在线观看免费观看| 亚洲,欧美,日韩| 国产精品嫩草影院av在线观看| 国产真实伦视频高清在线观看| 天堂网av新在线| 女人十人毛片免费观看3o分钟| 国产爱豆传媒在线观看| 亚洲精品一区蜜桃| av一本久久久久| 网址你懂的国产日韩在线| 狂野欧美白嫩少妇大欣赏| 美女国产视频在线观看| 欧美高清成人免费视频www| 一区二区三区乱码不卡18| 国产黄色免费在线视频| 国产久久久一区二区三区| 国产视频首页在线观看| .国产精品久久| 建设人人有责人人尽责人人享有的 | 蜜臀久久99精品久久宅男| 老女人水多毛片| 免费大片18禁| 边亲边吃奶的免费视频| 在线亚洲精品国产二区图片欧美 | 亚洲色图av天堂| 韩国av在线不卡| 国产精品国产三级国产av玫瑰| 国产探花极品一区二区| 水蜜桃什么品种好| 日韩不卡一区二区三区视频在线| 久热这里只有精品99| 久久综合国产亚洲精品| 永久免费av网站大全| 亚洲av不卡在线观看| 国产亚洲午夜精品一区二区久久 | 久久精品夜色国产| 我的女老师完整版在线观看| 国产成人freesex在线| 五月天丁香电影| eeuss影院久久| 午夜视频国产福利| 亚洲精品国产av成人精品| 亚洲欧美精品专区久久| 又黄又爽又刺激的免费视频.| 久久97久久精品| 男的添女的下面高潮视频| 熟妇人妻不卡中文字幕| 一级a做视频免费观看| 三级经典国产精品| 色视频www国产| 国产国拍精品亚洲av在线观看| 欧美最新免费一区二区三区| 免费看av在线观看网站| 国产精品三级大全| 国产av码专区亚洲av| 欧美3d第一页| 九色成人免费人妻av| 欧美区成人在线视频| 久热久热在线精品观看| 国产男女内射视频| 亚洲av二区三区四区| 超碰97精品在线观看| 啦啦啦在线观看免费高清www| 国产毛片a区久久久久|