• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geometric Inspection of Film-cooling Holes Via Light-field Imaging*

    2023-11-30 01:54:00ShengmingXuShengxianShiFeiZengMingyuGanYangLi
    風(fēng)機(jī)技術(shù) 2023年5期

    Sheng-ming Xu Sheng-xian Shi Fei Zeng Ming-yu Gan Yang Li

    (1.Shanghai Jiao Tong University;2.AECC Hunan Aviation Powerplant Research Institute)

    Abstract:In a high thrust-weight-ratio aero-engine,turbine blades are exposed to extremely high temperature and pressure which sets higher demands in the blade cooling technology.To boost film-cooling effectiveness,an accurate,efficient,and all-sided inspection of film cooling holes is urgently requested to ensure the quality of turbine blades.The tiny size of film-cooling holes adds to extreme difficulties in the inspection process both by contact and non-contact measurement.This paper proposed a non-contact measuring technique to cope with the inspection of turbine blades.A specially designed light-field camera with a small field of view and proper depth of field is applied to resolve a 3D geometry of film cooling holes.The technique uses one light field camera to capture images of the blade surface.3D lightfield reconstruction algoritm is applied and point cloud of the blade is generated.Due to the compactness of the non-contact single light-field imaging system,information inside the holes becomes attainable.By precisely controlling the relative pose of the camera to the blade surface,the device can obtain hole diamter and outlet angle with an accuracy of±0.03mmand±1°17’respectively.The average time consumed forreconstructing one film cooling hole is a bout5 seconds.

    Keywords:Film-cooling Hole Inspection;Light-field Imaging;3D Reconstruction

    1 Introduction

    With the rising demand for a longer lifespan and higher performance of aero-engines,more sophisticated film-cooling holes(FCHs) are being employed in hot end components such as combustor and turbine to ensure the safe running and the long lifetime of the engine.Cooling techniques for highpressure turbine blade is a combination of internal cooling and film cooling [1].Various advanced cooling techniques have made it possible to expose turbine blades to a higher gas temperature.Many studies have found that the design of FCHs,especially by using shaped holes,will help boost cooling efficiency significantly [2-5].The widely used FCHs nowadays are round and fan shaped ones subject to structural strength and limitations in the machining process.Non-traditional machining process,namely laser drilling [6],electrodischarge machining(EDM),and electrochemical machining(ECM)[7-8],are facing challenges in guaranteeing consistency and reliability of FCHs.The main procedures of the commonly used EDM are drilling,coating,and expanding.These operations will have an impact on the stability of machining quality.Comparatively,laser drilling,particularly femtosecond laser,can improve the quality of FCHs effectively but is susceptible to machining environment and laser parameter.Moreover,the polarization of light tends to deform the shaped holes [9].Other studies [10-11] have suggested that machining errors of FCHs will lead to local blockage during operation and thus cause changes in the geometric parameters (cross-sectional area,equivalent diameter,outlet angle)upon which cooling efficiency is dependent.

    A highly efficient and high-precision inspection technique for massive FCHs on hot end components in an aeroengine is urgently demanded to ensure machining quality and to prolong lifespan of the components.There are a few proven techniques that address inspection and at least meet the industrial requirement.

    These techniques include a coordinate measuring machine (CMM) that applies a probe in detecting the profile of a blade.The probe is moved according to a planned path along the blade surface.The size of the spheric probe is taken into consideration by an algorithm to resolve 3D coordinates of the sampled points.CMM can barely be employed in a measurement task of FCHs as the diameter of probes with even the smallest size is still larger than that of the hole exit section.Some researchers have investigated the usage of micro-probes whose diameter is around 50μm.They use fiber deflection probes to reconstruct the inner morphology and depth of FCHs [11-12].Though being highly accurate,the point by point scanning approach falls behind in terms of efficiency.

    Measurement based on 2D imaging is a non-contact one that is aimed at improving accuracy and efficiency.Imaging devices and a turbine blade are mounted on a high-precision translational and rotational platform for the acquisition of information.Image recognition algorithms are then applied to obtain hole diameter and shape.Though being convenient and fast in its implementation,this technique fails to detect depth information and thus is insufficient in obtaining comprehensive hole parameters.

    The focus of FCHs inspection is the measurement of diameter and outlet angle of round FCHs whereas few methods have been dedicated for measuring section area,equivalent diameter,outlet angle of shaped holes.This problem belongs in nature to 3D geometric measurement.Laser beam scanning [13-14] and acoustic emission touch testing [14-16] are proposed for measuring 3D information of micro-holes,yet they are facing certain limitaions and challenges when it comes to productization.Laser beams tend to reflect several times on the inner surface of micro-holes,resulting in difficulties in image capture.Acoustic ways are less efficient than a production line requires.Methodology that addresses fast and robust FCHs inspection should be the research focus of the coming stage.This paper is based on previous researches of 3D reconstruction via light-field imaging[17-18]and it describes the exploration of fast light-field imaging technique in the inspection of FCHs.

    2 Principle of Light-field Imaging

    2.1 Concept

    It is possible to describe light propagation by assigning a plenoptic function for each light ray.An arbitrary point on a light ray can be represented by a 5-dimensional plenoptic function,i.e.light-field function,L(x,y,z,θ,φ)[19-20].(x,y,z)are spatial coordinates and(θ,φ)are azimuth and elevation angles as shown in Fig.1.In the case of measuring FCHs,light is considered to propagate in a uniform media without any blockage.The 5D representation can be thus simplified to a 4D one asL(u,v,s,t).As indicated by Fig.1(b),an object can be reconstructed by back-propagating a completely recorded 4D light-field.

    Fig.1 Two representations of light-field

    Unfortunately,to obtain clear images,the traditional 2D imaging technique uses image sensors to gather focused light rays that propagate from an object,go through the camera lens system,and reach some pixels on the sensor plane.This kind of imaging process records only intensity and spatial information of incident rays while missing the angular information of light rays.As suggested by Fig.2,the principle of light-field imaging is different from the traditional 2D imaging.A micro-lens array (MLA) is mounted in front of the image sensor in a light-field camera to split light rays.The split rays are then recorded by the image sensor as angular information.This kind of camera architecture allows 4D plenoptic functions to be recorded and enables 3D object reconstruction.

    Fig.2 A comparision between(a)

    The whole imaging process demonstrated in Fig.2(b)can be described as light rays from an object,a representation of a FCH,in this case,going through the camera main lens system and reaching the MLA plane.Each micro-lens will split rays with different orientations and project them onto different pixels on the image sensor,meaning there is a connection between one object point and a couple of pixels even if the camera is ideally focused on the object.The images recorded by a light-field camera are called raw light-field images here.According to the light-field imaging principle,each pixel beneath a micro-lens corresponds to a unique incident angle.The number of pixels one micro-lens covers is thus a measure of angular resolution of a recorded light-field[21].By rendering a raw light-field image,sub-aperture image array can be obtained which represents images resulted from different viewing angles.In this way,a light-field camera can be treated as a virtual array of small cameras.The 3D reconstructing algorithm is based on converting images with parallax into a point cloud of the recorded objects.

    Fig.3 displays the flow chart of the FCHs inspection method based on light-field imaging.The centers of each micro-lens must be measured before any further operations can be performed.This step is called the MLA calibration.There are two feasible ways of MLA calibration.One way is to take an image of a whiteboard with diffuse reflection.The other way which is adopted in this paper is to adjust the camera aperture to its minimum and record the image of such a whiteboard.By locating micro-lens centers on the image,coordinates of each micro-lens are calculated.After MLA calibration,perspective shift is performed to extract sub-aperture images.A camera metric calibration is implemented before the 3D reconstruction takes place.These two procedures produce a point cloud of the measured area.Finally,feature extraction is carried out for extracting FCH parameters.

    Fig.3 Flow chart of the methodology

    2.2 Reconstruction Principle

    2.2.1 Extracting Sub-aperture Images

    After obtaining centers of each micro-lens,an area of Nby-N pixels is identified beneath each micro-lens.By taking out a specific pixel with the same local coordinates from each micro-lens and rearranging them,a sub-aperture image of a certain viewing angle is generated.From the perspective of light-field imaging,the intersection of a light ray with the camera main lens is regarded as(u,v),then the intersection of the same ray with the MLA plane is (s,t).When performing the just-stated operation,we are equivalently keeping (u,v)fixed and counting every(s,t)value.

    As indicated by Fig.4,perspective A means viewing the object from the uppermost part of the main lens aperture.Light rays that pass perspective A will propagate to the same local pixels beneath the micro-lenses.The sub-aperture image A is obtained by aligning those pixels in a way that they are distributed on the MLA plane.The steps hold the same for perspective B to E.The total number of possible perspectives is equal to the number of pixels under a micro-lens,which is,in this case,represented as N-by-N.In practice,micro-lenses are circular,leading to a vignetting phenomenon that reduces the total number of usable perspectives.In conclusion,by applying rendering algorithms,multiple sub-aperture images can be obtained from one raw light-field image.It is worth noting that,there exists parallax between every two different sub-aperture images which will be taken advantage of in the later 3D reconstruction process.

    2.2.2 3D reconstruction based on parallax

    Epipolar constraint is applicable in the sub-aperture images extracted from a raw light-field image.By taking one certain row (or column) of pixels from sub-aperture images of the same row (or column) and stacking these rows of pixels,an epipolar plane image (EPI) is formed.Fig.5(a) shows one certain row (or column) of pixels and the corresponding EPI.In the EPI,slope values imply information about the depth of each sampled point.To give an intuitive explanation between EPI slopes and object depths,Fig.5(b)uses multiple traditional cameras aiming at the targeted object to signify multiple sub-aperture images.The images from each camera are given below.In the example EPIs,the red circle holds a positive slope value while the blue one has a negative slope.This can be interpreted as: the red circle is within the plane of focus(PoF)while the blue one is outside the PoF.The yellow circle is set right at the PoF that leads to a zero slope.Therefore,parallax can be quantified by calculating slopes on an EPI.

    Fig.5 (a)An example EPI;(b)relation between EPI slope and object depth metric calibration

    2.2.3 Metric Calibration

    The camera metric calibration converts the magnitude of parallax to real physical depth.The way light propagates inside the camera system is shown in Fig.6.A bunch of rays emitting from point sourcePare refracted by the main lens and converge at pointQ.They propagate forward and form a circle of confusion on the MLA plane.The center is denoted asClfand its diameter isDlf.Then the light rays go across the MLA and eventually reach different pixels on the sensor plane,forming a projected circle of confusion.The center is denoted asCdfand its diameter isDdf.Characteristics of a confusion circle(Cdf,Ddf)are solvable out of the scattered patterns on the image plane[22].

    Fig.6 Propagation model of light inside a light-field camera

    Wherelpjandpciare micro-lens center and center of its scattered pattern respectively.siis the image distance.flis the focal length of the micro-lens.In this case,metric calibration is performed through building a deterministic relation between the characteristics of the confusion circle and the point object.

    Without loss of generality,the center of the main lens is set as the origin in this paper.Thez-axis is set as the main lens axis that points outside the camera.In the light-field projection model,the main lens is regarded as a thin lens while the MLA is viewed as a pin-hole array model for simplicity.By applying Gaussian optics,a relation between the depthPzof object pointP(Px,Py,Pz)and its confusion circle diameterDdfcan be derived as:

    Wherepmis the effective main lens aperture andfmis the main lens focal length.sois the object distance.ppis the pixel pitch.PointP,O,andQare on the same line and the projected confusion circle centerCdfis on the extension line ofPOQ.Equations can be derived according to rules of similar triangles:

    3 Experimental Practices

    3.1 Test Rigs and Procedures

    This paper includes a measurement test of some turbine blades to validate the proposed technique.As Fig.7 demonstrates,the measurement system consists of a monochrome industrial grade light field camera (VOMMA VA4300-MCL,7192×5432px),a composite main lens (AF Micro-Nikkor 200mm f/4D IF-ED and AF Nikkor 50mm f/1.4D mounted together by a 50~62 adapter ring),and a testing platform.The measurement procedures are:

    Fig.7 FCHs measurement system based on:(a)light-feld imaging;(b)confocal microscopy

    1) Metric calibration.This investigation applied a volumetric calibration for a light-field camera[24].A calibration board with a 0.4mm dot array on it is placed on a high-precision translational stage(Thorlabs LNR50S/M,0.1μm).The translation range covers 300μm in front of and behind the PoF.The translation step size is 20μm.There are a total of 31 positions where images are recorded.Relations between object points and their confusion circle characteristics are built out of raw calibration images.

    2) Raw image capture.In Fig.7,the camera is placed downwards to capture images of the illuminated turbine blade (illumination omitted in Fig.7).The illumination is optimized by applying tiny bulbs or optical fiber according to the actual situation.Raw images are rendered and sub-aperture images are extracted.Parallax is quantified using EPI.

    3)Parallax to depth conversion.The parameter obtained in step (1) is used to convert parallax (obtained in step 2) into real physical depth.

    The whole process is accelerated by GPU.A point cloud with 436000 points can be calculated with 5 seconds.The robustness of the measurement is only subject to different illumination strategies,which is rather an engeneering problem that will not be included here.

    3.2 Result and Analysis

    To validate the system accuracy,a blade with roughly 50 film cooling holes are tested both with light-field imaging and confocal microscopy.The metrology equipment of the latter is AliconaμCMM with has an accuracy of less than 1μm.The accuracy is high enough for its results to be considered as gound truth.The blade is scanned and measured by the device automatically and a point cloud is generated.Fig.8(a)and(c)displays results generated by the AliconaμCMM.Parameters such as hole diameterdand outlet angleαis calculated.

    Limited by magnification,field of view,and current resolution of the light-field camera,the experiment only focuses on a local area with FCHs on it.

    The measured data is shown in Fig.8(b).It is in the format of a colored point cloud from which FCH parameters are extracted.Though fitting the point cloud of one FCH to the shape of a cylinder,αanddcan be calculated.Tab.1 shows the comparision between the results.The parameters of FCHs measured by light-field imaging is valid.Moreover,the time consumed is greatly reduced.

    Tab.1 Data acquired by light-field imaging and confocal microscopy

    4 Conclusions

    This paper proposed a method for geometric measurement and inspection of film cooling holes using light field imaging.The technique uses one light field camera and highly efficient algorithms to reconstruct 3D geometry of filmcooling holes.Point coulds from confocal microscopy and light field imaing are compared to validate measurement precision,revealing an averaged system precision of 1°17’and 0.03mm in terms of FCH outlet angle and hole diameter.The time consumed per FCH is reduced from 30min to 5s.The future work is to further raise the accuracy,to reduce data fluctuation and to be robust under different conditions.

    国产黄片美女视频| 成年女人看的毛片在线观看| 国产精品人妻久久久久久| 在线看三级毛片| 亚洲性夜色夜夜综合| 在线观看av片永久免费下载| 久久精品国产鲁丝片午夜精品 | 在线国产一区二区在线| 国产探花在线观看一区二区| 桃红色精品国产亚洲av| videossex国产| 亚洲七黄色美女视频| 午夜精品在线福利| 精品欧美国产一区二区三| 午夜激情福利司机影院| 在线免费观看不下载黄p国产 | 亚洲专区国产一区二区| 中文亚洲av片在线观看爽| 我的老师免费观看完整版| av在线观看视频网站免费| 精品人妻视频免费看| 国产一区二区在线观看日韩| 精品国产三级普通话版| 免费av毛片视频| 亚洲18禁久久av| 观看美女的网站| 久久久久国内视频| 1024手机看黄色片| 日本黄色片子视频| 婷婷丁香在线五月| 亚洲精品乱码久久久v下载方式| 99久久成人亚洲精品观看| 中出人妻视频一区二区| 欧美性猛交╳xxx乱大交人| 春色校园在线视频观看| 国产麻豆成人av免费视频| 亚洲avbb在线观看| 不卡视频在线观看欧美| 日韩欧美 国产精品| 国产高清不卡午夜福利| 精品福利观看| 亚洲乱码一区二区免费版| 国产男人的电影天堂91| 天美传媒精品一区二区| 深夜a级毛片| 国内少妇人妻偷人精品xxx网站| 一区二区三区高清视频在线| 3wmmmm亚洲av在线观看| 丰满人妻一区二区三区视频av| 国产精品免费一区二区三区在线| 少妇熟女aⅴ在线视频| 久久天躁狠狠躁夜夜2o2o| 国产精品人妻久久久影院| 久久久成人免费电影| 久久久久久伊人网av| 少妇的逼好多水| 欧美日韩乱码在线| 色综合色国产| 精品不卡国产一区二区三区| 亚洲 国产 在线| 国产蜜桃级精品一区二区三区| 琪琪午夜伦伦电影理论片6080| 欧美成人a在线观看| 国产麻豆成人av免费视频| 又爽又黄a免费视频| 看黄色毛片网站| 国产精品一区二区三区四区免费观看 | 国产老妇女一区| 男人舔奶头视频| avwww免费| 国产男人的电影天堂91| 亚洲av第一区精品v没综合| 男插女下体视频免费在线播放| 成年免费大片在线观看| 日韩一区二区视频免费看| 欧美精品啪啪一区二区三区| 国产午夜福利久久久久久| 亚洲精品日韩av片在线观看| 免费搜索国产男女视频| 亚洲久久久久久中文字幕| 国产精品亚洲美女久久久| 久久人人精品亚洲av| 制服丝袜大香蕉在线| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久久电影| 少妇的逼好多水| 一进一出抽搐动态| 中文字幕av在线有码专区| 久久欧美精品欧美久久欧美| 日韩欧美免费精品| 精品99又大又爽又粗少妇毛片 | 好男人在线观看高清免费视频| 国产精品电影一区二区三区| 亚洲av中文av极速乱 | 变态另类成人亚洲欧美熟女| 变态另类丝袜制服| 国产亚洲欧美98| 国产精品人妻久久久久久| 免费看a级黄色片| 在线观看美女被高潮喷水网站| 国产精品伦人一区二区| 全区人妻精品视频| 变态另类丝袜制服| 如何舔出高潮| 在线观看免费视频日本深夜| 色综合站精品国产| 两人在一起打扑克的视频| 日本熟妇午夜| 99热网站在线观看| 美女 人体艺术 gogo| 国产亚洲精品av在线| 深夜a级毛片| 免费搜索国产男女视频| 欧美潮喷喷水| 国产精品久久久久久亚洲av鲁大| 男女视频在线观看网站免费| 国产高清三级在线| 久久热精品热| 免费搜索国产男女视频| 99久久精品一区二区三区| 午夜免费成人在线视频| 男女视频在线观看网站免费| 亚洲av中文字字幕乱码综合| 少妇人妻一区二区三区视频| 春色校园在线视频观看| 国产精品亚洲美女久久久| 午夜a级毛片| 男人的好看免费观看在线视频| 午夜精品一区二区三区免费看| 日本免费一区二区三区高清不卡| 欧美一区二区亚洲| 国产在线精品亚洲第一网站| 亚洲精品一区av在线观看| 欧美在线一区亚洲| 国产av麻豆久久久久久久| 国产精品福利在线免费观看| 久久久久九九精品影院| 色5月婷婷丁香| 久久精品国产自在天天线| 精品久久久久久久末码| 亚洲精华国产精华液的使用体验 | 亚洲专区中文字幕在线| 久久6这里有精品| 中文字幕人妻熟人妻熟丝袜美| 亚洲第一区二区三区不卡| 久久久久久国产a免费观看| 色视频www国产| 老熟妇乱子伦视频在线观看| 99在线人妻在线中文字幕| 国产视频内射| .国产精品久久| 亚洲熟妇熟女久久| 欧洲精品卡2卡3卡4卡5卡区| 欧美三级亚洲精品| or卡值多少钱| 日韩欧美国产在线观看| 国产av在哪里看| 欧美在线一区亚洲| 色综合婷婷激情| 成人三级黄色视频| 最近在线观看免费完整版| 在线观看舔阴道视频| 久久这里只有精品中国| 麻豆精品久久久久久蜜桃| 亚洲国产精品合色在线| 国产一区二区在线av高清观看| 啦啦啦啦在线视频资源| 免费在线观看影片大全网站| 两个人视频免费观看高清| 国产aⅴ精品一区二区三区波| 91久久精品电影网| 毛片一级片免费看久久久久 | 丰满的人妻完整版| 99热这里只有是精品在线观看| 又黄又爽又免费观看的视频| 男女边吃奶边做爰视频| 欧美极品一区二区三区四区| ponron亚洲| 天美传媒精品一区二区| 可以在线观看毛片的网站| 亚洲乱码一区二区免费版| 在线观看午夜福利视频| 国产伦一二天堂av在线观看| 亚洲精品色激情综合| 免费在线观看成人毛片| 动漫黄色视频在线观看| av视频在线观看入口| 日韩大尺度精品在线看网址| 日韩欧美精品v在线| 一边摸一边抽搐一进一小说| 尾随美女入室| 精品午夜福利在线看| 成人鲁丝片一二三区免费| 在线观看免费视频日本深夜| а√天堂www在线а√下载| 中文在线观看免费www的网站| 91午夜精品亚洲一区二区三区 | 亚洲色图av天堂| 日韩精品青青久久久久久| 无遮挡黄片免费观看| 国产欧美日韩精品亚洲av| 成人特级av手机在线观看| 中亚洲国语对白在线视频| 中文字幕精品亚洲无线码一区| 国产精品永久免费网站| 伊人久久精品亚洲午夜| 搡女人真爽免费视频火全软件 | 亚洲av.av天堂| 国产精品久久久久久av不卡| 又爽又黄无遮挡网站| 午夜视频国产福利| 12—13女人毛片做爰片一| 十八禁网站免费在线| 性欧美人与动物交配| 国产亚洲精品久久久久久毛片| 狂野欧美激情性xxxx在线观看| 黄色丝袜av网址大全| 97碰自拍视频| 中国美女看黄片| 18+在线观看网站| 国产主播在线观看一区二区| 99久久久亚洲精品蜜臀av| 成人国产麻豆网| av女优亚洲男人天堂| 亚洲最大成人中文| 露出奶头的视频| 国产精品永久免费网站| 婷婷色综合大香蕉| 国内精品久久久久久久电影| 一区二区三区高清视频在线| videossex国产| 韩国av一区二区三区四区| 久久久久久伊人网av| 亚洲成a人片在线一区二区| 亚洲人成网站在线播放欧美日韩| 女人十人毛片免费观看3o分钟| 免费观看精品视频网站| 日本 av在线| 一进一出抽搐动态| 国内精品美女久久久久久| 狠狠狠狠99中文字幕| 可以在线观看毛片的网站| 久久这里只有精品中国| 中出人妻视频一区二区| 最好的美女福利视频网| 狂野欧美白嫩少妇大欣赏| 在线观看免费视频日本深夜| 色播亚洲综合网| 午夜免费男女啪啪视频观看 | 最后的刺客免费高清国语| 国产成人一区二区在线| 亚洲av日韩精品久久久久久密| 亚洲不卡免费看| 亚洲真实伦在线观看| 俺也久久电影网| 不卡视频在线观看欧美| 国产精品日韩av在线免费观看| av黄色大香蕉| eeuss影院久久| 国产精品美女特级片免费视频播放器| 日本-黄色视频高清免费观看| 精品免费久久久久久久清纯| 少妇的逼水好多| 色吧在线观看| 亚洲图色成人| 男女下面进入的视频免费午夜| 18禁黄网站禁片午夜丰满| 在线a可以看的网站| 日本免费a在线| 日韩一区二区视频免费看| 久久久久久久久大av| 免费看日本二区| 精品人妻偷拍中文字幕| 好男人在线观看高清免费视频| 国产精品1区2区在线观看.| 一级毛片久久久久久久久女| 中文字幕高清在线视频| 有码 亚洲区| 老师上课跳d突然被开到最大视频| 美女大奶头视频| 国产人妻一区二区三区在| av天堂中文字幕网| 色播亚洲综合网| 中国美白少妇内射xxxbb| 精品午夜福利在线看| 别揉我奶头 嗯啊视频| 深夜a级毛片| 热99re8久久精品国产| 日本黄色视频三级网站网址| 97热精品久久久久久| 国产探花极品一区二区| 国内毛片毛片毛片毛片毛片| 日韩一区二区视频免费看| 丰满人妻一区二区三区视频av| 午夜福利成人在线免费观看| 深夜a级毛片| 非洲黑人性xxxx精品又粗又长| 亚洲一区二区三区色噜噜| 欧美成人a在线观看| 久久精品国产亚洲av涩爱 | 亚洲av成人av| 国产av一区在线观看免费| 91av网一区二区| 18禁黄网站禁片午夜丰满| 国产午夜福利久久久久久| 亚洲五月天丁香| 熟妇人妻久久中文字幕3abv| 深爱激情五月婷婷| 赤兔流量卡办理| 日本精品一区二区三区蜜桃| 国产成人a区在线观看| www.色视频.com| 欧美极品一区二区三区四区| 欧美bdsm另类| 91麻豆av在线| 国产一区二区在线观看日韩| 欧美日韩亚洲国产一区二区在线观看| 午夜影院日韩av| 欧美xxxx性猛交bbbb| 两个人的视频大全免费| 97热精品久久久久久| 亚洲欧美日韩东京热| 午夜亚洲福利在线播放| 真实男女啪啪啪动态图| 久久亚洲精品不卡| 成人亚洲精品av一区二区| 免费看a级黄色片| 国产真实乱freesex| 国产精品亚洲一级av第二区| 日韩欧美精品免费久久| 在线a可以看的网站| 毛片一级片免费看久久久久 | 欧美xxxx性猛交bbbb| 精品一区二区三区视频在线观看免费| 亚洲va在线va天堂va国产| 免费看光身美女| 91久久精品国产一区二区三区| 十八禁国产超污无遮挡网站| 99久久中文字幕三级久久日本| 如何舔出高潮| 美女免费视频网站| 亚洲欧美激情综合另类| 久久久午夜欧美精品| 亚洲国产色片| 1000部很黄的大片| 美女cb高潮喷水在线观看| 免费av不卡在线播放| 亚洲七黄色美女视频| 久久久久久久久久成人| 日本爱情动作片www.在线观看 | 国产精品无大码| 亚洲人成伊人成综合网2020| 最好的美女福利视频网| 成人二区视频| 18禁黄网站禁片免费观看直播| 日本黄色片子视频| 美女大奶头视频| 欧美中文日本在线观看视频| av天堂在线播放| 国产麻豆成人av免费视频| 精品人妻偷拍中文字幕| 国内精品久久久久久久电影| netflix在线观看网站| 淫秽高清视频在线观看| 色5月婷婷丁香| 偷拍熟女少妇极品色| 中国美白少妇内射xxxbb| 我要看日韩黄色一级片| 国产精品亚洲美女久久久| 欧美一区二区亚洲| 欧美日韩瑟瑟在线播放| 丝袜美腿在线中文| 日本成人三级电影网站| 给我免费播放毛片高清在线观看| 我的老师免费观看完整版| 99在线视频只有这里精品首页| 国产免费一级a男人的天堂| 好男人在线观看高清免费视频| 国产精品一区二区性色av| 久久午夜亚洲精品久久| 99久久中文字幕三级久久日本| 一卡2卡三卡四卡精品乱码亚洲| 少妇丰满av| 午夜福利成人在线免费观看| www.色视频.com| 午夜久久久久精精品| 亚洲一级一片aⅴ在线观看| 男女那种视频在线观看| 亚洲精品粉嫩美女一区| 看黄色毛片网站| 国产精品自产拍在线观看55亚洲| 伊人久久精品亚洲午夜| 嫩草影院入口| 少妇高潮的动态图| 在线观看午夜福利视频| 身体一侧抽搐| 亚洲人与动物交配视频| 国产精品无大码| 精品午夜福利视频在线观看一区| 久久这里只有精品中国| 亚洲人成网站高清观看| 哪里可以看免费的av片| 国产亚洲精品av在线| 在线观看美女被高潮喷水网站| 两性午夜刺激爽爽歪歪视频在线观看| 免费搜索国产男女视频| 亚洲成人免费电影在线观看| 99精品久久久久人妻精品| ponron亚洲| 很黄的视频免费| 自拍偷自拍亚洲精品老妇| 免费看日本二区| avwww免费| 国产在视频线在精品| 久久久久久久久久黄片| 国产伦精品一区二区三区四那| 亚洲精品国产成人久久av| 久久久久免费精品人妻一区二区| 搡老妇女老女人老熟妇| 在线观看66精品国产| 午夜福利视频1000在线观看| 22中文网久久字幕| 成人鲁丝片一二三区免费| 精品久久久久久久久亚洲 | 国产av不卡久久| 中文字幕高清在线视频| 狠狠狠狠99中文字幕| 黄色日韩在线| 最近在线观看免费完整版| 又粗又爽又猛毛片免费看| 麻豆精品久久久久久蜜桃| 亚洲成人中文字幕在线播放| 国产精品永久免费网站| 久久精品影院6| 免费av观看视频| 男女之事视频高清在线观看| 小说图片视频综合网站| 国产精品嫩草影院av在线观看 | 日韩亚洲欧美综合| 久久欧美精品欧美久久欧美| 亚洲av不卡在线观看| 国产伦精品一区二区三区视频9| 真实男女啪啪啪动态图| 综合色av麻豆| 亚洲国产精品合色在线| 嫁个100分男人电影在线观看| 身体一侧抽搐| 久久99热6这里只有精品| 男人舔女人下体高潮全视频| av在线老鸭窝| 国产精品爽爽va在线观看网站| 国产成人一区二区在线| 国产精品久久视频播放| 国产爱豆传媒在线观看| 蜜桃亚洲精品一区二区三区| 直男gayav资源| 九九久久精品国产亚洲av麻豆| 最近最新中文字幕大全电影3| 国产av不卡久久| 日日摸夜夜添夜夜添av毛片 | 动漫黄色视频在线观看| 久久精品国产亚洲网站| 少妇丰满av| 真实男女啪啪啪动态图| 久久久久精品国产欧美久久久| АⅤ资源中文在线天堂| 欧美+日韩+精品| 午夜福利在线观看吧| 精品一区二区三区人妻视频| 欧美丝袜亚洲另类 | 国产色爽女视频免费观看| 国产精品日韩av在线免费观看| 国产探花极品一区二区| 午夜老司机福利剧场| 国产爱豆传媒在线观看| 亚洲欧美精品综合久久99| 日日撸夜夜添| 日韩欧美在线乱码| 毛片一级片免费看久久久久 | 一边摸一边抽搐一进一小说| 国产乱人视频| 国产v大片淫在线免费观看| 国产私拍福利视频在线观看| 日韩欧美在线乱码| 性插视频无遮挡在线免费观看| 日本黄大片高清| 韩国av在线不卡| 搡女人真爽免费视频火全软件 | 搞女人的毛片| 俺也久久电影网| 日韩精品青青久久久久久| 成人亚洲精品av一区二区| 日本精品一区二区三区蜜桃| 欧美+日韩+精品| 俺也久久电影网| 国产精品久久久久久亚洲av鲁大| 国产久久久一区二区三区| 亚洲av成人av| 亚洲最大成人中文| 好男人在线观看高清免费视频| 国产午夜精品久久久久久一区二区三区 | 熟女人妻精品中文字幕| 成人三级黄色视频| 淫妇啪啪啪对白视频| 国产精品女同一区二区软件 | 无人区码免费观看不卡| 久久亚洲精品不卡| 天堂av国产一区二区熟女人妻| 日本a在线网址| 亚洲成人免费电影在线观看| 久久99热6这里只有精品| 色综合亚洲欧美另类图片| 看片在线看免费视频| 一区二区三区四区激情视频 | 麻豆成人av在线观看| 熟女人妻精品中文字幕| 国内揄拍国产精品人妻在线| 日韩一区二区视频免费看| 亚洲欧美日韩卡通动漫| 成人av一区二区三区在线看| 一卡2卡三卡四卡精品乱码亚洲| 天堂√8在线中文| 亚洲欧美日韩东京热| 男人和女人高潮做爰伦理| 深夜a级毛片| 久久久久久久亚洲中文字幕| 18禁在线播放成人免费| 一区二区三区激情视频| 99热6这里只有精品| 黄色女人牲交| 中文字幕av在线有码专区| 亚洲精华国产精华精| 欧美一区二区精品小视频在线| 99久国产av精品| 国产欧美日韩精品亚洲av| 欧美日韩瑟瑟在线播放| 简卡轻食公司| 搡女人真爽免费视频火全软件 | 成年版毛片免费区| 午夜爱爱视频在线播放| 久久亚洲精品不卡| 午夜免费男女啪啪视频观看 | 男女那种视频在线观看| 天美传媒精品一区二区| 悠悠久久av| 欧美另类亚洲清纯唯美| 欧美日韩中文字幕国产精品一区二区三区| 少妇高潮的动态图| 欧美xxxx性猛交bbbb| 久久99热这里只有精品18| 真人做人爱边吃奶动态| 一边摸一边抽搐一进一小说| 久久人人精品亚洲av| 亚洲在线观看片| 成人午夜高清在线视频| 成人毛片a级毛片在线播放| 国产精品久久电影中文字幕| 淫秽高清视频在线观看| 全区人妻精品视频| 国产精品伦人一区二区| 亚洲内射少妇av| 欧美精品啪啪一区二区三区| 熟女人妻精品中文字幕| 国产免费av片在线观看野外av| 亚洲成av人片在线播放无| 男插女下体视频免费在线播放| 少妇人妻一区二区三区视频| 淫妇啪啪啪对白视频| 欧美激情在线99| 久久精品人妻少妇| av黄色大香蕉| 一个人免费在线观看电影| 在线观看舔阴道视频| 久久九九热精品免费| 午夜福利欧美成人| 中文字幕av在线有码专区| 亚洲va在线va天堂va国产| 亚洲成人精品中文字幕电影| 亚洲在线观看片| 亚洲国产精品成人综合色| 波多野结衣高清无吗| 真实男女啪啪啪动态图| av视频在线观看入口| 成人国产一区最新在线观看| 天堂影院成人在线观看| 嫩草影院新地址| 一区二区三区高清视频在线| 免费黄网站久久成人精品| 噜噜噜噜噜久久久久久91| 成人特级黄色片久久久久久久| 极品教师在线视频| 国产精品日韩av在线免费观看| 欧美区成人在线视频| 免费看日本二区| 国产精品日韩av在线免费观看| 国产视频一区二区在线看| 一级av片app| 性插视频无遮挡在线免费观看| av在线观看视频网站免费| 国内精品久久久久精免费| 啪啪无遮挡十八禁网站| 欧美日本亚洲视频在线播放| 久久久久久久亚洲中文字幕| 女人十人毛片免费观看3o分钟| 国产精品久久久久久亚洲av鲁大| 精品久久久久久久久久免费视频| 一个人观看的视频www高清免费观看| 婷婷精品国产亚洲av在线| 十八禁国产超污无遮挡网站| 两个人视频免费观看高清| 久久欧美精品欧美久久欧美| 淫妇啪啪啪对白视频| 欧美成人a在线观看| 午夜福利18| 看片在线看免费视频|