• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Soil NOx Emission Prediction via Recurrent Neural Networks

    2023-12-12 15:49:46ZhaoanWangShaopingXiaoCherylReubenQiyuWangandJunWang
    Computers Materials&Continua 2023年10期

    Zhaoan Wang,Shaoping Xiao,?,Cheryl Reuben,Qiyu Wang and Jun Wang

    1Department of Mechanical Engineering,Iowa Technology Institute,University of Iowa,Iowa City,IA 52242,USA

    2Department of Chemical and Biochemical Engineering,Iowa Technology Institute,University of Iowa,Iowa City,IA 52242,USA

    ABSTRACT This paper presents designing sequence-to-sequence recurrent neural network (RNN) architectures for a novel study to predict soil NOx emissions,driven by the imperative of understanding and mitigating environmental impact.The study utilizes data collected by the Environmental Protection Agency(EPA)to develop two distinct RNN predictive models: one built upon the long-short term memory (LSTM) and the other utilizing the gated recurrent unit(GRU).These models are fed with a combination of historical and anticipated air temperature,air moisture,and NOx emissions as inputs to forecast future NOx emissions.Both LSTM and GRU models can capture the intricate pulse patterns inherent in soil NOx emissions.Notably,the GRU model emerges as the superior performer,surpassing the LSTM model in predictive accuracy while demonstrating efficiency by necessitating less training time.Intriguingly,the investigation into varying input features reveals that relying solely on past NOx emissions as input yields satisfactory performance,highlighting the dominant influence of this factor.The study also delves into the impact of altering input series lengths and training data sizes,yielding insights into optimal configurations for enhanced model performance.Importantly,the findings promise to advance our grasp of soil NOx emission dynamics,with implications for environmental management strategies.Looking ahead,the anticipated availability of additional measurements is poised to bolster machine-learning model efficacy.Furthermore,the future study will explore physical-based RNNs,a promising avenue for deeper insights into soil NOx emission prediction.

    KEYWORDS Soil NOx emission;long-short term memory;gated recurrent unit;sequence-to-sequence

    Nomenclature

    Symbol

    1 Introduction

    The primary greenhouse gases(GHG),including CO2,N2O,O3,and CH4,can directly contribute to warming the earth’s atmosphere.Additionally,several other gases,especially nitrogen oxide(NOx=NO+NO2),can indirectly affect atmospheric warming because NOx emission contributes to the formation of tropospheric ozone (O3),a greenhouse gas.It has been shown that the increase of tropospheric O3is the third-largest indirect radiative forcing of climate change[1].On the other hand,NOx is an essential form of N trace gas that can be released from soils[2],especially fertilized soils.“Smart”agriculture is expected to minimize NOx emission for GHG mitigation while maximizing crop productivity under the constraints of NOx budget and energy consumption.Therefore,it is crucial to predict soil NOx emissions.

    Several works have been done to model and estimate soil NOx emissions based on satellite observations and chemistry transport models(CTMs).Yienger et al.[3]developed a widely used algorithm to calculate global soil NOx emission in a temperature-and precipitation-dependent empirical model.Also,they considered synoptic-scale modeling of NOx “pulsing”caused by the wetting of dry soil and a biome-dependent scheme to estimate canopy recapture of NOx.Hudman et al.[4] presented a parameterization of soil NOx emissions and implemented this mechanistic model within a global chemical transport model(GEOS-Chem).In another work,Rasool et al.[5,6]developed a community multiscale air quality(CMAQ)model,introducing a mechanistic,process-oriented representation of soil emissions of N species.In addition,Wang et al.[7]improved soil NOx emission estimation using a new observation-based temperature response that led to better CTM simulation to match NOx observations.

    Machine learning (ML),including supervised learning and reinforcement learning (RL),has boosted data-driven research in many domains,including materials science [8] and robotics.Verma et al.[9] proposed a fabricated heat exchanger using corrugated and non-corrugated pipes and estimated the heat transfer performance.They also modeled an artificial neural network(ANN)for predicting heat coefficient,Nusselt number,and Reynolds number.

    Some data-driven models for estimating industrial NOx emissions have been reported.Xie et al.[10]studied low NOx emission control in power plants.They proposed a sequence-to-sequence dynamic prediction model to predict a future sequence of NOx emission from a selective catalytic reduction(SCR)system in the next time horizon.In another work,Yin et al.[11]developed a predictive model to predict the NOx emission concentration at the outlet of boilers under different operating conditions,including steady-state and transient-state conditions.Recently,Wang et al.[12] utilized datasets from the distributed control system of a coal-fired power plant and developed a hybrid model for accurate and reliable NOx concentration prediction.They employed complete empirical ensemble mode decomposition adaptive noise (CEEMDAN) to decompose the original historical data into a set of constitutive sequences.Then,a recurrent neural network(RNN)model was applied to predict each component separately before integrating the results for the final prediction.

    Since NOx emission data is time series data,employing RNNs [13] in the prediction models as a data-driven approach is common.However,a na?ve RNN suffers from issues of exploding and vanishing gradients.If the neural network’s weights are updated too quickly(i.e.,exploding),a slight change in inputs may lead to high output variation.In contrast,if the weights are updated too slowly(i.e.,vanishing),it may stop the network from learning anything new.An improved RNN,called long-short term memory (LSTM),was designed to resolve these issues [14] by learning long-term dependencies between the network’s input and output.In other words,an LSTM could remember both long-term and short-term patterns in the data.Therefore,the works mentioned above[10–12]in predicting industrial NOx emissions mostly utilized LSTMs for estimating industrial NOx emissions.On the other hand,Cho et al.[15]proposed a gated recurrent unit(GRU),maintaining the advantages of LSTM but with fewer gates,which could be trained faster.

    While the studies mentioned earlier have predominantly concentrated on industrial NOx emissions,it is important to note that soil NOx emissions exhibit distinct patterns compared to their industrial counterparts.These patterns are characterized by observable NOx emission pulses [2].The complexity of these patterns might present challenges for conventional RNNs to recognize effectively.This paper takes a pioneering step by introducing the concept of sequence-to-sequence RNN architectures,aiming to predict soil NOx emissions.This initiative is driven by the pivotal objective of understanding and mitigating the environmental impacts associated with such emissions.Remarkably,this study marks the first-ever attempt to leverage the potential of deep learning (DL)techniques for accurately predicting soil NOx emissions.

    In addition to employing LSTM,we have developed and examined a novel neural network architecture that incorporates GRU cells with attention mechanisms[16].It is worth noting that the proposed neural networks utilize an encoder-decoder model [10],where the encoder captures the information of all input elements into a fixed-length context vector.At the same time,the decoder learns contextual dependencies from the previous cells in the sequence.Therefore,this approach enhances the model’s understating of contextual information by allowing the decoder to assign weights to the context vector.

    This paper is organized as follows: Section 2 describes the studied dataset and pre-processing.Section 3 describes LSTM and GRU and presents RNN architectures with the attention mechanism.The results are discussed in Section 4 with the studies of various input features,input series lengths,and training data sizes,followed by the conclusions and future works.

    2 Date Set and Pre-Processing

    The data set we use in this study has been collected in Iowa by the Environmental Protection Agency(EPA).The EPA deploys around 360,000 sensors in the United States to monitor air quality,including criteria gases,particulates,meteorological,toxins,ozone precursors,and lead.Iowa has three monitoring locations: the city of Des Moines,the city of Davenport,and a forest located at 40°41’42.3”N,92°00’22.7”W.It shall be noted that an essential factor in NOx emission is the soil nitrogen content.However,the soil nitrogen content can be significantly varied because of using nitrogen fertilizer,which depends on the agricultural management and farmer’s expertise.Therefore,we choose the data from the forest to avoid interference from human factors.

    Each data sample consists of the following features: Latitude,Longitude,Date GMT,Time GMT,Sample Measurements,and Units of Measure.The measurements include air temperature(Fahrenheit),air moisture(percent relative humidity or RH)NOx emission,CO emission,O3emission,and SO2emission (parts per billion).While the dataset comprises numerous attributes,this study selectively narrows down the features to be utilized based on the available measurements.Notably,soil NOx emissions are prominently influenced by factors such as soil properties,soil temperature,and soil moisture [7].Unfortunately,the current dataset lacks these specific details.Given that air temperature and moisture measurements can be correlated with soil temperature and humidity,our study opts to employ these two variables in conjunction with NOx emissions as the primary features.

    The data has been collected every 60 min,i.e.,one hour,since 1980.We select the data from January 2020 to September 2022 in this study.However,some data samples are missing due to sensor malfunctions.We try to use averaging or data imputation to replace the missing data,but they smear the NOx emission pulses.Since the whole data set is large enough,we drop the missing data and only keep the data consecutive for long periods to generate data sequences.Consequently,we have a total of 24096 data samples.Furthermore,we use data from 2020 to 2021,January to June 2022,and July to September 2022 as the training,validation,and testing datasets,respectively.Fig.1 shows the testing set that has a total of 2116 data samples.It can be seen that there exist pulses that have been commonly observed in soil NOx emissions[2].

    Figure 1:Testing data from July to September 2022

    3 Methodology

    Recurrent Neural Networks are widely used in DL[16]to process sequential or time-series data.However,the na?ve RNN has difficulty in capturing long-term dependencies[17]because the gradients tend to either vanish or explode during model training.Two main RNN variants,LSTM and GRU,have been developed to address this issue.

    3.1 LSTM

    Long-short term memory was proposed initially by Hochreiter et al.[14]in 1997.Compared with the na?ve RNN model,the LSTM model introduces a cell state calculated from the previous cell state and the current forget and input gates.Generally,an LSTM cell takes the input vectorxtat the current timetand the hidden stateht-1and the cell statect-1calculated from the previous timet-1.It outputs the hidden state and the cell state,i.e.,htandct,for the next timet+1.Its basic structure is illustrated in Fig.2a.The operation formulas of an LSTM cell are presented below:

    whereftis the forget gate’s activation vector,anditandotare the activation vectors of input and output gates,respectively.Ctdenotes the cell input activation vector,σg(x)=1/(1+e-x)is the sigmoid function,andσh(x)=tanh(x)=(ex-e-x)/(ex+e-x)is the hyperbolic tangent function.In addition,W,U,andbare weight matrices and vector parameters that need to be learned during training.

    Figure 2:Basic structure of(a)a LSTM cell and(b)a GRU cell

    3.2 GRU

    The concept of GRU was proposed by Cho et al.[15] in 2014.Fig.2b illustrates the network architecture of a GRU cell.Similar to LSTM,GRU also controls the information flow by “gates”.However,a GRU cell has one less gate than an LSTM cell,and it decomposes a gating signal into two components:a reset gate and an update gate.Since a GRU cell has only one forget gate without the output gate,it has fewer parameters and is more straightforward to implement than LSTM.In addition,it is easy to converge with limited data.

    According to the principle of GRU,a typical mathematical model to process a data sequence can be presented below:

    whereztdenotes the update gate vector at time stept,rtis the reset gate vector,ytis the candidate activation vector.In addition,σgandσhdenote the sigmoid and hyperbolic tangent functions.WandRare weight matrices,andbz,br,andbcare bias vectors.Similar to the LSTM cell,the input to this GRU cell includesxtandht-1while the output is the hidden statehtthat will be passed to the next GRU cell.However,a GRU cell has no cell state,differing from an LSTM cell.

    3.3 Encoder-Decoder

    The RNN encoder-decoder is also used in this study.The encoder encodes the source time-series sequence to a fixed-length vector,and the decoder maps the vector back to the target time-series sequence [18].The role of an encoder in the process is to handle the input sequence and condense its information into a singular vector,commonly referred to as the“context vector”.Specifically,the encoder operates repeatedly through the input sequence(s),adjusting its hidden state at each stage based on the current input and the preceding hidden state.Once the entire sequence has been processed,the final hidden state of the RNN encoder is utilized as the context vector,which intends to encapsulate the input sequence’s information.

    The decoder takes the context vector generated by the encoder(s)and transforms it into the target sequence.The initial hidden state of the decoder is set to be the context vector from the encoder.The decoder then generates the output sequence in a step-by-step manner,in which each step takes the previous hidden state,i.e.,the previously generated output[15],as the input.

    3.4 Model Architecture and Training

    Initially,we considered three input features in the DL models,including past and future air temperature,past and future air moisture,and past NOx emissions,to predict future NOx emissions.In order to reduce the interference of the NOx pulse on the prediction accuracy of the model,we used four days of data as a training unit to forecast the coming NOx data in the next six hours.Therefore,the temperature and moisture sequences consist of 96 past timesteps and 6 future timesteps,and the input NOx emission sequence encompasses 96 past timesteps.The output sequence,i.e.,the forecasted future NOx emission sequence,has 6 timesteps.It shall be noted that the timestep is one hour in this study.

    The architecture of our model is depicted in Fig.3.The generated DL models consist of a single hidden layer with 32 neurons(or units)representing the memory cells in the LSTM or GRU structure.It shall be noted that we utilize grid search to find the optimal neural network.Some other neural networks with more hidden layers and neurons can achieve similar performance but longer training times.Since the lengths of temperature and moisture sequences differ from the length of the NOx emission sequence in the input,the models include two encoders and one decoder,as described in Section 3.3.We also implement an attention mechanism[19].The reason for using attention is that it allows the models to focus on different parts of the input for each step of the output sequence,thereby improving their ability to capture dependencies between inputs and outputs.We also investigate the performance of DL models that use past NOx emissions as the only input feature.In such an instance,the encoders and decoders are not necessary.

    Figure 3:The sequence-to-sequence-attension model architecture

    We utilize the Keras library in conjunction with the Adam optimizer to train neural networks using a learning rate of 0.002 and a batch size of 128.The training processes are conducted over 1000 epochs.In this study,we conduct the model training and testing using Python as the programming language,hosted on a machine equipped with an Intel Core i7-12700 K processor,NVIDIA GeForce RTX 3070 Ti graphics card,and 32 GB RAM.

    4 Results and Discussions

    In this section,we assess the performance of GRU and LSTM on the testing dataset and select the model with better performance as our major experimental model.Then,we investigate the performance of DL models using different input features and sequence lengths.We also study the impact of training dataset size on the DL model performance.The mean absolute error (MAE),the root-mean-square deviation(RMSE),and the coefficient of determination(R2)are used to evaluate the model performance as different look-back values.The smaller the MAE and RMSE values,the more accurate the forecast result is.On the other hand,R2=1 means the perfect fitting.

    It shall be noted that future temperature and moisture must be predicted for the testing data before evaluating model performances.Taking temperature prediction as an example,a simple LSTM model is employed to take the temperature within the past 96 h as the input and predict the temperature in the next 6 h.The predicted temperatures of the part of the testing data(from July 01,2022 to July 31,2022)are compared to the actual ones in Fig.4.We also use support vector machines for air temperature and moisture predictions,and the models perform similarly well.

    Figure 4:The prediction of temperatures as part of the testing dataset.The top panel shows two months of the results,while the bottom panel provides a zoom-in view of two weeks

    After predicting the future temperature and moisture,we train LSTM and GUR models to predict NOx emission.Fig.5 illustrates the prediction from the GRU model,compared to the actual output of the testing dataset.It can be seen that the GRU model can efficiently recognize the NOx emission patterns,especially predicting the NOx emission pulses.The LSTM model also demonstrates good performance,but the results are worse than the ones of the GRU models.After comparing the training time and the MAE,RMSE,and R2results,as shown in Table 1,we decide to use the GRU model for other studies in this paper.

    Table 1:Comparison of GRU and LSTM models

    The original model uses past and future air temperatures,past and future air moisture,and past NOx emissions as input features.The lengths of input air temperature and moisture sequences are 102 h,including the past 96 h(i.e.,four days)and the future 6 h.Correspondingly,the length of the input NOx emission sequence is 96 h from the past four days only.In addition,the original model forecasted NOx emission in the next 6 h.We also employ the same GRU model to predict NOx emission for the next 24 h.The MAE,RMSE,and R2are 0.0522,0.1053,and 0.90,respectively,similar to the results in Table 1.

    Figure 5:The prediction of NOx emission in the testing dataset using the GRU sequence-to-sequence attention model

    We extend the original model to two variants using different input features.The first model uses air temperature and moisture only,while the second model takes past NOx emission as the only input.Both models do not use encoders because the input features have the same sequence length.We also vary the input sequence length considering the past 3 days (i.e.,72 timesteps or hours) and the past 7 days (i.e.,168 timesteps or hours) to investigate model performances.The same testing dataset described above is utilized,and the comparisons are listed in Table 2.Here,we present the NOx emission predictions generated by the DL model using air temperature and moisture as the sole inputs,as depicted in Fig.6.The comparison involves the actual outputs of the testing data recorded between September 15 and 30,2022.While the emission pattern is largely recognizable,it is important to note that there are significant errors in predicting the magnitudes of NOx emission pulses.On the other hand,Table 2 also shows that the NOx emission history plays an essential role in NOx emission predictions.Even taking NOx emission history as the only input,the model performances are acceptable,compared to the original model,and much better than the DL models that use air temperature and moisture as the inputs.

    Table 2:Comparison of GRU models with different input features

    Figure 6:The prediction of NOx emission in the testing dataset using air temperature and moisture as the only inputs

    Initially,we use the data of 2020 and 2021,i.e.,24 months,as the training set.In this study,we also investigate the size effect of the training set on model performance.Two different data sizes are utilized for the training sets: 12 months (the year 2021 only) and 6 months (June to December 2021).The validation and testing sets remain the same,as described in Section 3.After training,the DL models are employed to predict NOx emission in the next 6 h in the testing set,and the results(MAE,RMSE,and R2) are calculated in Table 3.The R2score of the DL model,trained using 12 months of data,notably reaches a high value of 0.8269.The predictive capability of this DL model is visually evident in Fig.7,where it demonstrates accurate forecasting of NOx emission pulses,akin to the original model showcased in Fig.5.As a result,we can confidently infer that employing a 12-month dataset for training yields satisfactory outcomes.

    Table 3:Various sizes of the training set

    Figure 7:The prediction of NOx emission in the testing dataset using 12 months of data for training

    5 Conclusion and Future Works

    In this paper,we have introduced sequence-to-sequence attention neural network architectures tailored for soil NOx emission prediction.Through a thorough comparison between the GRU and LSTM models,we have demonstrated that the GRU model consistently outperforms the LSTM counterpart in terms of forecasting accuracy.Moreover,our investigations into different input features and various dataset sizes have yielded valuable insights.Notably,we have found that the model can achieve commendable accuracy when trained on a 12-month data subset.A significant observation from our research is the dominant role of NOx emission history in predicting future emissions.Our DL model,which exclusively relies on past NOx emission records as input,has produced credible predictions,even in the absence of air temperature and moisture data.This underscores the pivotal importance of historical emission trends in shaping the accuracy of our predictions.

    In our ongoing research,we will endeavor to expand our dataset to encompass fertilized soil data,recognizing the pivotal role of nitrogen content in influencing NOx emissions.While our present study has suggested that air temperature and moisture exhibit less significance as input features compared to NOx emission history,we remain committed to delving deeper into the influence of soil temperature and moisture.This exploration will be undertaken as new data sources become available,potentially enriching our understanding of these factors.

    Our future efforts will also involve incorporating data related to irrigation and precipitation.We believe that this supplementary information can significantly enhance our model’s predictive capabilities,particularly in capturing NOx emission pulses with heightened precision and accuracy.As we expand the number of available features,we will adopt feature selection strategies such as leveraging Pearson correlation coefficients to ascertain the degree of inter-feature correlation [20].Moreover,we are excited about the prospect of crafting a hybrid model that merges the strengths of chemical transport models with data-driven approaches like physics-informed neural networks.This innovative fusion offers an alternative avenue to improve our predictive accuracy.By integrating these enhancements and novel techniques,we anticipate the development of a more refined predictive model for soil NOx emissions,with a heightened focus on capturing intricated NOx pulse patterns.

    Acknowledgement:Not applicable.

    Funding Statement:The authors received support from the University of Iowa Jumpstarting Tomorrow Community Feasibility Grants and OVPR Interdisciplinary Scholars Program for this study.Z.Wang and S.Xiao received support from the U.S.Department of Education(E.D.#P116S210005).Q.Wang and J.Wang acknowledge the support from NASA Atmospheric Composition Modeling and Analysis Program(ACMAP,Grant#:80NSSC19K0950).

    Author Contributions:Study conception and design: Z.Wang,S.Xiao,Q.Wang,J.Wang;data collection:Z.Wang;analysis and interpretation of results:Z.Wang,S.Xiao,C.Reuben,J.Wang;draft manuscript preparation:Z.Wang,S.Xiao,J.Wang.All authors reviewed the results and approved the final version of the manuscript.

    Availability of Data and Materials:The dataset used in this study can be downloaded from the following link:https://aqs.epa.gov/aqsweb/airdata/download_files.html.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    精品卡一卡二卡四卡免费| 国产精品蜜桃在线观看| 欧美精品高潮呻吟av久久| 人人妻人人爽人人添夜夜欢视频| 亚洲av国产av综合av卡| 黑人猛操日本美女一级片| 美女cb高潮喷水在线观看| 欧美日韩亚洲高清精品| 欧美日本中文国产一区发布| 国产精品无大码| 国产男人的电影天堂91| 亚洲欧美中文字幕日韩二区| 欧美97在线视频| 99视频精品全部免费 在线| 日本色播在线视频| 亚洲av电影在线观看一区二区三区| 2021少妇久久久久久久久久久| 精品99又大又爽又粗少妇毛片| 蜜桃在线观看..| 成人毛片60女人毛片免费| 亚洲怡红院男人天堂| 久久久久久久精品精品| 亚洲国产欧美日韩在线播放| 不卡视频在线观看欧美| 看非洲黑人一级黄片| 国产精品一区二区在线不卡| 一边摸一边做爽爽视频免费| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 中文字幕制服av| 亚洲国产精品999| 91午夜精品亚洲一区二区三区| 久久人人爽人人爽人人片va| 少妇 在线观看| 日韩精品免费视频一区二区三区 | 日本与韩国留学比较| xxx大片免费视频| 亚洲国产最新在线播放| 精品久久久噜噜| 免费高清在线观看日韩| 99久久中文字幕三级久久日本| av卡一久久| 中文字幕亚洲精品专区| 成人免费观看视频高清| 十分钟在线观看高清视频www| 黄色毛片三级朝国网站| 97在线人人人人妻| 制服丝袜香蕉在线| 大码成人一级视频| 国产黄色视频一区二区在线观看| 日韩成人伦理影院| av福利片在线| 美女福利国产在线| 亚洲精品国产av蜜桃| 国产在线视频一区二区| 日韩不卡一区二区三区视频在线| 春色校园在线视频观看| 亚洲精品久久成人aⅴ小说 | 亚洲国产精品成人久久小说| 国产成人午夜福利电影在线观看| 亚洲色图 男人天堂 中文字幕 | 一级毛片我不卡| av线在线观看网站| 成人毛片60女人毛片免费| 国产国拍精品亚洲av在线观看| 欧美 亚洲 国产 日韩一| 老女人水多毛片| 黑丝袜美女国产一区| 草草在线视频免费看| 久久99热这里只频精品6学生| 另类精品久久| 黄色一级大片看看| 亚洲一级一片aⅴ在线观看| 免费观看的影片在线观看| xxx大片免费视频| 欧美 亚洲 国产 日韩一| 亚洲第一av免费看| 两个人的视频大全免费| 青青草视频在线视频观看| 另类精品久久| 国产成人精品在线电影| 日日撸夜夜添| 九色亚洲精品在线播放| 亚洲精品美女久久av网站| 看非洲黑人一级黄片| 午夜福利视频精品| 国产视频内射| 中文字幕亚洲精品专区| 久久99精品国语久久久| 日韩一本色道免费dvd| 18禁裸乳无遮挡动漫免费视频| 制服人妻中文乱码| 中国国产av一级| 一本大道久久a久久精品| 一本大道久久a久久精品| 亚洲av免费高清在线观看| 日本爱情动作片www.在线观看| 亚洲国产最新在线播放| 国产精品久久久久久精品电影小说| 五月天丁香电影| 亚洲精品成人av观看孕妇| 热re99久久精品国产66热6| 亚洲国产成人一精品久久久| 新久久久久国产一级毛片| 欧美97在线视频| 伊人久久精品亚洲午夜| 国产男女超爽视频在线观看| 有码 亚洲区| 亚洲五月色婷婷综合| 亚洲精华国产精华液的使用体验| 黄片无遮挡物在线观看| 最近手机中文字幕大全| 亚洲人成网站在线观看播放| 美女主播在线视频| 国模一区二区三区四区视频| 久久精品熟女亚洲av麻豆精品| 边亲边吃奶的免费视频| xxxhd国产人妻xxx| 少妇精品久久久久久久| 久久免费观看电影| 高清不卡的av网站| tube8黄色片| 成人免费观看视频高清| 国国产精品蜜臀av免费| 国产精品国产三级国产专区5o| 伦精品一区二区三区| 国产国语露脸激情在线看| 王馨瑶露胸无遮挡在线观看| 人妻 亚洲 视频| 两个人的视频大全免费| 成人18禁高潮啪啪吃奶动态图 | 久久鲁丝午夜福利片| 观看av在线不卡| 99久久综合免费| 国产色爽女视频免费观看| 成人毛片60女人毛片免费| 国产高清国产精品国产三级| 婷婷成人精品国产| 熟女电影av网| 中国国产av一级| 午夜精品国产一区二区电影| 熟女电影av网| 国产精品女同一区二区软件| 女的被弄到高潮叫床怎么办| 男女免费视频国产| 中文字幕最新亚洲高清| 飞空精品影院首页| 成人毛片a级毛片在线播放| 中文字幕最新亚洲高清| 亚洲不卡免费看| 中文字幕人妻丝袜制服| 久久久精品94久久精品| 99热这里只有精品一区| 22中文网久久字幕| 国产成人av激情在线播放 | 欧美日韩视频精品一区| 亚洲欧美清纯卡通| 国产伦理片在线播放av一区| 一区二区av电影网| 人妻系列 视频| 免费大片黄手机在线观看| 亚洲av.av天堂| 久久久久精品性色| 亚洲中文av在线| 18禁裸乳无遮挡动漫免费视频| 97精品久久久久久久久久精品| 99re6热这里在线精品视频| 免费播放大片免费观看视频在线观看| 久久久久国产精品人妻一区二区| 大香蕉久久网| 激情五月婷婷亚洲| 亚洲图色成人| 日本与韩国留学比较| 好男人视频免费观看在线| 在线观看免费视频网站a站| 久久99蜜桃精品久久| 国产高清有码在线观看视频| 99久久精品一区二区三区| 制服诱惑二区| 国产 精品1| 国产在线视频一区二区| 一边亲一边摸免费视频| 熟妇人妻不卡中文字幕| 中文天堂在线官网| 一区二区三区免费毛片| 色5月婷婷丁香| 国产一区二区在线观看av| 国产老妇伦熟女老妇高清| 尾随美女入室| 中国三级夫妇交换| 日本黄色片子视频| 国产成人精品在线电影| 人人澡人人妻人| 99久久人妻综合| av网站免费在线观看视频| av国产精品久久久久影院| 国产一区有黄有色的免费视频| 亚洲激情五月婷婷啪啪| 亚洲精品国产av成人精品| 亚洲无线观看免费| xxx大片免费视频| 成人二区视频| 大陆偷拍与自拍| 日韩强制内射视频| 99久久人妻综合| 亚洲一区二区三区欧美精品| 人妻人人澡人人爽人人| 黄色配什么色好看| 丰满乱子伦码专区| 在线观看人妻少妇| 国产一区二区三区av在线| 亚洲欧美日韩卡通动漫| 国产精品国产av在线观看| 国产精品熟女久久久久浪| 国产在线一区二区三区精| 欧美精品一区二区大全| 热re99久久国产66热| 午夜免费观看性视频| 超色免费av| 最后的刺客免费高清国语| 日日摸夜夜添夜夜添av毛片| 大片电影免费在线观看免费| 欧美 日韩 精品 国产| 国产免费福利视频在线观看| 国产精品久久久久久av不卡| 少妇被粗大的猛进出69影院 | 又粗又硬又长又爽又黄的视频| 晚上一个人看的免费电影| 亚洲欧美精品自产自拍| 卡戴珊不雅视频在线播放| 亚洲三级黄色毛片| 久久久久久久久大av| 国产精品国产三级国产专区5o| 夜夜看夜夜爽夜夜摸| 人人澡人人妻人| 黄色欧美视频在线观看| 国产成人免费观看mmmm| 91精品国产九色| 欧美xxⅹ黑人| 免费观看无遮挡的男女| 欧美激情国产日韩精品一区| 丰满乱子伦码专区| 久久国产精品男人的天堂亚洲 | 久久国产亚洲av麻豆专区| 亚洲三级黄色毛片| 久久久久久伊人网av| 欧美丝袜亚洲另类| 日韩一本色道免费dvd| av国产久精品久网站免费入址| 免费看不卡的av| 亚洲综合色惰| 欧美 日韩 精品 国产| 22中文网久久字幕| 五月天丁香电影| 成人免费观看视频高清| 国产黄片视频在线免费观看| 日韩成人伦理影院| 精品久久久久久久久av| 欧美一级a爱片免费观看看| 又大又黄又爽视频免费| 国产乱来视频区| 久久久国产精品麻豆| 男女国产视频网站| 日韩视频在线欧美| 日本wwww免费看| 韩国高清视频一区二区三区| 久久免费观看电影| 亚洲四区av| 免费大片黄手机在线观看| 男女边吃奶边做爰视频| 午夜影院在线不卡| 成人国产av品久久久| 只有这里有精品99| 日韩 亚洲 欧美在线| 亚洲成色77777| 成人18禁高潮啪啪吃奶动态图 | 久久久久久久久大av| 国产精品久久久久久久久免| 在线观看免费日韩欧美大片 | 亚洲精品日韩av片在线观看| 国产乱来视频区| 成人毛片60女人毛片免费| 美女内射精品一级片tv| 日韩熟女老妇一区二区性免费视频| 成人漫画全彩无遮挡| 一级爰片在线观看| 3wmmmm亚洲av在线观看| 亚洲精品456在线播放app| 天天躁夜夜躁狠狠久久av| 丰满少妇做爰视频| 色网站视频免费| av在线播放精品| 91精品一卡2卡3卡4卡| 欧美精品国产亚洲| 国产成人精品一,二区| 亚洲美女视频黄频| 久久久久久久大尺度免费视频| 亚洲av中文av极速乱| 久久国内精品自在自线图片| 99国产综合亚洲精品| 91在线精品国自产拍蜜月| 国产精品国产av在线观看| 午夜激情久久久久久久| 欧美97在线视频| 女人精品久久久久毛片| 97在线人人人人妻| 久久久久久伊人网av| 18禁观看日本| 欧美人与性动交α欧美精品济南到 | 欧美精品人与动牲交sv欧美| 日韩亚洲欧美综合| 肉色欧美久久久久久久蜜桃| 日韩免费高清中文字幕av| 岛国毛片在线播放| 久久 成人 亚洲| 国产成人一区二区在线| 国产男女内射视频| 国产日韩欧美在线精品| 十分钟在线观看高清视频www| 免费黄网站久久成人精品| 欧美人与性动交α欧美精品济南到 | 亚洲av欧美aⅴ国产| 一边亲一边摸免费视频| 91精品一卡2卡3卡4卡| av视频免费观看在线观看| 午夜福利视频在线观看免费| 亚洲精品视频女| 美女xxoo啪啪120秒动态图| 十八禁高潮呻吟视频| 亚洲精品久久久久久婷婷小说| 免费大片18禁| 蜜桃国产av成人99| 少妇高潮的动态图| 亚洲美女视频黄频| 国产精品99久久99久久久不卡 | 蜜桃在线观看..| 国产一区二区在线观看av| 一级黄片播放器| 成人免费观看视频高清| 2018国产大陆天天弄谢| 午夜福利视频精品| 欧美一级a爱片免费观看看| 男人操女人黄网站| 综合色丁香网| 国产色爽女视频免费观看| 久久久亚洲精品成人影院| 久久青草综合色| 亚洲精品乱码久久久v下载方式| 91久久精品电影网| 制服人妻中文乱码| 91成人精品电影| 亚洲一区二区三区欧美精品| 国精品久久久久久国模美| 亚洲精品一区蜜桃| 国产有黄有色有爽视频| 日本猛色少妇xxxxx猛交久久| 婷婷成人精品国产| 五月开心婷婷网| 亚洲精品色激情综合| 少妇 在线观看| .国产精品久久| 天天操日日干夜夜撸| 高清av免费在线| 成人二区视频| 满18在线观看网站| 黑人欧美特级aaaaaa片| 18禁动态无遮挡网站| 制服丝袜香蕉在线| 日韩成人av中文字幕在线观看| 久久精品国产鲁丝片午夜精品| 日韩av在线免费看完整版不卡| 在线观看美女被高潮喷水网站| 在线观看人妻少妇| 最新的欧美精品一区二区| 午夜91福利影院| 国产又色又爽无遮挡免| 日本午夜av视频| 一区二区三区乱码不卡18| 欧美变态另类bdsm刘玥| 又大又黄又爽视频免费| 国产老妇伦熟女老妇高清| 国产午夜精品一二区理论片| 少妇被粗大猛烈的视频| 国产精品嫩草影院av在线观看| a级片在线免费高清观看视频| 一区在线观看完整版| 日本av手机在线免费观看| 免费黄网站久久成人精品| 亚洲精品aⅴ在线观看| 亚洲精品久久午夜乱码| 国产精品麻豆人妻色哟哟久久| 哪个播放器可以免费观看大片| 久久国内精品自在自线图片| 亚洲欧美色中文字幕在线| 亚洲精品亚洲一区二区| 啦啦啦中文免费视频观看日本| tube8黄色片| 成人手机av| av不卡在线播放| 欧美日本中文国产一区发布| 成人国产av品久久久| 亚洲美女视频黄频| 日韩欧美精品免费久久| 亚洲国产精品999| 国产男人的电影天堂91| 亚洲av不卡在线观看| 亚洲激情五月婷婷啪啪| 美女内射精品一级片tv| 亚洲精品一二三| 观看av在线不卡| 老司机影院成人| 国产精品不卡视频一区二区| 国产欧美另类精品又又久久亚洲欧美| 狠狠精品人妻久久久久久综合| 人体艺术视频欧美日本| av天堂久久9| 欧美 日韩 精品 国产| 日韩av不卡免费在线播放| 制服人妻中文乱码| 美女中出高潮动态图| 最新中文字幕久久久久| 三级国产精品片| 日本-黄色视频高清免费观看| 亚洲国产最新在线播放| 国产在线视频一区二区| 中文字幕最新亚洲高清| 考比视频在线观看| 亚洲伊人久久精品综合| 久久久久网色| 黑丝袜美女国产一区| 男男h啪啪无遮挡| 不卡视频在线观看欧美| 精品久久久久久久久av| 精品人妻一区二区三区麻豆| 在线观看免费日韩欧美大片 | 九九在线视频观看精品| 美女内射精品一级片tv| 97超碰精品成人国产| 久久久久精品久久久久真实原创| 欧美精品亚洲一区二区| 国产男女超爽视频在线观看| av一本久久久久| 夜夜爽夜夜爽视频| 美女主播在线视频| 久久99热6这里只有精品| 91久久精品电影网| 最后的刺客免费高清国语| 久久国产精品大桥未久av| 成人漫画全彩无遮挡| 国产成人精品一,二区| 一区二区av电影网| 国产精品国产三级国产专区5o| 国产免费福利视频在线观看| 精品国产国语对白av| 亚洲人成77777在线视频| 观看美女的网站| 亚洲精品久久成人aⅴ小说 | 一级黄片播放器| 日本-黄色视频高清免费观看| 亚洲婷婷狠狠爱综合网| 在线观看免费视频网站a站| 大码成人一级视频| 黄色一级大片看看| 成人影院久久| 日韩精品免费视频一区二区三区 | 亚洲精品aⅴ在线观看| 亚洲成人手机| 亚洲国产精品999| 男女边吃奶边做爰视频| 少妇被粗大的猛进出69影院 | 26uuu在线亚洲综合色| 性色av一级| av播播在线观看一区| 国产精品国产三级国产专区5o| 日韩一本色道免费dvd| 一级黄片播放器| 亚洲精品自拍成人| 女性被躁到高潮视频| 国产熟女欧美一区二区| 王馨瑶露胸无遮挡在线观看| 91精品三级在线观看| 成人影院久久| 夜夜爽夜夜爽视频| 我的女老师完整版在线观看| 丁香六月天网| av免费在线看不卡| av在线app专区| 亚洲怡红院男人天堂| 丝袜在线中文字幕| 亚洲精品,欧美精品| 午夜激情福利司机影院| 在线看a的网站| 五月天丁香电影| 亚洲av欧美aⅴ国产| 亚洲五月色婷婷综合| 高清黄色对白视频在线免费看| 亚洲综合精品二区| 国产在线免费精品| 久久久久久久精品精品| 精品人妻熟女毛片av久久网站| av在线播放精品| 国产免费现黄频在线看| 久久97久久精品| 老司机影院毛片| 欧美 亚洲 国产 日韩一| 日本免费在线观看一区| 99九九在线精品视频| 亚洲成色77777| 久久99蜜桃精品久久| 国产乱来视频区| 2022亚洲国产成人精品| 韩国高清视频一区二区三区| 黄片无遮挡物在线观看| 欧美 日韩 精品 国产| av免费观看日本| 18禁动态无遮挡网站| 国产一区二区在线观看日韩| 久久久久久人妻| 制服诱惑二区| 如何舔出高潮| 日本色播在线视频| 久久人人爽人人片av| 亚洲av中文av极速乱| 亚洲五月色婷婷综合| 午夜日本视频在线| 亚洲精品成人av观看孕妇| 免费人妻精品一区二区三区视频| 亚洲精品第二区| 日本av免费视频播放| 欧美 日韩 精品 国产| 成人国产麻豆网| a级毛色黄片| 汤姆久久久久久久影院中文字幕| 欧美精品亚洲一区二区| 这个男人来自地球电影免费观看 | 高清毛片免费看| 搡女人真爽免费视频火全软件| 亚洲精品一区蜜桃| 亚洲av成人精品一二三区| 亚洲av不卡在线观看| 久久久久精品久久久久真实原创| 中文字幕亚洲精品专区| 国产成人91sexporn| 18禁动态无遮挡网站| 午夜av观看不卡| 超碰97精品在线观看| 亚洲精品视频女| 狂野欧美白嫩少妇大欣赏| 这个男人来自地球电影免费观看 | 国产精品人妻久久久久久| 日韩强制内射视频| 人人妻人人爽人人添夜夜欢视频| 国产高清有码在线观看视频| 人人妻人人澡人人爽人人夜夜| 婷婷色综合www| 日韩人妻高清精品专区| 久久精品国产亚洲网站| 男人操女人黄网站| 久久精品国产鲁丝片午夜精品| 九九久久精品国产亚洲av麻豆| av在线老鸭窝| 啦啦啦在线观看免费高清www| 国产午夜精品一二区理论片| 国产日韩一区二区三区精品不卡 | 亚洲美女视频黄频| 丝袜喷水一区| 国产男人的电影天堂91| 午夜免费男女啪啪视频观看| 成人18禁高潮啪啪吃奶动态图 | 亚洲国产精品专区欧美| 亚洲第一av免费看| 激情五月婷婷亚洲| 十八禁网站网址无遮挡| 国产免费一区二区三区四区乱码| 国产免费福利视频在线观看| 曰老女人黄片| 国产精品无大码| 久久狼人影院| 少妇猛男粗大的猛烈进出视频| 亚洲av中文av极速乱| 久久久国产欧美日韩av| 久久99热这里只频精品6学生| 国产免费一级a男人的天堂| 亚洲美女搞黄在线观看| 久久午夜综合久久蜜桃| 日本黄大片高清| 亚洲人成网站在线播| 免费久久久久久久精品成人欧美视频 | 久久狼人影院| 精品少妇内射三级| 日本与韩国留学比较| 欧美97在线视频| 热re99久久国产66热| 国产黄频视频在线观看| 日韩电影二区| 丝袜美足系列| 视频在线观看一区二区三区| 在线观看人妻少妇| 国精品久久久久久国模美| 亚洲av中文av极速乱| 亚洲欧美色中文字幕在线| 少妇猛男粗大的猛烈进出视频| 国产极品天堂在线| 免费黄频网站在线观看国产| 黄色怎么调成土黄色| 日韩av不卡免费在线播放| 午夜福利视频在线观看免费| 日日爽夜夜爽网站| 蜜臀久久99精品久久宅男| 国产成人精品一,二区| 国产成人a∨麻豆精品| 日产精品乱码卡一卡2卡三| 夜夜爽夜夜爽视频| 王馨瑶露胸无遮挡在线观看| 国产 一区精品| 国产午夜精品一二区理论片|