徐微濤,張少良*,趙廣印,汪 浩,張成博,莊亞茹,閆鵬科,李傳寶,李 威,張興義
復(fù)合指紋法解析典型黑土小流域侵蝕泥沙來(lái)源
徐微濤1,張少良1*,趙廣印1,汪 浩1,張成博1,莊亞茹1,閆鵬科1,李傳寶1,李 威1,張興義2
(1.東北農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,黑龍江 哈爾濱 150030;2.中國(guó)科學(xué)院東北地理與農(nóng)業(yè)生態(tài)研究所,黑龍江 哈爾濱 150081)
以海倫市光榮村小流域?yàn)檠芯繉?duì)象,分析流域內(nèi)6個(gè)潛在泥沙來(lái)源地和沉積區(qū)的25個(gè)地球化學(xué)特征,利用Kruskal-Wallis H檢驗(yàn)和逐步判別分析確定最佳的指紋因子組合,通過(guò)多元混合模型計(jì)算各泥沙源地的相對(duì)貢獻(xiàn)率.結(jié)果表明:共有11種因子(Mg、Ti、Cr、Fe、Cu、As、Mo、Tl、P、C、K)被確認(rèn)為最佳指紋因子組合,判別率達(dá)到75%,擬合優(yōu)度均大于0.80.各泥沙源地對(duì)沉積區(qū)0~20cm土層泥沙貢獻(xiàn)率依次為:朝北坡向靠近林地的耕地(53.11%)>朝北坡向靠近道路的耕地(25.00%)>開(kāi)墾時(shí)間早的耕地(11.91%)>靠近流域出口的耕地(6.57%)>林地(3.41%)>朝南坡向耕地(0%).沉積區(qū)0~30cm不同土層泥沙主要來(lái)源于流域朝北坡向耕地,而在林地北側(cè)耕地的泥沙貢獻(xiàn)率最小.流域內(nèi)不同的土地利用方式對(duì)泥沙貢獻(xiàn)率的影響比地形因子更大,然而在同樣的土地利用方式下主要受地形因子的影響.早期人類(lèi)墾殖、修路等活動(dòng)對(duì)沉積區(qū)深層泥沙貢獻(xiàn)率影響較大,而后期耕地活動(dòng)對(duì)沉積區(qū)表層泥沙貢獻(xiàn)率影響較大.基于地球化學(xué)特征因子的復(fù)合指紋識(shí)別技術(shù)能夠有效判別典型黑土小流域泥沙來(lái)源.
復(fù)合指紋;泥沙來(lái)源;土壤侵蝕;小流域
東北黑土主要分布在黑龍江、吉林、遼寧和內(nèi)蒙古四省,被譽(yù)為國(guó)家糧食安全的“壓艙石”,但是由于各種自然和人為原因,黑土發(fā)生了嚴(yán)重的退化,嚴(yán)重威脅到區(qū)域的糧食和生態(tài)安全[1].典型黑土的地貌特征是漫川漫崗,坡面緩長(zhǎng),且土壤侵蝕具有隱蔽性,是我國(guó)水土流失最嚴(yán)重的地區(qū)之一[2].自開(kāi)墾以來(lái),水土流失導(dǎo)致黑土層均有不同程度的變薄,部分地區(qū)黑土層厚度距20世紀(jì)50年代已經(jīng)下降了40~60cm[3],近40a來(lái)黑土區(qū)黑土層厚度平均減少了12cm,但是在流域下游存在沉積現(xiàn)象[4-5].雖然近年來(lái)關(guān)于黑土坡面侵蝕退化已經(jīng)開(kāi)展了一系列的研究,但關(guān)于沉積區(qū)泥沙來(lái)源認(rèn)識(shí)仍然不足,不利于深入認(rèn)識(shí)土壤侵蝕過(guò)程和優(yōu)化水土保持措施實(shí)現(xiàn)土壤流失精準(zhǔn)防控.
早期泥沙來(lái)源判別多采用侵蝕痕跡調(diào)查、徑流小區(qū)觀測(cè)、水文資料分析等方法[6],但是野外實(shí)地監(jiān)測(cè)周期長(zhǎng),大面積調(diào)查復(fù)雜性高,且很難在某些復(fù)雜的地貌類(lèi)型及部位對(duì)產(chǎn)沙全過(guò)程進(jìn)行監(jiān)測(cè)[7-8].20世紀(jì)70年代部分學(xué)者開(kāi)始嘗試采用單一指紋因子如放射性核素、礦物元素以及土壤磁性等定量示蹤泥沙來(lái)源[6].然而,由于泥沙源地的多樣性和采樣的不確定性,運(yùn)用單因子指紋法識(shí)別泥沙源地的正確性較低[9].直至90年代,有學(xué)者利用組合指紋因子進(jìn)行泥沙來(lái)源的研究,進(jìn)一步提高了泥沙源地的正確判別率[10].與傳統(tǒng)的方法相比,復(fù)合指紋識(shí)別技術(shù)更為便捷可行,被廣泛運(yùn)用在世界各地[8,11-13].但也有研究探討泥沙源地分類(lèi)對(duì)沉積物來(lái)源貢獻(xiàn)率的影響時(shí),發(fā)現(xiàn)沉積物來(lái)源的微小差異能夠顯著影響模型計(jì)算結(jié)果,且簡(jiǎn)單地將流域沉積物的來(lái)源劃分為地表源和地下源時(shí)運(yùn)用復(fù)合指紋法會(huì)存在較大的誤差[14].此外,可用于復(fù)合指紋技術(shù)的指紋因子很多,包括土壤理化性質(zhì)、稀土元素、放射性核素和植物孢粉等[15],Knaus等[16]指出最好的穩(wěn)定示蹤劑應(yīng)該是和土壤緊密結(jié)合、對(duì)生物無(wú)害、隨水遷移能力弱的,稀土元素(REE)容易被土壤顆粒強(qiáng)烈吸附,中子活化分析檢測(cè)時(shí)簡(jiǎn)單易行且靈敏度高,但其昂貴的價(jià)格使其不能在泥沙來(lái)源示蹤得到廣泛的應(yīng)用.目前REE示蹤技術(shù)多數(shù)局限在室內(nèi)模擬,流域尺度上還鮮有報(bào)道[17].近年來(lái)應(yīng)用較多的核素如137Cs在土壤中的含量會(huì)隨著時(shí)間的推移發(fā)生衰變或者被侵蝕掉,示蹤能力會(huì)大大降低[18],而7Be只能在短期內(nèi)進(jìn)行示蹤,不能很好地運(yùn)用在長(zhǎng)時(shí)間尺度的研究中[19].張信寶等[20]利用植物孢粉對(duì)陜北吳起縣周灣水庫(kù)的沉積泥沙進(jìn)行來(lái)源示蹤時(shí),發(fā)現(xiàn)孢粉濃度會(huì)受到花粉自身性質(zhì)的很大影響,同時(shí)植物孢粉這類(lèi)指紋因子在采樣和運(yùn)輸途中也會(huì)對(duì)孢粉的濃度產(chǎn)生很大的影響,運(yùn)用孢粉示蹤泥沙來(lái)源還具有很大的不確定性.可見(jiàn)基于指紋圖譜的源匯模型盡管具有較高的識(shí)別率,但是沉積物源的識(shí)別受指紋因子的影響較大,而且最佳指紋因子的種類(lèi)和數(shù)量在不同區(qū)域有較大差異.我國(guó)東北黑土區(qū)關(guān)于侵蝕沉積的研究過(guò)去多采用基于核素示蹤、土壤有機(jī)質(zhì)示蹤等單一方法[5,21],而關(guān)于指紋圖譜技術(shù)的研究還缺乏報(bào)道,關(guān)于流域沉積區(qū)泥沙的來(lái)源還不清晰.為此,本研究以典型黑土區(qū)小流域?yàn)檠芯繉?duì)象,采用多易得地球化學(xué)特征因子和部分穩(wěn)定性較好的土壤理化因子,利用指紋圖譜的研究方法追蹤各景觀單元對(duì)流域沉積區(qū)產(chǎn)沙貢獻(xiàn)及其影響因素,其研究結(jié)果可為深入認(rèn)識(shí)流域侵蝕沉積過(guò)程,以及為黑土小流域尺度土壤侵蝕防控提供科學(xué)依據(jù).
研究區(qū)位于我國(guó)東北黑龍江省海倫市光榮村小流域(126°49¢312~126°50¢542E, 47°20¢432~47°21¢292N) (圖1),土壤類(lèi)型為典型黑土,該土壤具有黏粒含量高、質(zhì)地黏重的特點(diǎn).該地區(qū)屬于中溫帶大陸性季風(fēng)氣候,冬季寒冷干燥,夏季溫?zé)岫嘤?年平均氣溫1.5℃,日照時(shí)數(shù)2600~2800h,年降水量500~ 600mm,無(wú)霜期120d左右,平均海拔239m.光榮小流域面積1.86km2,該流域地形為漫川漫崗,大部分坡面陡度小于5°,坡長(zhǎng)大于200m.土地利用類(lèi)型主要為耕地和林地,主要的農(nóng)田作物為大豆和玉米,主要的耕作方式為順坡壟作和橫坡壟作.
基于流域數(shù)字高程模型(DEM),利用ArcGIS 10.7進(jìn)行填洼處理后計(jì)算流向,提取河網(wǎng)后依據(jù)水系提取匯水區(qū),再結(jié)合土地利用類(lèi)型、地塊邊界、壟向分布,管理方式將匯水區(qū)進(jìn)一步劃分為6個(gè)地塊(圖2),分別為地塊1(開(kāi)墾時(shí)間早的耕地)、地塊2(林地)、地塊3(朝南坡向耕地)、地塊4(朝北坡向靠近道路的耕地)、地塊5(朝北坡向靠近林地的耕地)、地塊6(靠近流域出口的耕地),并把6個(gè)地塊設(shè)為潛在泥沙來(lái)源地,沉積區(qū)的劃分參考張少良等[5]研究.預(yù)設(shè)樣點(diǎn)后進(jìn)行泥沙源地土壤樣品的采集,2021年10月在每個(gè)樣點(diǎn)利用五點(diǎn)取樣法采集 0~20cm(耕作層)、20~25cm、25~30cm土樣(采集表層土樣時(shí)去除表面的枯枝落葉層),混合均勻后裝入布袋并分別標(biāo)號(hào)帶回測(cè)定分析.共計(jì)采樣點(diǎn)164個(gè),其中耕地141個(gè),林地23個(gè),在沉積區(qū)(流域出口)分層采集0~500cm土壤剖面樣品并標(biāo)號(hào)帶回.
圖1 研究區(qū)土地利用、坡度、坡向和采樣點(diǎn)空間分布
圖2 研究區(qū)泥沙來(lái)源地劃分
將在源地和沉積區(qū)采集到的土壤樣品進(jìn)行風(fēng)干,揀除樣品中的石塊、植被枯落物及根系,磨細(xì)并過(guò)2mm篩,測(cè)定前按待測(cè)指標(biāo)的測(cè)試要求再進(jìn)行研磨和過(guò)0.149mm篩.共測(cè)定25個(gè)指標(biāo),其中Be、Na、Mg、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Mo、Cd、Sn、Sb、Cs、Tl、Pb、P經(jīng)微波消解儀(ETHOS UP,意大利)消解后,用電感耦合等離子體質(zhì)譜儀(ICP-MS 7800,美國(guó))測(cè)定[23].C和N利用元素分析儀(EA3000,意大利)進(jìn)行測(cè)量;K采用NaOH熔融,分光光度法測(cè)定.
1.4.1 指紋因子的篩選與組合 (1)對(duì)已經(jīng)測(cè)定的指標(biāo)首先經(jīng)過(guò)守恒性檢驗(yàn):①范圍限制原則:沉積泥沙指紋因子濃度不得超過(guò)泥沙源頭指紋因子濃度范圍[23];②均值限制原則:要求沉積泥沙指紋因子的均值需要在泥沙源頭的范圍內(nèi)[9].
(2)將通過(guò)守恒性檢驗(yàn)的指標(biāo)進(jìn)行Kruskal- Wallis檢驗(yàn):通過(guò)非參數(shù)檢驗(yàn)對(duì)一定數(shù)量樣本的總體分布特征進(jìn)行判斷,當(dāng)因子<0.05時(shí)才被認(rèn)為該因子具有顯著性差異,指紋因子才被接受,而差異不顯著的因子需要被剔除[22].
(3)運(yùn)用SPSS進(jìn)行多元逐步判別分析確定識(shí)別泥沙來(lái)源的最佳指紋因子組合:一般要求多元逐步判別分析的正確判別率需要達(dá)到70%以上的判別效果較好[24].
1.4.2 求解各潛在源地泥沙來(lái)源的相對(duì)貢獻(xiàn)率 (1)采用混合模型求解泥沙來(lái)源[25],將最終得到的最佳指紋因子組合,利用最小二乘法原理,求得多項(xiàng)式混合模型的最小值,將其結(jié)果作為混合模型最優(yōu)解,即為各泥沙來(lái)源貢獻(xiàn)值.
多元線(xiàn)性混合模型如下:
式中:es為殘差平方和;C為沉積區(qū)泥沙中指紋因子的濃度;P為泥沙源地的泥沙貢獻(xiàn)百分比;C為泥沙源地中指紋因子的平均濃度;為泥沙源地?cái)?shù)量;為指紋因子的數(shù)量.
這個(gè)函數(shù)的運(yùn)用必須滿(mǎn)足兩個(gè)前提條件:
①泥沙源地貢獻(xiàn)百分比總和為1;
②泥沙源地貢獻(xiàn)百分比不能小于0.
(2)采用擬合優(yōu)度(GOF)分析方法檢驗(yàn)混合模型對(duì)樣品觀測(cè)值的擬合程度:
式中:為指紋因子的數(shù)量,GOF的值在0~1,GOF值越大,模型模擬的結(jié)果越好.一般認(rèn)為當(dāng)GOF>0.8時(shí),計(jì)算結(jié)果可被接受.
運(yùn)用ArcGIS 10.7軟件提取流域內(nèi)水文信息及土地利用類(lèi)型分析,SPSS 26.0統(tǒng)計(jì)軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,運(yùn)用Excel 2016軟件規(guī)劃求解進(jìn)行泥沙貢獻(xiàn)百分比的計(jì)算.
首先對(duì)25個(gè)指標(biāo)進(jìn)行Kruskal-Wallis檢驗(yàn),分析篩選出具有顯著差異且能判斷不同泥沙來(lái)源的指紋因子.該流域中共有22個(gè)因子通過(guò)Kruskal-Wallis檢驗(yàn),分別為Be、Na、Mg、Ca、Ti、V、Cr、Fe、Co、Ni、Cu、Zn、As、Mo、Sn、Sb、Cs、Tl、Pb、P、C和K指紋因子(表1).然而,Mn、Cd和N指紋因子,未能通過(guò)檢驗(yàn)(>0.05).通過(guò)Kruskal-Wallis檢驗(yàn)的22個(gè)指紋因子可進(jìn)入多元逐步判別分析.
表1 泥沙源地土壤指紋因子Kruskal-Wallis H檢驗(yàn)分析
注:*表示£0.05時(shí)呈現(xiàn)顯著性差異.
通過(guò)對(duì)該流域22個(gè)初選因子進(jìn)行多元逐步判別分析,確定最佳指紋因子組合為Mg、Ti、Cr、Fe、Cu、As、Mo、Tl、P、C、K共計(jì)11種指紋因子,且Wilks'Lambda值由0.668變?yōu)?.057,判別能力由28.3%逐步增加至75.0%(表2),判別效果較好.
篩選出的最佳指紋因子組合對(duì)各指紋因子來(lái)源初始分組的整體判別率達(dá)到了75.0%,總體正確判別率高于70.0%.指紋因子組合對(duì)地塊1、地塊2、地塊3、地塊4、地塊5、地塊6的判別率分別為100%、91.3%、73.3%、71%、61%、63.2%(表3).
表2 泥沙來(lái)源地最佳組合指紋因子
注:在每個(gè)步驟中,輸入了最小化整體Wilks'Lambda的變量;步驟最大數(shù)目是44.
表3 泥沙來(lái)源地復(fù)合指紋因子判別結(jié)果
注:正確地對(duì)75.0%個(gè)原始分組個(gè)案進(jìn)行了分類(lèi).
2.3.1 沉積區(qū)0~30cm不同土層土壤泥沙來(lái)源分析 6個(gè)地塊單位面積泥沙貢獻(xiàn)百分比與泥沙貢獻(xiàn)百分比的變化規(guī)律趨于一致,表現(xiàn)為沉積區(qū)0~30cm不同土層泥沙主要來(lái)源于流域朝北坡向耕地(地塊4和地塊5),地塊3對(duì)沉積區(qū)的泥沙貢獻(xiàn)率最小(表4).隨著沉積區(qū)土層深度的增加,地塊2和地塊4對(duì)沉積區(qū)的泥沙貢獻(xiàn)率呈逐漸增加的趨勢(shì).地塊1和地塊6對(duì)沉積區(qū)的貢獻(xiàn)率呈先上升后下降的趨勢(shì),地塊5的變化趨勢(shì)與地塊1相反,呈現(xiàn)先下降后上升的趨勢(shì)(表4).
各泥沙來(lái)源地對(duì)沉積區(qū)0~20cm土層的泥沙貢獻(xiàn)率表現(xiàn)為:地塊5(53.11%)>地塊4(25.00%)>地塊1(11.91%)>地塊6(6.57%)>地塊2(3.41%)>地塊3(0.00%);對(duì)沉積區(qū)20~25cm的泥沙貢獻(xiàn)率為:地塊4(38.43%)>地塊5(23.92%)>地塊1(23.43%)>地塊6(8.55%)>地塊2(5.66%)>地塊3(0.00%).地塊5對(duì)沉積區(qū)0~20cm土層的泥沙貢獻(xiàn)率超過(guò)50%,且地塊5的單位面積泥沙貢獻(xiàn)率遠(yuǎn)高于其他泥沙源地,是地塊4的2.1倍,地塊1的4.5倍,地塊6的8.1倍,地塊2的15.6倍.沉積區(qū)20~25cm土層泥沙主要來(lái)源于地塊4,地塊4的單位面積泥沙貢獻(xiàn)值是地塊5的1.60倍,是地塊1的1.64倍,是地塊6的4.50倍,是地塊2的6.79倍.研究表明坡度是影響泥沙搬運(yùn)能力的重要因素[26],隨著坡度的增加,降雨和徑流挾沙的能力也隨之增強(qiáng)[27].由于本研究中地塊5距沉積區(qū)較近,坡度較大,土壤在降雨和融雪時(shí)極易被沖刷,表土流失量較大,因此,地塊5對(duì)沉積區(qū)表層泥沙貢獻(xiàn)率相對(duì)最大.雖然地塊4的平均坡度最小,且距離沉積區(qū)較遠(yuǎn),但其泥沙貢獻(xiàn)率較大,這可能是因?yàn)榈貕K4內(nèi)有多處侵蝕溝,易發(fā)生水土流失[28].同時(shí),地塊4的黏粒和粉粒含量比其他地塊高,粗顆粒泥沙相較于其他地塊少,泥沙更容易被搬運(yùn)[29].地塊3對(duì)沉積區(qū)的泥沙貢獻(xiàn)率最小,這可歸因于沉積區(qū)在流域東南側(cè)的出口處,林地北側(cè)耕地的泥沙流失路徑經(jīng)過(guò)林地,林地的植被覆蓋對(duì)于泥沙具有攔截作用[30-31].有趣的是,本研究還發(fā)現(xiàn)雖然地塊2坡度最大,但其泥沙貢獻(xiàn)率卻很小,僅為3.14%,而地塊4的坡度最小,其泥沙貢獻(xiàn)率為25.00%,達(dá)到地塊2的8倍.也有研究表明受植被覆蓋的影響,耕地的土壤侵蝕較非耕地更大[32],并且通常坡面產(chǎn)沙量會(huì)隨著坡度的增加而增加[33];同時(shí)坡長(zhǎng)也會(huì)影響泥沙的搬運(yùn),距離溝道較近的土地受到侵蝕后泥沙更容易在流域出口沉積[29],而本研究中地塊2為林地,地塊4為耕地,且地塊2的坡度最大,地塊4的坡度最小,地塊2距沉積區(qū)距離比地塊4近.因此,流域內(nèi)不同的土地利用方式對(duì)于泥沙貢獻(xiàn)率的影響比地形因子(如坡度和坡長(zhǎng))的影響更大.值得關(guān)注的是,本研究中地塊4和地塊5同樣為耕地,但對(duì)于沉積區(qū)0~20cm土層泥沙貢獻(xiàn)率地塊5為地塊4的2.12倍,這是由于地塊5較地塊4距離沉積區(qū)更近,且坡度較地塊4更高.因此,在同樣的土地利用方式下耕層土壤泥沙貢獻(xiàn)率主要受地形因子(如坡度和坡長(zhǎng))的影響.
各源地對(duì)沉積區(qū)25~30cm土層的泥沙貢獻(xiàn)率為:地塊4(43.49%)>地塊5(26.43%)>地塊2(12.22%)>地塊1(10.73%)>地塊6(7.13%)>地塊3(0.00%).同時(shí)本文也發(fā)現(xiàn)地塊2對(duì)于沉積區(qū)25~30cm土層的泥沙貢獻(xiàn)率相較于0~20cm土層提高了4倍,這可能是因?yàn)榈貕K2歷史上是由農(nóng)田轉(zhuǎn)化而來(lái),調(diào)查也發(fā)現(xiàn),歷史上地塊2地勢(shì)較低,坡度較大,早期水土流失嚴(yán)重,導(dǎo)致耕地一段時(shí)間后不再適合耕種,為了遏制土壤侵蝕,當(dāng)?shù)剞r(nóng)民開(kāi)始營(yíng)造次生楊樹(shù)林,這可能是該地塊早期對(duì)沉積區(qū)貢獻(xiàn)較大后期較小的原因[34].
表4 各泥沙來(lái)源地泥沙貢獻(xiàn)百分比(%)
表5 各泥沙來(lái)源地地形和土地利用描述
2.3.2 沉積區(qū)0~500cm土壤泥沙來(lái)源分析 流域朝南坡向耕地(地塊1、3、6)對(duì)于沉積區(qū)不同深度土壤的泥沙貢獻(xiàn)率變化幅度較大,林地(地塊2)及流域朝北坡向耕地(地塊4和地塊5)的泥沙貢獻(xiàn)率變化幅度較小,符合二次函數(shù)趨勢(shì),且達(dá)到顯著性水平(<0.05)(圖3).地塊4和地塊5的貢獻(xiàn)率隨著土壤深度的增加逐漸減小,且流域南側(cè)耕地(地塊4和5)對(duì)于沉積區(qū)的泥沙貢獻(xiàn)率基本趨近于0.隨著沉積區(qū)土壤深度的增加,地塊3和地塊6的泥沙貢獻(xiàn)率變化趨勢(shì)一致,地塊6的變化趨勢(shì)較地塊3大,而地塊1的貢獻(xiàn)率變化趨勢(shì)與地塊3和地塊6相反(圖3).
流域內(nèi)不同泥沙源地對(duì)沉積區(qū)各土層的貢獻(xiàn)比的變化與流域各景觀單元土地利用變化、植被覆蓋度、坡度以及降雨等多種因素有關(guān)[35].地塊1、地塊3和地塊6內(nèi)均有不同面積的居民區(qū),人類(lèi)在居住地周?chē)顒?dòng)強(qiáng)度較大,人為擾動(dòng)可導(dǎo)致短期部分區(qū)域侵蝕強(qiáng)度發(fā)生變化,可能較大程度地影響坡面水土流失,進(jìn)而影響其對(duì)流域沉積區(qū)的泥沙貢獻(xiàn)[36-37].地塊1對(duì)沉積區(qū)深層貢獻(xiàn)率最大,可能是由于地塊1內(nèi)有道路,距離道路近的農(nóng)田開(kāi)墾較早,開(kāi)墾初期建筑用地以及耕地的土壤可蝕性增加,水土流失增強(qiáng)[38-39].而后期采用橫坡壟作,能夠增加水分入滲,減少地表徑流以及土壤侵蝕量[40],侵蝕和沉積逐漸趨于穩(wěn)定,所以其表層貢獻(xiàn)率逐漸減小.從1968~2009年流域內(nèi)一半草地被開(kāi)墾為農(nóng)田[34],地塊4和5被開(kāi)墾面積逐漸增大,對(duì)于沉積區(qū)的泥沙貢獻(xiàn)率由深層至表層逐漸增大.因此,早期人類(lèi)墾殖、修路等活動(dòng)影響農(nóng)田開(kāi)墾時(shí)間和強(qiáng)度,墾殖初期車(chē)輛和挖掘等活動(dòng)對(duì)地面的擾動(dòng)造成強(qiáng)烈的土壤侵蝕,對(duì)流域內(nèi)沉積區(qū)深土層泥沙貢獻(xiàn)率的影響較大,而后期耕地活動(dòng)各源地對(duì)沉積區(qū)表土層泥沙貢獻(xiàn)率較大.該流域的地塊2的林地是由約20a年前的農(nóng)田轉(zhuǎn)變而來(lái),其早期的植被覆蓋率較低[41],徑流攜帶泥沙量較多,導(dǎo)致早期地塊2對(duì)于沉積區(qū)泥沙貢獻(xiàn)率較大[42].
本研究采用的指紋因子多為地球化學(xué)元素以及基本的土壤理化性質(zhì),這些因子雖然能很好的解析流域內(nèi)泥沙的侵蝕源匯特征,但是為了進(jìn)一步增強(qiáng)泥沙源匯的識(shí)別精度,還可考慮引入判別能力更強(qiáng)的指紋因子,如正構(gòu)烷烴[43]等,也可以結(jié)合放射性核素[44-46]來(lái)確定沉積區(qū)不同深度土壤泥沙來(lái)源時(shí)間,來(lái)反映泥沙來(lái)源的時(shí)間序列變化.相關(guān)內(nèi)容還應(yīng)在以后的研究中進(jìn)一步探索.
圖3 沉積區(qū)不同深度土壤泥沙來(lái)源貢獻(xiàn)
3.1 通過(guò)對(duì)典型黑土小流域25個(gè)因子進(jìn)行非參數(shù)檢驗(yàn)篩選出22個(gè)因子,再進(jìn)行多元逐步判別分析,篩選出能夠識(shí)別6種潛在泥沙源地的最佳指紋因子組合Mg、Ti、Cr、Fe、Cu、As、Mo、Tl、P、TOC、K共計(jì)11個(gè)指紋因子,整體判別率達(dá)到了75 %,復(fù)合指紋法可用于典型黑土小流域侵蝕泥沙來(lái)源解析.
3.2 利用多元混合模型計(jì)算出0~20cm土層泥沙貢獻(xiàn)率分別為朝北坡向靠近林地的土壤(53.11%)>朝北坡向靠近道路的土壤(25.00%)>開(kāi)墾時(shí)間早的土壤(11.91%)>靠近流域出口的土壤(6.57%)>林地(3.41%)>朝南坡向耕地土壤(0.00%).流域朝北坡向耕地對(duì)于沉積區(qū)0~30cm不同土層泥沙貢獻(xiàn)率在流域6種泥沙源地中最高,林地北側(cè)耕地的泥沙貢獻(xiàn)率最小.
3.3 流域內(nèi)不同的土地利用方式對(duì)于土壤泥沙貢獻(xiàn)率的影響比地形因子(如坡度和坡長(zhǎng))的影響更大;而在同樣的土地利用方式下耕層土壤泥沙貢獻(xiàn)率主要受到地形因子(如坡度和坡長(zhǎng))的影響.
3.4 早期人類(lèi)墾殖、修路等活動(dòng)影響農(nóng)田開(kāi)墾時(shí)間和強(qiáng)度,對(duì)流域內(nèi)沉積區(qū)深土層泥沙貢獻(xiàn)率的影響較大,而后期耕地活動(dòng)各源地對(duì)沉積區(qū)表土層泥沙貢獻(xiàn)率較大.
[1] 徐曉斌,王 清.我國(guó)黑土退化研究現(xiàn)狀與展望[J]. 地球與環(huán)境, 2005,(S1):588-592. Xu X B, Wang Q. The current status and prospets of research in black earth degradation in Northeast China [J].Earth and Environment, 2005, (S1):588-592.
[2] 張曉平,梁愛(ài)珍,申 艷,等.東北黑土水土流失特點(diǎn)[J]. 地理科學(xué), 2006,26(6):687-692. Zhang X P, Liang A Z, Shen Y, et al. Erosion characteristics of black soils in Northeast China [J]. Scientia Geographica Sinica, 2006,26(6): 687-692.
[3] 梁愛(ài)珍,張 延,陳學(xué)文,等.東北黑土區(qū)保護(hù)性耕作的發(fā)展現(xiàn)狀與成效研究[J]. 地理科學(xué), 2022,42(8):1325-1335. Liang A Z, Zhang Y, Chen X W, et al. Development and effects of conservation tillage in the black soil region of Northeast China [J]. Scientia Geographica Sinica, 2022,42(8):1325-1335.
[4] 劉 凱,魏明輝,戴慧敏,等.東北黑土區(qū)黑土層厚度的時(shí)空變化[J]. 地質(zhì)與資源, 2022,31(3):434-442. Liu K, Wei M H, Dai H M, et al. Spatiotemporal variation of black soil layer thickness in black soil region of Northeast China [J]. Geology and Resources, 2022,31(3):434-442.
[5] 張少良,劉 威,張興義,等.基于SOM和TN的黑土區(qū)小流域土壤侵蝕沉積估算[J]. 水土保持學(xué)報(bào), 2013,27(3):77-81. Zhang S L, Liu W, Zhang X Y, et al.Estimation of soil erosion and deposition based on SOM and TN in typical watershed from black soil of Northeastern China [J]. Journal of Soil and Water Conservation, 2013,27(3):77-81.
[6] 陳方鑫,張含玉,方怒放,等.利用兩種指紋因子判別小流域泥沙來(lái)源[J]. 水科學(xué)進(jìn)展, 2016,27(6):867-875. Chen F X, Zhang H Y, Fang N F, et al.Using two kinds of fingerprint factors to identify sediment sources in a small catchment [J]. Advances in Water Science, 2016,27(6):867-875.
[7] 郝福星,黃炎和,林金石,等.指紋法研究花崗巖區(qū)典型崩崗小流域懸浮泥沙來(lái)源[J]. 水土保持學(xué)報(bào), 2017,31(2):45-49. Hao F X, Huang Y H, Lin J S, et al.Fingerprinting suspended sediment sources in a typical collapsing hill watershed in the granitic region [J]. Journal of Soil and Water Conservation,2017,31(2):45-49.
[8] 杜鵬飛,黃東浩,秦 偉,等.基于不同模型不同指紋因子的東北黑土區(qū)小流域泥沙來(lái)源分析[J]. 水土保持學(xué)報(bào), 2020,34(1):84-91. Du P F, Huang D H, Qing W, et al.Sediment sources in a small watershed located in the black soil region of Northeast China based on different models and various fingerprints [J]. Journal of Soil and Water Conservation,2020,34(1):84-91.
[9] 陳方鑫.利用生物標(biāo)志物和復(fù)合指紋分析法識(shí)別小流域泥沙來(lái)源[D]. 武漢:華中農(nóng)業(yè)大學(xué), 2017. Chen F X. Using biomarkers and the composite fingerprinting method to identify sediment sources in small catchments [D]. Wuhan: Huazhong Agricultural University, 2017.
[10] Collins A L, Walling D E, Webb L, et al. Apportioning catchment scale sediment sources using a modified composite fingerprinting technique incorporating property weightings and prior information [J]. Geoderma, 2010,155(3/4):249-261.
[11] Collins A L, Walling D E, Leeks G J L. Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique [J]. Catena, 1997,29(1):1-27.
[12] Stone M, Collins A L, Silins U, et al. The use of composite fingerprints to quantify sediment sources in a wildfire impacted landscape, Alberta, Canada [J]. Science of The Total Environment, 2014,473:642-650.
[13] Luo H, Guan Q, Pan N, et al. Using composite fingerprints to quantify the potential dust source contributions in Northwest China [J]. Science of The Total Environment, 2020,742:140560.
[14] Pulley S, Foster I, Collins A L. The impact of catchment source group classification on the accuracy of sediment fingerprinting outputs [J]. Journal of Environmental Management, 2017,194:16-26.
[15] 劉海霞,李素霞,劉廣龍,等.基于復(fù)合指紋圖譜和貝葉斯模型的茅尾海懸浮顆粒物源解析[J]. 中國(guó)環(huán)境科學(xué), 2022,42(6):2844-2851. Liu H X, Li S X, Liu G L, et al.Analysis of the source of suspended particulate matter in the Maowei Sea based on composite fingerprint map and Bayesian model [J]. China Environmental Science, 2022,42 (6):2844-2851.
[16] Knaus R M, Van Gent D L. Accretion and canal impacts in a rapidly subsiding wetland. III. A new soil horizon marker method for measuring recent accretion [J]. Estuaries, 1989,12:269-283.
[17] 湯振權(quán),劉 剛,許文年.稀土元素示蹤技術(shù)及其在土壤侵蝕研究中的應(yīng)用[J]. 中國(guó)稀土學(xué)報(bào), 2011,29(5):515-522. Tang Z Q, Liu G, Xu W N.REE tracing method and application in soil erosion [J]. Journal of the Chinese Society of Rare Earths, 2011, 29(5):515-522.
[18] 王向榮,華 珞,何婷婷.基于137Cs 示蹤技術(shù)的土壤侵蝕研究進(jìn)展[J]. 首都師范大學(xué)學(xué)報(bào):自然科學(xué)版, 2006,27(6):86-91. Wang X R, Hua L, He T T. Status on soil erosion research by using137Cs as tracer [J].Journal of Capital Normal University(Natural Science Edition), 2006,27(6):86-91.
[19] 張風(fēng)寶,楊明義,王光謙.7Be示蹤土壤侵蝕研究現(xiàn)狀及存在問(wèn)題探討[J]. 核技術(shù), 2009,32(8):596-600. Zhang F B, Yang M Y, Wang G Q. A comprehensive review on soil erosion using7Be measurement [J]. Nuclear Techniques, 2009,32(8): 596-600.
[20] 張信寶,Walling D E,賀秀斌,等.黃土高原小流域植被變化和侵蝕產(chǎn)沙的孢粉示蹤研究初探[J]. 第四紀(jì)研究, 2005,25(6):722-728. Zhang X B, Walling D E, He X B, et al. A test of the pollen tracing technique for studies of vegetation changes,erosion and sedimentation in a small catchment in the loess plateau of China [J].Quaternary Sciences, 2005,25(6):722-728.
[21] 方華軍,楊學(xué)明,張曉平,等.利用137Cs 技術(shù)研究黑土坡耕地土壤再分布特征[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2005,16(3):464-468. Fang H J, Ynag X M, Zhang X P, et al.Redistribution patterns of black soil in hillslope landform of Northeast China:a137Cs study [J].Chinese Journal of Applied Ecology, 2005,16(3):464-468.
[22] 尹 捷,楊苑君,喻慶國(guó),等.利用復(fù)合指紋法分析劍川雙河水庫(kù)泥沙來(lái)源[J]. 水土保持通報(bào), 2020,40(1):142-148. Yin J, Yang Y J, Yu Q G, et al.Analysis of sediment sources of Shuanghe reservoir catchment using combined fingerprinting technique [J].Bulletin of Soil and Water Conservation, 2020,40(1): 142-148.
[23] Zhang J, Yang M, Zhang F, et al. Fingerprinting sediment sources in the water-wind erosion crisscross region on the Chinese Loess Plateau [J]. Geoderma, 2019,337:649-663.
[24] 郭 進(jìn),文安邦,嚴(yán)冬春,等.復(fù)合指紋識(shí)別技術(shù)定量示蹤流域泥沙來(lái)源[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2014,30(2):94-104. Guo J, Wen A B, Yan D C, et al.Quantifying catchment scale sediment source using composite fingerprinting technique [J].Transactions of the Chinese Society of Agricultural Engineering, 2014,30(2):94-104.
[25] Walling D E, Woodward J C, Nicholas A P. A multi-parameter approach to fingerprinting suspended-sediment sources [J]. IAHS publication, 1993,(215):329-338.
[26] Zhang S, Li F, Li T, et al. Remote sensing monitoring of gullies on a regional scale: A case study of Kebai region in Heilongjiang province, China [J]. Chinese Geographical Science, 2015,25:602-611.
[27] 陳培濟(jì),俞 慎.水力侵蝕的自然與人為驅(qū)動(dòng)機(jī)制[J]. 福建農(nóng)林大學(xué)學(xué)報(bào)(自然科學(xué)版), 2022,51(4):433-450. Chen P J, Yu S. Mechanisms of nature- and human-driven soil erosion by water [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition) , 2022,51(4):433-450.
[28] 秦 偉,殷 哲,曹文洪,等.東北黑土區(qū)侵蝕溝系統(tǒng)防治現(xiàn)狀與未來(lái)[J]. 泥沙研究, 2021,46(3):72-80. Qing W, Yin Z, Cao W H, et al. Present and future of systematic prevention and control for gully erosion in black soil area of Northeast China [J].Journal of Sediment Research, 2021,46(3):72-80.
[29] 許晶晶,杜鵬飛,屈麗琴,等.接壩區(qū)不同面積小流域泥沙來(lái)源分析[J]. 水土保持研究, 2021,28(6):39-45. Xu J J, Du P F, Qu L Q, et al.Sediment sources in watersheds with various areas in transitional region from plateau to plain [J]. Research of Soil and Water Conservation, 2021,28(6):39-45.
[30] Seitz S, Goebes P, Zumstein P, et al. The influence of leaf litter diversity and soil fauna on initial soil erosion in subtropical forests [J]. Earth Surface Processes and Landforms, 2015,40(11):1439-1447.
[31] 歐陽(yáng)帥,項(xiàng)文化,陳 亮,等.南方山地丘陵區(qū)森林植被恢復(fù)對(duì)水土流失調(diào)控機(jī)制[J]. 水土保持學(xué)報(bào), 2021,35(5):1-9. Ou Y S, Xiang W H, Chen L, et al. Regulation mechanisms of forest vegetation restoration on water and soil erosion in mountainous and hilly area of Southern China [J].Journal of Soil and Water Conservation, 2021,35(5):1-9.
[32] 葉宏萌,華偉平,吳星怡,等.土地利用對(duì)紅壤丘陵區(qū)小流域土壤侵蝕和養(yǎng)分流失的影響[J]. 環(huán)境化學(xué), 2022,41(12):4154-4164. Ye H M, Hua W P, Wu X Y, et al.Effect of land use on soil erosion and nutrient loss in small watershed of red hilly soil [J].Environmental Chemistry, 2022,41(12):4154-4164.
[33] 蘇遠(yuǎn)逸,李 鵬,任宗萍,等.坡度對(duì)黃土坡面產(chǎn)流產(chǎn)沙過(guò)程及水沙關(guān)系的影響[J]. 水土保持研究, 2020,27(2):118-122. Su Y Y, Li P, Ren Z P, et al.Effect of slope gradient on the process of runoff and sediment yield and water-sediment relation on the loess slope [J].Research of Soil and Water Conservation, 2020,27(2):118- 122.
[34] Li H, Cruse R M, Liu X, et al. Effects of topography and land use change on gully development in typical mollisol region of Northeast China [J]. Chinese geographical science, 2016,26:779-788.
[35] 王照潤(rùn).坡度和坡長(zhǎng)對(duì)坡面降雨徑流侵蝕不平衡輸沙的影響[D]. 楊凌:西北農(nóng)林科技大學(xué), 2022. Wang Z R. Effects of slope gradient and slope length on unbalanced sediment transport by rainfall-runoff erosion on slope surface [D]. Yangling: Northwest Agriculture and Forestry University, 2022.
[36] 李嘉麟,陳家慧,華 麗,等.基于CSLE的湖北省土壤侵蝕時(shí)空變化特征[J]. 水土保持學(xué)報(bào), 2022,36(4):43-52,62. Li J L, Chen J H, Hua L, et al.Spatial and temporal characteristics of soil erosion in Hubei province based on CSLE [J].Journal of Soil and Water Conservation, 2022,36(4):43-52,62.
[37] 肖作林,田小強(qiáng),李月嬌.基于遙感和GIS的區(qū)域土壤侵蝕變化與人類(lèi)活動(dòng)關(guān)系研究——以江西省為例[J]. 遙感技術(shù)與應(yīng)用, 2022, 37(4):971-981. Xiao Z L, Tian X Q, Li Y J.The study of the relationship between soil erosion change and the human activity based on remote sensing and GIS at the regional scale: a case study in Jiangxi province [J].Remote Sensing Technology and Application, 2022,37(4):971-981.
[38] 丁肇慰,陳錫云,陳昌華,等.開(kāi)墾60年?yáng)|北三江平原典型產(chǎn)糧區(qū)生態(tài)脆弱性時(shí)空格局演變分析——以859農(nóng)場(chǎng)為例[J]. 干旱區(qū)資源與環(huán)境, 2018,32(1):77-83. Ding Z W, Chen X Y, Chen C H, et al.Temporal and spatial dynamics of ecological vulnerability in typical grain-producing area of Sanjiang plain in Northeast China during 60years'reclamation [J].Journal of Arid Land Resources and Environment, 2018,32(1):77-83.
[39] 李有利,鄭 綱,楊景春.人類(lèi)活動(dòng)與土壤侵蝕[J]. 水土保持研究, 1999,15(4):105-110. Li Y L, Zhen G, Yang J C. Human activities and soil erosion [J].Research of Soil and Water Conservation, 1999,15(4):105-110.
[40] 沈海鷗,溫磊磊,武佳龍,等.壟作與壟向區(qū)田技術(shù)對(duì)黑土區(qū)坡耕地土壤侵蝕影響的研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2022,38(22):52-62. Shen H O, Wen L L, Wu J L, et al. Review on the effects of ridge pattern and ridge-furrow intervals on soil erosion of sloping farmland in the black soil region [J].Transactions of the Chinese Society of Agricultural Engineering, 2022,38(22):52-62.
[41] Zhang S, Zhang X, Liu Z, et al. Spatial heterogeneity of soil organic matter and soil total nitrogen in a Mollisol watershed of Northeast China [J]. Environmental Earth Sciences, 2014,72:275-288.
[42] Zhang S, Zhang X, Liu X, et al. Spatial distribution of soil nutrient at depth in black soil of Northeast China: a case study of soil available potassium [J]. Nutrient Cycling in Agroecosystems, 2013,95:319-331.
[43] Galoski C E, Martínez A E J, Schultz G B, et al. Use of n-alkanes to trace erosion and main sources of sediments in a watershed in southern Brazil [J]. Science of the Total Environment, 2019,682:447-456.
[44] Walling D E. Using environmental radionuclides as tracers in sediment budget investigations [M]. Iahs Publication, 2003:57-78.
[45] Huang D, Du P, Walling D E, et al. Using reservoir deposits to reconstruct the impact of recent changes in land management on sediment yield and sediment sources for a small catchment in the Black Soil region of Northeast China [J]. Geoderma, 2019,343:139- 154.
[46] 莫帥豪,王雪松,鄭粉莉,等.典型黑土區(qū)坡面侵蝕-沉積對(duì)土壤微生物養(yǎng)分限制的影響[J]. 中國(guó)環(huán)境科學(xué), 2023,43(6):3023-3033. Mo S H, Wang X S, Zhen F L, et al. Effects of slope erosion- deposition on soil microbial nutrient limitation in the typical Mollisol region of Northeast China [J].China Environmental Science, 2023, 43(6):3023-3033.
Analysis of erosion sediment sources in typical Mollisols watershed by composite fingerprinting technique.
XU Wei-tao1, ZHANG Shao-liang1*, ZHAO Guang-yin1, WANG Hao1, ZHANG Cheng-bo1, ZHUANG Ya-ru1, YAN Peng-ke1, LI Chuan-bao1, LI Wei1, ZHANG Xing-yi2
(1.School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China;2.Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China)., 2023,43(11):5998~6006
It is an important foundation for the scientific prevention and control of soil erosion to clarify the characteristics of erosion sediment sources in the Mollisols watersheds. Using the Guangrong Village sub-basin in Hailun City as the research object, 25geochemical characteristics of six potential sediment source sites and sedimentation areas in the basin were analyzed, and the best combination of fingerprint factors was determined using Kruskal-Wallis H-test and stepwise discriminant analysis, and the relative contribution of each sediment source site was calculated by a multivariate mixture model. The results showed that 11factors (Mg, Ti, Cr, Fe, Cu, As, Mo, Tl, P, C, K) were identified as the best fingerprint factor combinations with a discrimination rate of 75% and a goodness of fit of >0.80. The contribution of each sediment source site to the sedimentation of the 0~20cm soil layer was in the following order: arable land with a north-facing slope near woodland (53.11%) > arable land with a north-facing slope near road (25.00%) > cultivated land with early reclamation (11.91%) > cultivated land near the watershed outlet (6.57%) > forested land (3.41%) > cultivated land with a south-facing slope (0%). Sediment in the different soil layers of 0~30cm in the sedimentation zone mainly originated from the north-facing sloping cultivated land in the watershed, while the smallest contribution of sediment was found in the cultivated land on the north side of the woodland. Different land use practices within the watershed have a greater influence on the sediment contribution than the topographic factors, however, it is mainly influenced by the topographic factor under the same land use practices. Early human activities such as reclamation and road building had a greater influence on the deep sediment contribution to the sedimentation area, while later cultivation activities had a greater influence on the surface sediment contribution to the sedimentation area. The composite fingerprinting technique based on geochemical feature factors can effectively discern the sediment sources in typical black soil sub-basins.
composite fingerprint;sediment source;soil erosion;small watershed
X53
A
1000-6923(2023)11-5998-09
徐微濤(1999-),女,四川廣元人,東北農(nóng)業(yè)大學(xué)碩士研究生,主要從事土壤侵蝕對(duì)土壤質(zhì)量驅(qū)動(dòng)機(jī)制的研究.xuweitao0414@163.com.
徐微濤,張少良,趙廣印,等.復(fù)合指紋法解析典型黑土小流域侵蝕泥沙來(lái)源 [J]. 中國(guó)環(huán)境科學(xué), 2023,43(11):5998-6006.
Xu W T, Zhang S L, Zhao G Y, et al. Analysis of erosion sediment sources in typical Mollisols watershed by composite fingerprinting technique [J]. China Environmental Science, 2023,43(11):5998-6006.
2023-04-07
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021YFD1500801);東北農(nóng)業(yè)大學(xué)“青年領(lǐng)軍人才”支持計(jì)劃項(xiàng)目(NEAU2023QNLJ-016)
* 責(zé)任作者, 教授, shaoliang.zhang@neau.edu.cn