• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Facet-dependent catalytic activity of two-dimensional Ti3C2Tx MXene on hydrogen storage performance of MgH2

    2023-12-27 12:43:16HaiguangGaoRuiShiYanaLiuYunfengZhuJiguangZhangLiquanLiXiaohuiHu
    Journal of Magnesium and Alloys 2023年10期

    Haiguang Gao ,Rui Shi ,Yana Liu,? ,Yunfeng Zhu,? ,Jiguang Zhang ,Liquan Li ,Xiaohui Hu

    aCollege of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China

    bJiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China

    Abstract Two-dimensional Ti3C2Tx MXenes exposing different active facets are introduced into MgH2,and their catalytic effects are systematically investigated in depth through experimental and theoretical approaches.Excluding factors such as interlayer space,surface functional groups and experimental contingency,the exposed facets is considered to be the dominant factor for catalytic activity of Ti3C2Tx towards MgH2.More exposed edge facets of Ti3C2Tx displays higher catalytic activity than that with more exposed basal facets,which also leads to different rate-controlling steps of MgH2 in the de/hydrogenation process.The low work function,strong hydrogen affinity and high content of in situ metallic Ti for the edge facet contribute the high catalytic activity.This work will give insights into the structural design of two-dimensional Ti3C2Tx MXene used for enhancing the catalytic activity in various fields.

    Keywords: Hydrogen storage materials;Magnesium hydride;MXene;Catalyst;Facet design.

    1.Introduction

    Hydrogen is widely regarded as one of the most promising energy carriers in studies on clean energy.However,the low density at standard atmospheric and temperature conditions for hydrogen gas brings a great challenge for storage [1].The high energy consumption and insecurity of traditional storage technology have stimulated the appearance of materialsbased hydrogen storage featuring high hydrogen capacity and safety.As a typical representative of hydrogen storage materials,magnesium hydride (MgH2) has owned great attention due to its high hydrogen content (7.6 wt.%),good reversibility and low cost.However,the high thermodynamic stability and kinetic barrier lead to the high operating temperature and sluggish reaction kinetics,limiting its practical application [2,3].Various methods such as catalysts doping [4,5],nanosizing [6,7],alloying [8,9] have been widely used to alleviate these problems,of which catalysts doping is deemed as the most effective method [10].

    As an important branch of catalysts,transition metal-based catalysts (transition metals,their chloride,oxide and composites) such as Ni@rGO [11],TiNb2O7[12],Co@C [13],VB2[14] and so on [15–17],have been proved experimentally to play a positive role for enhancing hydrogen storage performance of MgH2.Wang et al.reported that the peak dehydrogenation temperature for MgH2doped with Ni90@PHCNSs is 242 °C,which is 75 °C lower than that for pure MgH2[18].The MgH2–Ni3S2@C-4 composite prepared by Zeng et al.shows faster dehydrogenation kinetics than pure MgH2,releasing 6.15 wt.% hydrogen in 8 min at 300 °C [19].Theoretical researches confirm that the transitional metals with special 3d orbital states tend to form covalent bonds with hydrogen atoms,affecting the stability of ionic bond Mg-H and destabilizing the MgH2[20,21].The dissociation and recombination of hydrogen molecules on the transitional metals surface can be effectively accelerated,enhancing the hydrogen ab/desorption kinetics of MgH2[22–24].As another important branch of catalysts,catalysts with special morphology have also shown superb catalytic activity for enhancing hydrogen storage performance of MgH2[25–27].Chen et al.reported that 5.32 wt.% hydrogen can be rapidly absorbed at 50 °C by MgH2doped with two-dimensional graphene-like TiO2due to the in-situ formed Ti and wrinkled Ti2O3[25].ZrO2wrapped in carbon can reduce the initial dehydrogenation temperature of MgH2from 309 °C to 208 °C due to the synergistic effect of ZrO2and C [26].The morphology of catalysts is closely related to its catalytic activity [28,29].The TiO2nanosheets exposed with high surface energy {001}facets show better catalytic activity than other TiO2nanoparticles for improving hydrogen storage performance of MgH2[30,31].Among four carbon materials,the layered structural carbon materials with interconnected wrinkles (coconut shell charcoal)show the largest promotion for the de/hydrogenation kinetics of MgH2[32].The large surface area,the exposure of active surface brought by the special morphology can explain its excellent catalytic activity [25,29].

    Recently,two-dimensional transitional metal carbide,nitride or carbonitrides (MXene) have attracted a lot of attentions due to its unique structure,rich element composition,functional surface in super capacitors,optoelectronics,purifiers,etc [33,34].Luckily,development in the field of hydrogen storage have also been attained by MXene,showing excellent catalytic activity in many hydrogen storage systems such as LiAlH4[35],NaAlH4[36],2LiH+MgB2[37] and MgH2[38].Especially in MgH2system,various MXene and its derivatives,composites have been introduced to greatly improve the hydrogen storage performance,such as Ti2CTx[39],Nb4C3Tx[40],NbTiCTx[41],TiVO3.5[42],(Ti0.5V0.5)3C2Tx[43],K2Ti6O13[44] and Ni/Ti3C2Tx[45,46].However,the catalytic mechanism is mainly attributed to the in situ formed transitional metal or transitional metal hydride,and the unique layered structure which has not been thoroughly explored.Although an indelible effect on the catalytic activity for the layered structure has been further proved via our previous research [47],the specific relationship between structure and catalytic activity is unclear.

    Herein,Ti3C2TxMXenes exposing with different amounts of basal and edge facets were designed and then were introduced into MgH2via ball milling.The different structures of Ti3C2TxMXenes make a great difference for enhancing hydrogen storage performance of MgH2.The different exposed facets of Ti3C2TxMXenes are verified to be the dominant factor through excluding the other structural parameters (interlayer space and functional groups) and experimental contingency.To our knowledge,this is the first in-depth study of the mechanism behind the effect of Ti3C2TxMXenes on MgH2from the perspective of Ti3C2Txstructure,both experimentally and theoretically.The proposed mechanism here provides far-reaching guidance for further designing MXene materials and improving its effects on hydrogen storage materials.

    2.Experimental

    2.1.Sample preparation

    The F-Ti3C2Txstands for the Ti3C2Txobtained by etching Ti3AlC2MAX (MAX: ternary transitional metal carbide,nitride or carbonitrides) with hydrofluoric acid.1 g Ti3AlC2powder (400 mesh,Jilin 11 technology Co.,Ltd.) was added into 10 ml hydrofluoric acid(HF,≥40%,Sinopharm Chemical Reagent Co.,Ltd.),fully stirred and reacted at room temperature for 72 h Then,the reactant was cleaned several times with deionized water (DI) to ensure that the supernatant pH was above 6.The F-Ti3C2Txcould be obtained after filtration and freeze drying [47].

    The E-F-Ti3C2Txstands for the F-Ti3C2Txafter exfoliating,filtering and drying.0.5 g F-Ti3C2Txpowder was dispersed in 25 ml dimethyl sulfoxide (DMSO,>99.8%,Aladdin) and stirred at room temperature overnight for further treatments.The intercalated F-Ti3C2Txwas collected by centrifugation and washed multiple times with ethanol and DI water to remove the residual DMSO.Then the intercalated F-Ti3C2Txwas dispersed in DI water and sonicated under ice bath to express oxidation.After centrifugation (3500 rpm for 1 h),the E-F-Ti3C2Txcould be obtained via filtration and freeze drying of supernatant [48].

    The L-F-Ti3C2Txstands for the F-Ti3C2Txwith expanded layers.The intercalated F-Ti3C2Txwas dispersed in DI water and sonicated under ice bath to express oxidation.After centrifugation (3500 rpm for 1 h),the L-F-Ti3C2Txcould be obtained via filtration and freeze drying of sediment.

    The S-Ti3C2Txstands for the Ti3C2Txobtained by etching Ti3AlC2MAX with in situ hydrochloric acid method.Firstly,2 g of lithium fluoride (LiF,99%,Aladdin) powers were dispersed in 40 ml 9 M hydrochloric acid(HCl,36–38%,Shanghai lingfeng chemical reagent Co.,Ltd.) and stirred for 30 min.Then 2 g Ti3AlC2powders were slowly added into the above mixed solution and stirred for 48 h at 50 °C.Following on,the reactant was washed with DI water for several times to ensure that the supernatant pH was above 6.After filtration and freeze drying,the S-Ti3C2Txcould be obtained.

    The E-S-Ti3C2Txstands for the S-Ti3C2Txafter exfoliating,filtering and drying.The prepared S-Ti3C2Txpowders were added into the ethanol and were sonicated under ice bath for 1 h.After centrifugation (10,000 rpm for 10 min),DI water was used instead of ethanol and the sonication was once again under the same conditions.Finally,the E-S-Ti3C2Txcould be obtained via centrifugation (3500 rpm for 1 h),filtration and freeze drying of supernatant [45].

    MgH2powders were prepared through hydriding combustion synthesis,with a purity of about 98 wt.% [49];.Under Ar atmosphere,5 wt.% as-synthesized catalysts were added into MgH2to prepare catalyzed-MgH2composites through a planetary ball mill.The detailed ball milling parameters can be found in our previous reports [47].The procedure was carried out in a glovebox with the oxygen/water concentrations below 1 ppm.

    Fig.1.Schematic digram for the preparation of F-Ti3C2Tx,E-F-Ti3C2Tx and their combination with MgH2.

    Fig.2.(a) XRD curves of Ti3AlC2,F-Ti3C2Tx and E-F-Ti3C2Tx.SEM images of (b) Ti3AlC2,(c) F-Ti3C2Tx and (d) E-F-Ti3C2Tx (inset is the corresponding image under high magnification).

    2.2.Characterization

    The crystal structure of the samples was analyzed via X-ray diffraction (XRD,ARL X’TRA diffractometer,Cu-Kαradiation,40 kV and 35 mA).Scanning electron microscope (SEM,JEOL JSM-7600F) and transmission electron microscopy (TEM,FEI Titan80–300Cs) were used to analyze the chemical composition and microstructure characteristics of the samples.X-ray photoelectron spectroscopy (XPS) was carried out in a Kratos AXIS ULTRA DLD system.

    Hydrogen storage performances of samples including isothermal hydrogen ab/desorption kinetics (an initial hydrogen pressure of 3.0 MPa and 0.005 MPa for isothermal hydrogen ab/desorption,respectively) and thermal desorption profiles (heat up from 30 °C to 360 °C at a rate of 10 °C/min)were carried out in a Sieverts type volumetric apparatus(GRC,Advanced Materials Co.).The dehydrogenation behavior was investigated by differential scanning calorimetry(DSC,TA Q2000) at different heating rates (5,8,10 and 12 °C/min) from 30 °C to 500 °C at a flow rate of 50 ml/min Ar.The detailed test information can be found in our previous works [40].

    Fig.3.(a) XRD patterns of MgH2-5 wt.% F-Ti3C2Tx and MgH2-5 wt.% E-F-Ti3C2Tx.(b) TPD curves of MgH2-5 wt.% F-Ti3C2Tx and MgH2-5 wt.%E-F-Ti3C2Tx.Comparison of hydrogen storage properties between MgH2-5 wt.% F-Ti3C2Tx and the MgH2-5 wt.% E-F-Ti3C2Tx: (c) desorption curves at different temperatures with an initial hydrogen pressure of 0.005 MPa.(d) absorption curves at different temperatures with an initial hydrogen pressure of 3.0 MPa.

    2.3.Calculation methods

    The density functional theory(DFT)calculations were performed via VASP 5.4.4 software package [50].The projectoraugmented wave (PAW) method [51] and the generalized gradient approximation (GGA) within Perdew–Burke–Ernzerhof(PBE) were selected to perform the electronic structure calculations [52].The Ti3C2Tx(001) slab and (010) slab were constructed and further optimized.The position of hydrogen atoms on Ti3C2Txslabs were the most stable position determined by optimization.In order to avoid the interactions between repeating images,a~15 ?A vacuum space was set.The convergence criteria for energy and force are set to 10-5eV and 0.02 eV/?A,respectively.

    3.Results and discussion

    The schematic diagram for the preparation of two kinds of Ti3C2Txwith different morphologies and their combination with MgH2is shown in Fig.1.Firstly,accordion-like Ti3C2Txdenoted as F-Ti3C2Txwas obtained by etching Ti3AlC2,selectively removing the Al layer in Ti3AlC2with HF [38].In order to facilitate the exfoliation of the F-Ti3C2Tx,DMSO was used to interlaminate F-Ti3C2Txto extend the distance between layers [48].After ultrasonic exfoliation and filtration,paper-like Ti3C2Txdenoted as E-F-Ti3C2Txcould be obtained.Then two different morphologies of Ti3C2Txwere introduced into MgH2through ball milling separately.The F-Ti3C2Txmay have more edge facets contact with MgH2while the E-F-Ti3C2Txmay have more basal facets contact with MgH2.

    The XRD curves and SEM images of Ti3AlC2,F-Ti3C2Txand E-F-Ti3C2Txare displayed in Fig.2.In Fig.2a,the strongest diffraction peak of Ti3AlC2(2θ=39°) disappearing and the peak of (002) shifting to a lower angle (2θ=8.8°),prove the formation of F-Ti3C2Txderived from Ti3AlC2[38].In Fig.2b and c,the distinct accordion-like morphology of F-Ti3C2Txis completely different from that of the precursor Ti3AlC2,further indicating the successful preparation of FTi3C2Txby the selective etching of Al layers in Ti3AlC2via HF.Through ultrasonic exfoliation and filtration,the peak of(002) shifts further to the left from 2θ=8.8° (F-Ti3C2Tx) to 2θ=7.1° (E-F-Ti3C2Tx),indicating that the interlayer space is expanded.The increase in interlayer space is consistent with the results reported in reference [48] regarding Ti3C2Txexfoliation.As shown in Fig.2d,E-F-Ti3C2Txpresents a paperlike morphology,with a large basal/edge ratio.The exposed basal facets size of E-F-Ti3C2Txis significantly different from that of F-Ti3C2Tx,while the exposed edge facets size of E-FTi3C2Txis similar to that of F-Ti3C2Tx.Although F-Ti3C2Txand E-F-Ti3C2Txshare the same chemical composition,exposed active facets are distinctly different.

    Fig.4.HRTEM images of (a) MgH2-5 wt.% F-Ti3C2Tx (b) MgH2-5 wt.% E-F-Ti3C2Tx.

    Fig.5.(a) and (b) DSC curves of MgH2-5 wt.% F-Ti3C2Tx and MgH2-5 wt.% E-F-Ti3C2Tx at different heating rates;(c) and (d) the corresponding Kissinger plots of activation energy.

    To explore the effects of different exposed active facets on the catalytic activity,5 wt.% F-Ti3C2Txand E-F-Ti3C2Txwere introduced into MgH2via ball milling,respectively.The XRD curves of MgH2-5 wt.% F-Ti3C2Txand MgH2-5 wt.%E-F-Ti3C2Txare shown in Fig.3(a).For the two composites,the main diffraction peaks are the same,belonging to the MgH2.The existence of small quantity of MgO is ascribed to the inevitable oxidation during testing or preparation.Consistent with our previous researches [45,47],the absence of the diffraction peaks of F-Ti3C2Txand E-F-Ti3C2Txmay be due to poor crystallization or restricted contents.In the highresolution transmission electron microscope(HRTEM)images(Fig.4),the appearance of small-sized F-Ti3C2Txand E-FTi3C2Txindicates that the structure of F-Ti3C2Txand E-FTi3C2Txcan be retained to a certain extent during ball milling process.This phenomenon is consistent with our previously reported results that the Ti3C2Txcould be always present during ball milling process and hydrogen ab/desorption tests[45,47].Besides,the contact between MgH2matrix and FTi3C2Txor E-F-Ti3C2Txcan also be found according to the corresponding HRTEM images.

    Fig.6.(a) XRD pattern of L-F-Ti3C2Tx (inset image is the corresponding SEM image).(b) DSC curve of MgH2-5 wt.% L-F-Ti3C2Tx.The heating rate is 10 °C/min.(c) XRD patterns of S-Ti3C2Tx and E-S-Ti3C2Tx (inset images are the corresponding SEM images).(d) DSC curves of MgH2-5 wt.% S-Ti3C2Tx and the MgH2-5 wt.% E-S-Ti3C2Tx.The heating rate is 10 °C/min.

    The temperature-programmed desorption (TPD) and isothermal hydrogen ab/desorption kinetics tests were conducted to investigate the difference of catalytic activity between F-Ti3C2Txand E-F-Ti3C2Txon the hydrogen storage performance of MgH2Fig.3.b shows the TPD curves of MgH2-5 wt.% F-Ti3C2Txand MgH2-5 wt.% E-F-Ti3C2Tx.The onset dehydrogenation temperature for MgH2-5 wt.% FTi3C2Txand MgH2-5 wt.% E-F-Ti3C2Txare reduced to 199 and 255 °C,respectively,both lower than that of as-milled MgH2(300 °C) [31].The MgH2-5 wt.% F-Ti3C2Txshows the lowest onset dehydrogenation temperature,indicating that the catalytic activity of F-Ti3C2Txis better than that of EF-Ti3C2TxFig.3.c shows the isothermal dehydrogenation kinetics of MgH2-5 wt.% F-Ti3C2Txand MgH2-5 wt.% E-FTi3C2Txat different temperatures (225,250 and 275 °C).At 275°C,the faster dehydrogenation kinetics is obtained for the MgH2-5 wt.% F-Ti3C2Tx,releasing about 5.95 wt.% hydrogen within 1000 s,while only 4.97 wt.% hydrogen is released for the MgH2-5 wt.% E-F-Ti3C2Tx.Notably,a little hydrogen can be desorbed by as-milled MgH2within 7200 s at 275 °C,indicating the superb catalytic activity of F-Ti3C2Txand E-F-Ti3C2Tx[31].By calculating the tangent slope of the linear region of hydrogen desorption at 275 °C,the rate value of the MgH2-5 wt.% F-Ti3C2Tx(0.504 wt.%/min) is 1.52 times larger than that of the MgH2-5 wt.% E-F-Ti3C2Tx(0.331 wt.%/min).Similarly,the F-Ti3C2Txstill shows the better catalytic activity than the E-F-Ti3C2Txat 225 and 250 °C.The isothermal hydrogenation kinetics of dehydrogenated MgH2-5 wt.% F-Ti3C2Txand MgH2-5 wt.% E-FTi3C2Txat different temperatures (100,125 and 150 °C) are shown in Fig.3d.At 125 °C,the dehydrogenated MgH2-5 wt.% F-Ti3C2Txabsorbs approximately 4.57 wt.% hydrogen while only 3.46 wt.% hydrogen is stored by the dehydrogenated MgH2-5 wt.% E-F-Ti3C2Txwithin 1200 s.Notably,about 3 wt.% hydrogen can be stored by Mg within 1200 s even at 200 °C,indicating the superb catalytic activity of F-Ti3C2Txand E-F-Ti3C2Tx[31].Through calculating the tangent slope of the linear region of hydrogen absorption at 125 °C,the rate value of the dehydrogenated MgH2-5 wt.% F-Ti3C2Tx(0.559 wt.%/min) is 4.3 times faster than that of the dehydrogenated MgH2-5 wt.% E-F-Ti3C2Tx(0.130 wt.%/min).Compared with E-F-Ti3C2Tx,F-Ti3C2Txdisplays the better catalytic activity on the hydrogen absorption kinetics of Mg,which is also verified at 100 and 150 °C.To sum up,the remarkable improvement in the hydrogen ab/desorption kinetics is obtained by the MgH2-5 wt.% FTi3C2Tx,indicating the better catalytic activity of F-Ti3C2Tx,which may be due to the different exposed active facets of Ti3C2Tx.

    Fig.7.(t/t0.5)theo vs.(t/t0.5)exp of composites for various kinetic models: (a) MgH2-5 wt.% F-Ti3C2Tx and (b) MgH2-5 wt.% E-F-Ti3C2Tx at 250 °C.Time dependence of kinetic modeling equations g(α) for composites at different temperatures: (c) MgH2-5 wt.% F-Ti3C2Tx and (d) MgH2-5 wt.% E-F-Ti3C2Tx with 0.2<α<0.7.

    The Kissinger method was used to calculate the activation energy (Ea) of the hydrogen desorption [25,53].The DSC curves and the corresponding Kissinger plots of the MgH2-5 wt.% F-Ti3C2Txand the MgH2-5 wt.% E-F-Ti3C2Txare shown in Fig.5.The apparent activation energies for the MgH2-5 wt.% F-Ti3C2Txand the MgH2-5 wt.% E-F-Ti3C2Txcan be delivered from the linear fitting of the data points to be 78.2 and 89.6 KJ mol-1,respectively,which are both lower than some of other catalysts doping MgH2system [4,28].The lower apparent activation energy of MgH2-5 wt.% F-Ti3C2Txsuggests higher catalytic efficiency for the F-Ti3C2Tx,which further verifies that the catalytic activity for enhancing the hydrogen storage performance of MgH2is influenced by the different exposed active facets of Ti3C2Tx.

    In order to confirm that the different exposed active facets are the main point explaining the significant difference in catalytic activity between F-Ti3C2Txand E-F-Ti3C2Tx,other factors have also been explored in depth.The surface functional groups and interlayer space of Ti3C2Txare firstly excluded as the factors causing the significant difference of the catalytic activity between F-Ti3C2Txand E-F-Ti3C2Tx.As shown in Fig.6a,for F-Ti3C2Txwith larger interlayer space denoted as L-F-Ti3C2Tx,the peak of (002) shifts from 2θ=8.8° (Fig.2a) to 2θ=8.1° and the similar accordion-like morphology keeps stable after the expansion process [48].In Fig.6b,the peak dehydrogenation temperature of the MgH2-5 wt.% L-F-Ti3C2Txis 339 °C,which is similar to that of the MgH2-5 wt.% F-Ti3C2Tx(Fig.5a).According to references,further layer expansion and exfoliation of MXenes can lead to the increase of interlayer space and the change of surface functional groups [48,54].From F-Ti3C2Txto L-FTi3C2Txto E-F-Ti3C2Tx,the interlayer space and the ratio of-O/-F functional groups increase gradually.When Ti3C2Txis in accordion-like morphology (F-Ti3C2Txand L-F-Ti3C2Tx),the catalytic activity of Ti3C2Txbarely changes.Only when Ti3C2Txis in paper-like morphology (E-F-Ti3C2Tx),the substantial changes appear in the catalytic activity of Ti3C2Tx.These results indicate that the significant difference of the catalytic activity between F-Ti3C2Txand E-F-Ti3C2Txis dominated by the change of exposed active facets rather than the change of surface functional groups and interlayer space of Ti3C2Txhere.To avoid experimental contingency,another experiment was also carried out.The accordion-like and paperlike Ti3C2TxMXenes,which can be denoted as S-Ti3C2Txand E-S-Ti3C2Tx,respectively,were prepared through in situ HF etching (LiF and HCl as the precursor) and the same post-processing(ultrasonic exfoliation and filtration)methods.The difference of exposed facets (basal/edge ratio) between the S-Ti3C2Txand E-S-Ti3C2Txis the same as that between F-Ti3C2Txand E-F-Ti3C2Tx.Similar to the XRD curves of F-Ti3C2Txand E-F-Ti3C2Txin Fig.2a,the successful preparation of S-Ti3C2Txand E-S-Ti3C2Txare verified via the XRD curves as shown in Fig.6c.The accordion-like morphology of S-Ti3C2Txand paper-like morphology of E-S-Ti3C2Txare shown in the inset of Fig.6c.In Fig.6d,the peak dehydrogenation temperature of the MgH2-5 wt.% S-Ti3C2Tx(331.2 °C) is much lower than that of the MgH2-5 wt.% E-STi3C2Tx(360.82°C),indicating the higher catalytic activity of S-Ti3C2Tx.The same trend in two different preparation methods further indicates that the significant difference of the catalytic activity between F-Ti3C2Txand E-F-Ti3C2Txis mainly dominated by two different morphologies.The greater difference in catalytic activity between S-Ti3C2Txand E-S-Ti3C2Txmay be due to the more different exposed active facets.

    Fig.8.(t/t0.5)theo vs.(t/t0.5)exp of composites for various kinetic models: (a) MgH2-5 wt.% F-Ti3C2Tx and (b) MgH2-5 wt.% E-F-Ti3C2Tx at 125 °C.Time dependence of kinetic modeling equations g(α) for composites at different temperatures: (c) MgH2-5 wt.% F-Ti3C2Tx and (d) MgH2-5 wt.% E-F-Ti3C2Tx with 0.7<α<0.9.

    To further explore the reasons behind the significant difference of the catalytic activity between F-Ti3C2Txand EF-Ti3C2Txcaused by the different exposed active facets,the analysis of solid-state reaction mechanism models,XPS measurements and DFT calculation were performed.According to the experimental results of isothermal de/hydrogenation kinetics at different temperatures,the corresponding solid-state reaction mechanism model and rate-controlling step can be identified.The general kinetics equation can be shown as follows [53]:

    in Eq.(1),whereα,T,k(T) andf(α) represent the reaction extent,the reaction temperature,the reaction rate constant and the function depending on the specific kinetic mechanism,respectively.f(α) can also be described as the following equation [55]:

    Fig.9.Ti 2p XPS spectra of (a) the F-Ti3C2Tx,MgH2-5 wt.% F-Ti3C2Tx and (b) E-F-Ti3C2Tx,MgH2-5 wt.% E-F-Ti3C2Tx.

    Fig.10.The electrostatic potentials along c axis of Ti3C2Tx (001) and (010) slabs.The Ev and Ef denote the Fermi and vacuum energy levels,respectively.The red,black and blue balls represent oxygen,carbon and titanium atoms respectively.

    in Eq.(2),whereA,t0.5represent the constant related to the kinetic mechanism,the time whenαequals 0.5,respectively.Through plotting the experimental values of t/t0.5against the theoretical values of t/t0.5for the composites from nine different kinetic models respectively,the corresponding reliable kinetic model can be obtained.The line with a slope closest to 1 is the reliable kinetic model.Based on the isothermal dehydrogenation curves of the MgH2-5 wt.% F-Ti3C2Txand the MgH2-5 wt.% E-F-Ti3C2Txat 250 °C (Fig.3c),nine curves derived from nine different kinetic models are shown in Fig.7a and 7b,respectively.The R3 (three-dimensional phase boundary) and D1 (one-dimensional diffusion) models are best matched to the MgH2-5 wt.% F-Ti3C2Txand the MgH2-5 wt.% E-F-Ti3C2Tx,respectively.As shown in Fig.7c and 7d,the R3 and D1 models are further verified through plotting the relatedf(α) against the reaction time at 225 and 275 °C (0.2<α<0.7),showing good linearity (R2>0.999) [56].Therefore,the dehydrogenation kinetics of MgH2-5 wt.% F-Ti3C2Txis influenced by the threedimensional phase boundary,while that of MgH2-5 wt.%E-F-Ti3C2Txis influenced by the one-dimensional diffusion process [53,55].The different dehydrogenation mechanism is consistent with different dehydrogenation performance,explaining the huge impact of the different exposed active faces between F-Ti3C2Txand E-F-Ti3C2Txon the dehydrogenation of MgH2.Similarly,the hydrogenation mechanism for the dehydrogenated MgH2-5 wt.% F-Ti3C2Txand MgH2-5 wt.% EF-Ti3C2Txis also explored via the same method.Based on the isothermal hydrogenation curves of the dehydrogenated MgH2-5 wt.% F-Ti3C2Txand MgH2-5 wt.% E-F-Ti3C2Txat 125 °C (Fig.3d),nine curves derived from nine different kinetic models are shown in Fig.8a and 8b,respectively.The hydrogenation process of the dehydrogenated MgH2-5 wt.%F-Ti3C2Txis controlled by the D3 (three-dimensional diffusion) model with a faster reaction rate while that of the dehydrogenated MgH2-5 wt.% E-F-Ti3C2Txis controlled by the D1 model with a slower reaction rate,which is further confirmed by the good linearity (R2>0.99) between the relatedf(α) and the reaction time at 100 and 150 °C (0.7<α<0.9)as shown in Fig.8c and 8d [25,56].The phenomenon is consistent with the performance of the experimentally obtained hydrogenation data,explaining the huge impact of the different exposed active facets between F-Ti3C2Txand E-F-Ti3C2Txon the hydrogenation of Mg.

    Fig.11.Optimized adsorption configuration of H atom over the (a) Ti3C2Tx (001) and (b) Ti3C2Tx (010) surface slabs.The red,brown and blue balls represent oxygen,carbon and titanium atoms respectively.

    The valence state of Ti in F-Ti3C2Txand the as-milled MgH2-5 wt.% F-Ti3C2Tx,E-F-Ti3C2Txand the as-milled MgH2-5 wt.% E-F-Ti3C2Txwere measured by XPS analysis.As shown in Fig.9,the Ti 2p spectrum of F-Ti3C2Txand E-F-Ti3C2Txboth can be resolved into four sets of 2p1/2–2p3/2spin-orbit doublets at 457.9/463.3,457.0/462.4,455.9/461.5,and 454.9/460.6 eV which can be fitted to TiO2,Ti3+,Ti2+and Ti-C,separately [38,57].For MgH2-5 wt.% F-Ti3C2Txand MgH2-5 wt.% E-F-Ti3C2Tx,new peaks corresponding to Ti0(454.2/460.2) appear on the basis of the above peaks.The in situ formed metallic Ti may be due to the reduction of partial F-Ti3C2Txand E-F-Ti3C2Txby MgH2during ball milling process,which is consistent with previous reports[38,47].And the peaks of TiO2,Ti3+,Ti2+and Ti-C indicate the existence of partial F-Ti3C2Txand E-F-Ti3C2Tx,which is consistent with HRTEM results in Fig.4.Notably,the in situ formed metallic Ti and partial Ti3C2Txcould exist stably in the subsequent hydrogen ab/desorption tests according to our previous reports [45,47].The contents of various Ti components are listed in Table 1.The content of the in situ formedmetallic Ti in the as-milled MgH2-5 wt.% F-Ti3C2Tx(20.2%)is almost twice as much as that in the as-milled MgH2-5 wt.%E-F-Ti3C2Tx(11.3%),which may be ascribed to the different exposed active facets between F-Ti3C2Txand E-F-Ti3C2Tx.This phenomenon further demonstrates that the Ti atoms on the edge facets may be reduced more easily by MgH2than that on the basal facets.The in situ formed Ti can disintegrate and recombine hydrogen molecules on its surface more efficiently,and thus enhance the dehydrogenation kinetics of MgH2significantly [22,23].Therefore,the as-milled MgH2-5 wt.% F-Ti3C2Txwith more contents of the in situ formed metallic Ti should exhibit the faster dehydrogenation kinetics than the as-milled MgH2-5 wt.% E-F-Ti3C2Tx,which is consistent with experimental dehydrogenation kinetics data.

    Table 1 The content of various Ti in the F-Ti3C2Tx,MgH2-5 wt.% F-Ti3C2Tx,E-FTi3C2Tx and MgH2-5 wt.%E-F-Ti3C2Tx according to the Ti 2p XPS spectra.

    In order to simulate the different exposed facets between F-Ti3C2Txand E-F-Ti3C2Tx,the Ti3C2Tx(001) and Ti3C2Tx(010) slabs representing the basal facet and edge facet of Ti3C2Txwere built respectively.For Ti3C2TxMXenes,the basal facets cover with terminal groups while the edge facets expose middle Ti sites,which may affect the activity of two facets to some extent [58].To further confirm the differences in activity due to structure and composition,the work functions (Φ) of the two facets of Ti3C2Txwere calculated.As shown in Fig.10,the lowerΦvalue of edge facet (5.64 eV)than basal facet (5.86 eV) based on Fermi levels and vacuum energy levels,indicates that it is easier for an electron to escape from edge facet into the vacuum[45].This result verifies that the edge facet is more active than the basal facet,which is consistent with the XPS results and the literature [59].

    The hydrogen adsorption energy (Ead) of Ti3C2Tx(001)and Ti3C2Tx(010) slabs was further compared via DFT calculations.Eadcan be calculated from the equation as follows[60]:

    in Eq.(3),whereEslabH,EslabandEHrepresent the energy of the surface slab after hydrogen absorption,the energy of the surface slab and the energy of single hydrogen atom.Optimized adsorption configuration of H atom over the Ti3C2Tx(001) and Ti3C2Tx(010) surface slabs are shown in Fig.11.After calculation,the Eadof Ti3C2Tx(001)(-2.76 eV) is lower than that of Ti3C2Tx(010) (-3.48 eV),indicating that the edge facet of Ti3C2Txshows a better hydrogen affinity than the basal facet of Ti3C2Tx.The different catalytic activity between the edge and basal facets of Ti3C2Txwas also verified in the electrochemical nitrogen fixation[59].The calculation results above are consistent with the experimental results that the F-Ti3C2Txshows better catalytic activity than E-F-Ti3C2Txon the hydrogen ab/desorption kinetics of MgH2.

    Combining the results above,the reasons behind the significant difference of the catalytic activity between F-Ti3C2Txand E-F-Ti3C2Txcan be uncovered.After combining with MgH2,the different exposed facets between F-Ti3C2Txand E-F-Ti3C2Txcause the different hydrogen ab/desorption kinetics mechanism and rate-controlling step of MgH2.The FTi3C2Txexposing more high active edge facets shows higher hydrogen affinity and facilitates the formation of metallic Ti,which can effectively accelerate the hydrogen ab/desorption kinetics of MgH2.

    4.Conclusions

    In this work,the Ti3C2TxMXenes exposing different facets are investigated about their catalytic activity on the hydrogen ab/desorption kinetics of MgH2.The F-Ti3C2Txexposing more edge facets shows better catalytic activity than E-FTi3C2Txexposing more basal facets.For example,the MgH2-5 wt.% F-Ti3C2Txshows the lower onset dehydrogenation temperature,the faster hydrogen ab/desorption kinetics and the lower dehydrogenation activation energies than the MgH2-5 wt.% E-F-Ti3C2Tx.Through investigating other structural parameters(interlayer space and functional groups)and experimental contingency,the different exposed facets are verified to be the dominant factor for affecting the catalytic activity of Ti3C2Tx.The F-Ti3C2Txexposing more high activity edge facets shows higher hydrogen affinity and facilitates the formation of metallic Ti.These two points can effectively accelerate the hydrogen ab/desorption kinetics of MgH2.Therefore,the different hydrogen ab/desorption kinetics mechanism and rate-controlling step for the MgH2-5 wt.% F-Ti3C2Txand MgH2-5 wt.% E-F-Ti3C2Txoccurs,due to the significant difference of the catalytic activity between F-Ti3C2Txand E-FTi3C2Tx.

    Declaration of competing interest

    The authors declare that they have no conflicts of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (51801100,51771092,21975125,51801099),Natural Science Foundation of the Jiangsu Higher Education Institutions of China (18KJB430014),Six Talent Peaks Project in Jiangsu Province (2018,XNY-020),and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.We are grateful to the High-Performance Computing Center of Nanjing Tech University for supporting the computational resources.

    日日夜夜操网爽| 国产精品一区二区精品视频观看| av欧美777| 久久国产精品大桥未久av| 久久九九热精品免费| 精品久久蜜臀av无| 在线观看舔阴道视频| 久久久久久免费高清国产稀缺| 日韩精品免费视频一区二区三区| 美女大奶头黄色视频| 十分钟在线观看高清视频www| 精品国产乱子伦一区二区三区 | tocl精华| 91大片在线观看| 老熟妇乱子伦视频在线观看 | 精品熟女少妇八av免费久了| 久久青草综合色| 一二三四在线观看免费中文在| 欧美在线黄色| 欧美精品人与动牲交sv欧美| 亚洲欧洲精品一区二区精品久久久| 美女国产高潮福利片在线看| av视频免费观看在线观看| 在线看a的网站| 首页视频小说图片口味搜索| 午夜日韩欧美国产| 国产亚洲精品第一综合不卡| 最近中文字幕2019免费版| 国产国语露脸激情在线看| 亚洲精品久久午夜乱码| 亚洲全国av大片| 在线天堂中文资源库| 欧美日韩视频精品一区| 中文字幕av电影在线播放| 婷婷色av中文字幕| 国产在线免费精品| 日韩有码中文字幕| 精品卡一卡二卡四卡免费| 成人av一区二区三区在线看 | av电影中文网址| 乱人伦中国视频| 五月开心婷婷网| 日韩有码中文字幕| 人妻人人澡人人爽人人| 日韩视频在线欧美| 中国美女看黄片| 免费av中文字幕在线| 超碰成人久久| 人妻 亚洲 视频| 精品福利永久在线观看| 成人三级做爰电影| 两性午夜刺激爽爽歪歪视频在线观看 | 久久中文看片网| 一级,二级,三级黄色视频| 国产精品欧美亚洲77777| 下体分泌物呈黄色| 国产91精品成人一区二区三区 | 国产一区二区 视频在线| 午夜久久久在线观看| 五月天丁香电影| 日韩电影二区| 桃红色精品国产亚洲av| 看免费av毛片| 18禁观看日本| 亚洲人成77777在线视频| 国产精品秋霞免费鲁丝片| 日日摸夜夜添夜夜添小说| 在线亚洲精品国产二区图片欧美| 香蕉丝袜av| 一本色道久久久久久精品综合| 一本综合久久免费| 国产淫语在线视频| 永久免费av网站大全| 高清av免费在线| 不卡av一区二区三区| 午夜影院在线不卡| 亚洲激情五月婷婷啪啪| 欧美大码av| 一区二区三区激情视频| 中文字幕人妻丝袜一区二区| 中文字幕人妻熟女乱码| 一区二区三区乱码不卡18| 国产野战对白在线观看| 伊人亚洲综合成人网| 国产精品 欧美亚洲| 一级黄色大片毛片| 一二三四社区在线视频社区8| 别揉我奶头~嗯~啊~动态视频 | 69av精品久久久久久 | 国产精品一区二区精品视频观看| 99re6热这里在线精品视频| 国产av又大| 脱女人内裤的视频| 女人高潮潮喷娇喘18禁视频| 国产精品久久久久久人妻精品电影 | 久久久久精品国产欧美久久久 | 欧美在线一区亚洲| 9色porny在线观看| 丝瓜视频免费看黄片| 黑丝袜美女国产一区| 可以免费在线观看a视频的电影网站| 两性午夜刺激爽爽歪歪视频在线观看 | 99久久精品国产亚洲精品| 亚洲av成人一区二区三| av欧美777| 久久久久国内视频| 久久综合国产亚洲精品| 日韩欧美国产一区二区入口| 永久免费av网站大全| 国产片内射在线| 国产亚洲一区二区精品| 日韩熟女老妇一区二区性免费视频| 色婷婷av一区二区三区视频| 老熟妇乱子伦视频在线观看 | 一级片'在线观看视频| 午夜激情av网站| 亚洲,欧美精品.| tocl精华| 亚洲欧美一区二区三区久久| 亚洲欧美精品综合一区二区三区| av在线app专区| 亚洲人成77777在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 咕卡用的链子| 蜜桃在线观看..| 一区在线观看完整版| 国产成人免费无遮挡视频| 午夜免费成人在线视频| 色精品久久人妻99蜜桃| 精品少妇久久久久久888优播| 亚洲国产成人一精品久久久| 免费观看av网站的网址| 国产日韩一区二区三区精品不卡| 12—13女人毛片做爰片一| videosex国产| 自拍欧美九色日韩亚洲蝌蚪91| 男人爽女人下面视频在线观看| 欧美变态另类bdsm刘玥| 国产成人av教育| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久av美女十八| 久久性视频一级片| 又黄又粗又硬又大视频| 久久毛片免费看一区二区三区| 国产精品偷伦视频观看了| 窝窝影院91人妻| 亚洲成人免费av在线播放| 老鸭窝网址在线观看| 国产日韩一区二区三区精品不卡| 国产亚洲av片在线观看秒播厂| 国产成人精品久久二区二区91| 成人影院久久| 亚洲全国av大片| 亚洲七黄色美女视频| 丰满人妻熟妇乱又伦精品不卡| 丰满饥渴人妻一区二区三| 亚洲精品国产精品久久久不卡| 99久久精品国产亚洲精品| 国产精品久久久久久精品电影小说| 欧美激情 高清一区二区三区| 美女主播在线视频| 曰老女人黄片| 成人亚洲精品一区在线观看| 精品一区在线观看国产| 男女午夜视频在线观看| 成人手机av| 日日摸夜夜添夜夜添小说| 午夜影院在线不卡| 69精品国产乱码久久久| a 毛片基地| 国产欧美日韩精品亚洲av| 性少妇av在线| 亚洲三区欧美一区| 天堂中文最新版在线下载| 国产片内射在线| 久久久久久久国产电影| 亚洲一码二码三码区别大吗| 国产免费视频播放在线视频| 久久精品国产亚洲av香蕉五月 | 亚洲精品日韩在线中文字幕| 亚洲精品国产av成人精品| 少妇被粗大的猛进出69影院| 国产国语露脸激情在线看| 五月天丁香电影| 91精品三级在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲精品中文字幕在线视频| 天天操日日干夜夜撸| 我的亚洲天堂| 男女无遮挡免费网站观看| 两性夫妻黄色片| 国产在视频线精品| 一二三四社区在线视频社区8| 首页视频小说图片口味搜索| 国产人伦9x9x在线观看| 在线观看人妻少妇| 亚洲av国产av综合av卡| 亚洲国产欧美网| avwww免费| 久久久国产成人免费| 老司机亚洲免费影院| 亚洲,欧美精品.| 亚洲av男天堂| 丝袜在线中文字幕| 免费看十八禁软件| 两性午夜刺激爽爽歪歪视频在线观看 | 一级片'在线观看视频| 亚洲精品国产区一区二| 国产亚洲精品久久久久5区| 亚洲情色 制服丝袜| 亚洲专区国产一区二区| 他把我摸到了高潮在线观看 | 国产精品亚洲av一区麻豆| www日本在线高清视频| 日本精品一区二区三区蜜桃| 久久精品国产99精品国产亚洲性色| 亚洲熟女毛片儿| 99国产综合亚洲精品| 一本精品99久久精品77| 久久国产乱子伦精品免费另类| 18禁裸乳无遮挡免费网站照片| 亚洲av成人一区二区三| 国产av不卡久久| 色av中文字幕| 人人妻人人澡欧美一区二区| 麻豆成人午夜福利视频| 欧美不卡视频在线免费观看 | 亚洲午夜精品一区,二区,三区| 床上黄色一级片| 美女扒开内裤让男人捅视频| 亚洲美女黄片视频| 亚洲色图 男人天堂 中文字幕| 免费在线观看视频国产中文字幕亚洲| 国产三级黄色录像| 精品第一国产精品| 无遮挡黄片免费观看| 欧美乱妇无乱码| 国产精品乱码一区二三区的特点| 亚洲av电影在线进入| 午夜久久久久精精品| 无遮挡黄片免费观看| 好男人在线观看高清免费视频| 又黄又爽又免费观看的视频| 视频区欧美日本亚洲| 午夜久久久久精精品| 色在线成人网| 国内精品久久久久久久电影| 国产精品久久久久久久电影 | or卡值多少钱| 国产探花在线观看一区二区| 欧美黑人精品巨大| 婷婷丁香在线五月| 久久国产乱子伦精品免费另类| 亚洲欧美日韩高清专用| 国产精品久久久久久久电影 | 极品教师在线免费播放| 久久 成人 亚洲| 国产免费av片在线观看野外av| 两人在一起打扑克的视频| 夜夜看夜夜爽夜夜摸| 国产亚洲精品久久久久5区| 国产av一区在线观看免费| 999久久久精品免费观看国产| 国产高清视频在线观看网站| 免费搜索国产男女视频| 他把我摸到了高潮在线观看| 国产欧美日韩一区二区精品| 好看av亚洲va欧美ⅴa在| 国产一区在线观看成人免费| 禁无遮挡网站| 黑人操中国人逼视频| 成人三级黄色视频| 亚洲国产欧美一区二区综合| 欧美一级a爱片免费观看看 | 午夜福利在线观看吧| 日日夜夜操网爽| 久久人人精品亚洲av| 1024视频免费在线观看| 天堂av国产一区二区熟女人妻 | a级毛片在线看网站| 精品第一国产精品| 亚洲 国产 在线| 免费观看人在逋| 一级毛片女人18水好多| 免费在线观看完整版高清| 蜜桃久久精品国产亚洲av| 久久人人精品亚洲av| 久99久视频精品免费| 亚洲中文字幕日韩| 亚洲精品久久国产高清桃花| 777久久人妻少妇嫩草av网站| 久久中文字幕人妻熟女| 亚洲av成人一区二区三| 亚洲人成77777在线视频| 国产探花在线观看一区二区| 免费高清视频大片| 夜夜躁狠狠躁天天躁| 婷婷六月久久综合丁香| 午夜成年电影在线免费观看| 亚洲美女黄片视频| 国产97色在线日韩免费| 亚洲真实伦在线观看| 久久香蕉激情| 免费在线观看影片大全网站| 亚洲色图 男人天堂 中文字幕| 小说图片视频综合网站| 亚洲精品久久国产高清桃花| 在线观看免费视频日本深夜| 亚洲精品久久国产高清桃花| 国产精品亚洲一级av第二区| 一边摸一边抽搐一进一小说| 精品少妇一区二区三区视频日本电影| 18美女黄网站色大片免费观看| 少妇熟女aⅴ在线视频| 99国产综合亚洲精品| 一级毛片高清免费大全| 亚洲国产欧美人成| 波多野结衣巨乳人妻| 哪里可以看免费的av片| 日韩大尺度精品在线看网址| 亚洲精品美女久久av网站| 中文字幕最新亚洲高清| 国产91精品成人一区二区三区| 欧美另类亚洲清纯唯美| 国产不卡一卡二| 成年女人毛片免费观看观看9| 亚洲精品在线观看二区| 国产成人一区二区三区免费视频网站| 好男人电影高清在线观看| 一级作爱视频免费观看| 亚洲专区中文字幕在线| 99久久国产精品久久久| 亚洲av成人不卡在线观看播放网| 热99re8久久精品国产| 成人av一区二区三区在线看| 国产成人aa在线观看| 久久婷婷成人综合色麻豆| 亚洲五月婷婷丁香| 国产午夜福利久久久久久| 久久精品91无色码中文字幕| 国产视频一区二区在线看| 中亚洲国语对白在线视频| 亚洲av五月六月丁香网| 亚洲黑人精品在线| 老司机在亚洲福利影院| 最近最新中文字幕大全免费视频| 亚洲国产精品合色在线| 精品免费久久久久久久清纯| 国产精品国产高清国产av| 国产高清有码在线观看视频 | 舔av片在线| 日韩欧美在线乱码| 久久中文字幕人妻熟女| 国产精品乱码一区二三区的特点| 欧美在线一区亚洲| 久久婷婷成人综合色麻豆| 91成年电影在线观看| 亚洲欧洲精品一区二区精品久久久| 国产主播在线观看一区二区| 精品久久久久久成人av| 精品国产美女av久久久久小说| 黄色丝袜av网址大全| 国产精品久久久人人做人人爽| 精品久久久久久成人av| 午夜免费观看网址| 黄色a级毛片大全视频| 国产精品,欧美在线| 日韩欧美国产在线观看| 亚洲国产欧洲综合997久久,| 可以在线观看毛片的网站| 麻豆国产97在线/欧美 | 国产av不卡久久| 精品国内亚洲2022精品成人| 午夜福利免费观看在线| 一本大道久久a久久精品| 精品国产乱码久久久久久男人| 国产精品亚洲美女久久久| 99国产综合亚洲精品| 亚洲专区字幕在线| 国产成人精品久久二区二区91| 亚洲一区中文字幕在线| 亚洲国产欧美一区二区综合| 夜夜看夜夜爽夜夜摸| 亚洲成av人片免费观看| ponron亚洲| 99久久国产精品久久久| 亚洲中文字幕一区二区三区有码在线看 | 露出奶头的视频| 国内久久婷婷六月综合欲色啪| 日韩欧美精品v在线| 久久精品国产99精品国产亚洲性色| 国产成人系列免费观看| 日本在线视频免费播放| 国产成年人精品一区二区| 啦啦啦观看免费观看视频高清| 日韩三级视频一区二区三区| 欧美高清成人免费视频www| 99国产综合亚洲精品| 欧美绝顶高潮抽搐喷水| 欧美日韩乱码在线| 国产黄片美女视频| 一本久久中文字幕| 老司机靠b影院| 免费在线观看黄色视频的| 波多野结衣高清无吗| 亚洲欧美激情综合另类| 国产精品久久久av美女十八| 丰满人妻熟妇乱又伦精品不卡| 免费电影在线观看免费观看| 精品国内亚洲2022精品成人| 最近视频中文字幕2019在线8| 久久精品亚洲精品国产色婷小说| 夜夜爽天天搞| 精品一区二区三区视频在线观看免费| 在线观看日韩欧美| 午夜免费成人在线视频| 欧美日韩亚洲国产一区二区在线观看| 免费电影在线观看免费观看| 国产精品野战在线观看| 日本免费a在线| 老熟妇乱子伦视频在线观看| 在线观看免费日韩欧美大片| 好男人电影高清在线观看| av片东京热男人的天堂| av在线播放免费不卡| 麻豆久久精品国产亚洲av| 桃红色精品国产亚洲av| 日韩免费av在线播放| av片东京热男人的天堂| 久久亚洲精品不卡| 亚洲在线自拍视频| 露出奶头的视频| 国产免费男女视频| 久久精品成人免费网站| 老熟妇仑乱视频hdxx| 精品一区二区三区四区五区乱码| 亚洲成人中文字幕在线播放| 一本精品99久久精品77| 国产亚洲欧美在线一区二区| 不卡av一区二区三区| 久久精品91无色码中文字幕| 12—13女人毛片做爰片一| 老司机午夜十八禁免费视频| 国产一区在线观看成人免费| 成人18禁高潮啪啪吃奶动态图| 黄色视频不卡| 无限看片的www在线观看| 夜夜爽天天搞| 不卡一级毛片| 很黄的视频免费| www日本黄色视频网| 在线播放国产精品三级| АⅤ资源中文在线天堂| 亚洲一区二区三区不卡视频| 亚洲精华国产精华精| 身体一侧抽搐| 成人国语在线视频| 久久精品国产亚洲av香蕉五月| 日韩欧美国产在线观看| 两个人免费观看高清视频| 欧美日韩亚洲国产一区二区在线观看| 色噜噜av男人的天堂激情| 亚洲国产精品久久男人天堂| 久久99热这里只有精品18| 亚洲第一电影网av| 国产蜜桃级精品一区二区三区| 日本在线视频免费播放| 男人舔女人下体高潮全视频| 亚洲avbb在线观看| 亚洲国产看品久久| 一卡2卡三卡四卡精品乱码亚洲| 日本 av在线| 久久伊人香网站| 国产免费av片在线观看野外av| 亚洲国产精品久久男人天堂| 男女做爰动态图高潮gif福利片| 在线播放国产精品三级| 国产免费av片在线观看野外av| 国产人伦9x9x在线观看| 一进一出好大好爽视频| 国内久久婷婷六月综合欲色啪| 久久婷婷人人爽人人干人人爱| 精品午夜福利视频在线观看一区| 18禁黄网站禁片免费观看直播| 精品欧美一区二区三区在线| 国产在线观看jvid| 狂野欧美激情性xxxx| 成人三级黄色视频| 特大巨黑吊av在线直播| av在线播放免费不卡| 精品久久久久久成人av| 国产高清激情床上av| 日本在线视频免费播放| 精品国产美女av久久久久小说| 欧洲精品卡2卡3卡4卡5卡区| 美女大奶头视频| 国产亚洲欧美98| 欧美+亚洲+日韩+国产| 亚洲一卡2卡3卡4卡5卡精品中文| 999久久久精品免费观看国产| 高清毛片免费观看视频网站| 国产黄片美女视频| 99久久无色码亚洲精品果冻| 色老头精品视频在线观看| 亚洲一码二码三码区别大吗| 欧美精品啪啪一区二区三区| 丝袜美腿诱惑在线| 中文资源天堂在线| 免费看美女性在线毛片视频| 91九色精品人成在线观看| 视频区欧美日本亚洲| 91老司机精品| 国产成年人精品一区二区| 日本一本二区三区精品| 五月玫瑰六月丁香| 中文字幕久久专区| 亚洲av成人av| 免费观看精品视频网站| 免费高清视频大片| 中文在线观看免费www的网站 | 色综合欧美亚洲国产小说| 在线视频色国产色| www国产在线视频色| 搡老岳熟女国产| 两人在一起打扑克的视频| 精华霜和精华液先用哪个| 可以免费在线观看a视频的电影网站| 国产一区在线观看成人免费| 国产成人啪精品午夜网站| 少妇被粗大的猛进出69影院| 亚洲人成网站高清观看| 久久精品影院6| 天堂av国产一区二区熟女人妻 | 久久久精品国产亚洲av高清涩受| 999久久久国产精品视频| 成人av在线播放网站| 欧美一区二区精品小视频在线| 国产成人aa在线观看| 伊人久久大香线蕉亚洲五| 国产成人一区二区三区免费视频网站| 欧美+亚洲+日韩+国产| 午夜老司机福利片| 波多野结衣高清无吗| e午夜精品久久久久久久| 亚洲精品一区av在线观看| 日本免费一区二区三区高清不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美一区二区精品小视频在线| 一进一出抽搐动态| 亚洲专区中文字幕在线| 亚洲免费av在线视频| 国产精品香港三级国产av潘金莲| 日韩欧美国产在线观看| 长腿黑丝高跟| 天堂av国产一区二区熟女人妻 | 精品日产1卡2卡| 久久精品国产亚洲av香蕉五月| 国产成人av教育| 免费在线观看日本一区| 免费电影在线观看免费观看| 午夜久久久久精精品| 久久久久久久久久黄片| 人妻丰满熟妇av一区二区三区| 男女床上黄色一级片免费看| 黑人操中国人逼视频| 欧美成人性av电影在线观看| 午夜激情av网站| 99riav亚洲国产免费| 欧美一区二区精品小视频在线| 亚洲欧美激情综合另类| 美女午夜性视频免费| 天堂影院成人在线观看| 亚洲精品美女久久av网站| 久久久久免费精品人妻一区二区| 国产成人精品久久二区二区91| 女同久久另类99精品国产91| 真人一进一出gif抽搐免费| 此物有八面人人有两片| 婷婷丁香在线五月| 国产欧美日韩一区二区三| 欧美最黄视频在线播放免费| 亚洲性夜色夜夜综合| 亚洲午夜精品一区,二区,三区| 一本久久中文字幕| 亚洲 国产 在线| 免费看日本二区| 日韩精品免费视频一区二区三区| 91大片在线观看| 视频区欧美日本亚洲| 欧美精品啪啪一区二区三区| 十八禁人妻一区二区| 2021天堂中文幕一二区在线观| 欧美一级a爱片免费观看看 | 国产伦在线观看视频一区| 一本一本综合久久| 色噜噜av男人的天堂激情| 午夜日韩欧美国产| 午夜精品在线福利| 久久精品aⅴ一区二区三区四区| 亚洲国产日韩欧美精品在线观看 | 久久久久国内视频| 国产精品久久久av美女十八| 麻豆一二三区av精品| 日本一二三区视频观看| 亚洲国产看品久久| netflix在线观看网站| 国产欧美日韩一区二区精品| 国产精品久久久人人做人人爽| 搞女人的毛片| 99久久国产精品久久久| 亚洲精品色激情综合| 国语自产精品视频在线第100页| 久久久久久亚洲精品国产蜜桃av| 亚洲精品粉嫩美女一区| 亚洲人成网站在线播放欧美日韩|