• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Blood gas analysis as a surrogate for microhemodynamic monitoring in sepsis

    2023-11-27 10:51:14JingyiWangLiWengJunXuBinDu
    World journal of emergency medicine 2023年6期

    Jingyi Wang, Li Weng, Jun Xu, Bin Du

    1 Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China

    2 Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China

    KEYWORDS: Sepsis; Microcirculation; Blood gas analysis; Emergency service

    INTRODUCTION

    Sepsis is defined as life-threatening tissue hypoperfusion and organ dysfunction caused by a dysregulated host response to infection.[1]Sepsis and septic shock are major health problems in the emergency department (ED), and early recognition and interventions are essential for improving patient outcomes.Hemodynamics, comprising macrocirculation and microcirculation, is the foundation of septic resuscitation.Although ED physicians routinely depend on macrocirculation, microcirculation has recently been proposed to play a key role in the pathogenic mechanisms of sepsis-induced organ dysfunction.[2,3]Previous studies suggested that the occurrence of microcirculatory abnormalities in early sepsis, despite well-preserved macrocirculation, might result in multi-organ failure and poor outcomes.[2,3]Microcirculation perfusion can be measured by parameters including perfused vessel density (PVD), the proportion of perfused vessels (PPV),microcirculatory flow index (MFI), and heterogeneity index.PVD, PPV, and MFI comprehensively describe the functional perfusion of microvessels, while the heterogeneity index quantifies the heterogeneity of perfusion.[4]However, the availability of these advanced microcirculatory measures in clinical settings is limited because the techniques are difficult to use and lack uniformly defined endpoints.[5]Viable practical clinical surrogates are therefore needed, particularly for rapid assessment and decision-making in the ED.Blood gas analysis and its derived indicators, linked to systemic oxygen (O2) metabolism, may reflect the relationship between tissue O2delivery (DO2) and consumption(VO2), and may thus provide alternative tools for microcirculatory assessment and for hemodynamics optimization during septic resuscitation.

    Based on the pathophysiological mechanisms and the current findings, this review provides an overview of the use of blood gas analysis to assess microcirculatory status, detect early tissue hypoxia, and optimize hemodynamic treatment in sepsis.

    METHODS

    We performed a search using PubMed, Web of Science, and Google scholar.The studies and reviews that were most relevant to septic microcirculatory dysfunctions and blood gas parameters were identified and included.Based on the pathophysiology of oxygen metabolism, the included articles provided a general overview of employing blood gas analysis and its derived set of indicators for microhemodynamic monitoring in septic care.

    RESULTS

    Circulatory pathophysiology of sepsis

    The principal role of the circulation is to deliver O2and nutrients to peripheral tissues and remove metabolites.Circulatory dysfunction is common in sepsis, and its current management mainly aims to improve macrohemodynamic indicators,such as the mean arterial pressure, central venous pressure, and cardiac index.[1,6]However, abnormal microcirculation might persist despite improved or restored macrohemodynamic indicators,[7-9]highlighting a loss of coherence between the macrocirculation and microcirculation.[10]The microcirculation comprises a network of O2exchange between peripheral tissues and blood circulation, and it is the main site for tissue oxygenation.When sepsis occurs, the microcirculatory network is disrupted by factors such as endothelial glycocalyx dysfunction, activation of microthrombosis and leukocytes, increased microvascular rigidity, and pathologic formation of arteriovenous shunts,[11,12]leading to impaired blood flow and deteriorated heterogeneity of tissue perfusion (Figure 1).Consistently sluggish or absent blood flow will compromise DO2in related tissues or disrupt the balance between DO2and VO2.

    The DO2/VO2balance is the cornerstone of hemodynamic stability.DO2represents the arterial supply of O2to tissues (DO2=Q × CaO2, where Q is blood flow and CaO2is arterial O2content), while VO2represents O2removed from arterial blood for use by the tissues (VO2=Q × [CaO2-CvO2], where CvO2is venous O2content [Supplementary Figure S1]).Both DO2and VO2are affected by multiple factors, resulting in a dynamic balance (Figure 2 and Supplementary Table S1).Under normal circumstances, aerobic cell metabolism only requires a small fraction of DO2(Figure 2A).Under conditions of an inadequate DO2/VO2(decreased DO2,and/or increased VO2), VO2initially remains satisfied as O2extraction increases adaptively, known as DO2/VO2independency.At this stage, aerobic metabolism is preserved, but CvO2decreases (Figure 2B).However, if the inadequacy persists, the compensatory O2extraction process approaches its maximum capacity, and DO2fails to meet the demand of tissue oxygenation, leading to DO2/VO2dependency and O2debt.[13]At this point,aerobic metabolism switches to anaerobic metabolism(Figure 2C), resulting in further reduction of CvO2,elevated lactate levels, and abnormal carbon dioxide(CO2)-related parameters (Figure 2D).

    Figure 1.Microcirculatory alterations in sepsis.RBC: red blood cell;DO2: O2 delivery; VO2: O2 consumption.

    Figure 2.The pathophysiological determinants of the DO2/VO2.A: DO2/VO2 balance; B: DO2/VO2 independency; C: DO2/VO2 dependency; D: cellular metabolism.DO2: O2 delivery; VO2: O2 consumption; O2E: O2 extraction; RQ: respiratory quotient.

    As the post-metabolism part of the circulation, venous blood includes the O2left after cellular metabolism, thus providing valuable information on tissue oxygenation.“Venous blood” in this review refers exclusively to mixed or central venous blood.Mixed venous blood is the blood that travels through all the systemic capillary beds and returns to the right ventricle and is acknowledged to reflect global O2metabolism by combining venous blood from the superior vena cava (SVC) and inferior vena cava.However, measurement of mixed venous parameters requires a pulmonary artery catheter, which is invasive and not feasible in all patients.[14]Central venous blood includes blood that returns via the SVC and thus only represents the O2metabolism of the upper body;[15]however, it is easier to obtain via a central venous catheter (CVC) and may thus be used as a substitute for mixed venous blood.Notably, despite controversy regarding the ability to substitute mixed and central venous blood (e.g., venous O2saturation [SvO2]);[16-19]when the CVC tip is close to the right atrium, central SvO2(ScvO2) was an excellent estimate of mixed SvO2(SmvO2), with a difference between the two parameters of about 1%.[19]Central venous blood is thus an acceptable substitute for mixed venous blood when the placement of the CVC is appropriate.

    Parameters of DO2/VO2 independency

    Despite a shortage of DO2relative to VO2during DO2/VO2independency, tissue oxygenation is nevertheless satisfactory due to improved O2extraction.Early signs of hypoxia include a decrease in venous blood O2content and an increase in O2extraction capability.

    Venous O2 saturation (SvO2)

    SvO2reflects the O2content in venous blood after cellular metabolism.SvO2varies among organs, from up to 90% in the kidney to 40% in the myocardium,depending on the O2demands of the tissues.[15]Under normal conditions, SmvO2is about 75%, while ScvO2is usually 2%–3% lower, because the lower body consumes less O2than the upper body.[15]In contrast, ScvO2will exceed SmvO2during shock as blood is redistributed from the hepatosplanchnic region to support coronary or cerebral circulation.[20]Despite the lack of consensus regarding the best cutoff value for SvO2in resuscitation, SmvO2≥65%or ScvO2≥70% is still advocated in clinical practice.[21,22]

    Several studies have investigated the relationship between SvO2and microcirculatory perfusion.In septic patients, an increase in SmvO2following norepinephrine treatment was paralleled by improvements in PVD and MFI.[23]A recent meta-analysis showed that initiation of blood cell transfusion by lower SmvO2rather than lower hemoglobin level maximized the benefit to microcirculatory blood flow in septic patients,[24]suggesting that SmvO2may be a reliable index of microcirculatory perfusion.However, SvO2reflects cellular oxygenation indirectly, by measuring the remaining O2content in venous blood.It thus provides little information on the complex O2metabolism within peripheral tissues.Several studies showed that higher ScvO2was also linked to increased mortality.[25,26]High SvO2is probably caused by impaired O2utilization or pathological shunting in sepsis.[25,27,28]Aggressive resuscitation with fluids, vasopressors, and oxygen therapies may also result in a prompt rise in DO2and a high SvO2.[29,30]Hence, SvO2should be interpreted with caution, especially for high values.

    O2 extraction rate (O2ER)

    An increased O2ER, calculated as [CaO2-CvO2]/CaO2), is typically a marker of reduced DO2during earlystage shock, with a normal value of 25%–30%.[31]O2ER increases in hypoxic settings to match the metabolic demand, with an upper limit of 40%–50%.[32]

    O2ER is almost equal to 1-SvO2when arterial O2saturation (SaO2) is 100%.However, because of the nonnegligible effect of SaO2, SvO2is not considered a good estimator of O2ER in hypoxic individuals.Measuring O2ER thus compensates for SvO2deficits.Negative correlations between increased systemic O2ER and deteriorating microcirculatory parameters including PPV, PVD, and MFI were observed in an animal model of septic shock.[33]In contrast, another animal experiment produced the opposite conclusion, showing no correlation between systemic O2ER and these microcirculatory indicators, despite parallel variations in mesenteric O2ER and jejunal-villi PPV and mesenteric lactate.[33,34]This discrepancy was likely caused by differences in microcirculation perfusion between the two studies.[34]Further research is required to determine the reliability of using O2ER to identify microcirculatory abnormalities.

    Parameters of DO2/VO2 dependency

    Anaerobic metabolism manifests at the point of DO2/VO2dependency, when DO2is severely compromised but O2ER has reached its upper limit.Anaerobic metabolism products, including lactate and abnormal respiratory quotient (RQ), serve as indicators of persistent hypoxia.

    Lactate

    Lactate is the end-product of anaerobic metabolism.The generation and clearance of lactate are equal under normal circumstances, maintaining a serum lactate level of around 2 mmol/L.[35]Excess lactate generated by increased anaerobic glycolysis is the primary cause of hyperlactatemia in hypoxic environments, while sepsisinduced aerobic glycolysis is also a significant source of lactate, independent of tissue hypoxia.[36]The underlying mechanisms include epinephrine-dependent activation of Na+-K+-adenosine triphosphatase and inflammatory cytokine-dependent stimulation of cellular glucose uptake, both of which stimulate lactate production in aerobic glycolysis.[37,38]Hyperlactatemia in sepsis is therefore assumed to arise from various sources, not solely due to hypoxia/hypoperfusion.

    Despite its complicated production processes, lactate is widely applied in clinical research and practice.Ospina-Tascon et al[39]discovered that decreased lactate following fluid delivery was consistent with improvements in PVD and PPV, with no corresponding changes in cardiac index or mean arterial pressure.A similar correlation between lactate and microcirculation perfusion was reported in septic patients without hypotension.[40]However, clinicians should remain aware that several distinct factors contribute to hyperlactatemia, and lactate only accurately reflects changes in the microcirculation for hyperlactatemia mainly caused by hypoperfusion.[41]

    Respiratory quotient (RQ)

    RQ is the volume of CO2(VCO2) released divided by the volume of O2(VO2) consumed during metabolism(normal range 0.7–1.0, depending on the types of substrates oxidized).[42]Under hypoxic conditions, RQ is >1.0 because of the anaerobic CO2production.The underlying processes include increased buffering between bicarbonate and H+as a result of lactate accumulation and accelerated highenergy phosphate hydrolysis, and extra CO2produced by decarboxylation of intermediate substrates such as α-ketoglutarate during incomplete oxidation.[43]

    RQ measurement currently requires indirect calorimetry, which is costly and vulnerable to patient and environmental conditions, and equipment, thus limiting its practical utility in critical patients.[44,45]According to the Fick equation, VCO2equals the product of blood flow and the difference between venous and arterial CO2content (Cv-aCO2).Likewise, VO2is the product of blood flow and the difference between arterial and venous O2content (Ca-vO2).RQ can thus be determined using the Cv-aCO2/Ca-vO2ratio.Moreover, given the quasi-linear curve between CO2content and CO2tension(PCO2) within a physiological range (Supplementary Figure S2),[46]the easily accessible Pv-aCO2/Ca-vO2ratio is considered a surrogate for the Cv-aCO2/Ca-vO2ratio.

    The Cv-aCO2/Ca-vO2(or Pv-aCO2/Ca-vO2) ratio has attracted increasing attention recently.Several studies indicated that an elevated ratio (>1.4) is associated with inadequate lactate clearance, progressive organ dysfunction, and a higher risk of mortality.[47-50]However,the Cv-aCO2/Ca-vO2(or Pv-aCO2/Ca-vO2) ratio was not in excellent agreement with changes at the micro level.An early trial found only a weak correlation between an increased Cv-aCO2/Ca-vO2ratio and a decreased PPV,[51]while another study found no association between the Pv-aCO2/Ca-vO2ratio and peripheral perfusion.[52]However, they pointed out that, even in patients with a higher peripheral perfusion index, those with poor lactate clearance after resuscitation had an obviously elevated Pv-aCO2/Ca-vO2ratio.[52]These results suggested that anaerobic metabolism persisted even as perfusion improved, possibly related to impaired O2utilization.Taken together, the Cv-aCO2/Ca-vO2(or Pv-aCO2/CavO2) ratio is an indicator of tissue O2metabolism, instead of merely microcirculatory perfusion.An increased ratio may be useful for discriminating the inconsistency between tissue perfusion and O2utilization.

    Parameters of tissue hypoxia mechanisms

    Hypoxia develops when DO2is inadequate for VO2.DO2characterizes the mechanisms of hypoxia as hypoxic (deficient O2supply), anemic (low hemoglobin level), and circulatory (reduced blood flow).Compared with hypoxic and anemic hypoxia, which can be directly identified by variables like SaO2, PaO2, and hemoglobin,the assessment of circulatory hypoxia is more challenging.Intriguingly, Pv-aCO2has been suggested as a potential marker for changes in microcirculation.

    Pv-aCO2represents the difference between venous and arterial CO2tensions, and has been confirmed as a valid indicator of cardiac output.[53-55]In physiological settings, sufficient blood flow carries CO2to the alveoli where it is exhaled from the body.In contrast, pathologically reduced blood flow results in the accumulation of tissue CO2, widening the CO2gap between arterial and venous blood, in accordance with the Fick equation: Pv-aCO2=(k×VCO2tissue)/blood flowtissue, wherekis a constant determining the relationship between CO2tension and content(Supplementary Figure S2), and VCO2tissueis the amount of CO2generated by the tissue.

    Becausekincreases with the decreased blood flow,the inverse relationship between Pv-aCO2and blood flow is curvilinear; when blood flow is reduced to the lowest range, Pv-aCO2will increase remarkably.[56]However, the curvilinear relationship between PvaCO2and blood flow is easily disturbed in pathological processes, becausekis affected by various factors.[48]The theory of CO2stagnation during decreased blood flow compensates for the Fick equation.[56,57]When both afferent and efferent blood flows in the capillary network are arrested, the increased anaerobic production of CO2from hypoxic tissues leads to increased PvaCO2.In addition, a different theory stated that when blood flow was lowered, PaCO2also fell to adjust to the increased ventilation-perfusion ratio, further raising the Pv-aCO2.[58]These theories may account for the negative correlation between blood flow and Pv-aCO2.

    The ability of Pv-aCO2to monitor microcirculatory dysregulation has been studied extensively.A Pv-aCO2>6 mmHg was associated to microcirculatory hypoperfusion in septic patients, manifested by reduced PPV, lower functional capillary density, and higher heterogeneity of microvascular blood flow.[51]Despite a ScvO2≥70%, a Pv-aCO2≥8 mmHg in post-cardiac surgery patients was linked to hepatosplanchnic hypoperfusion, as evidenced by a significantly lower plasma clearance rate of indocyanine green.[59]In addition, in patients who achieved global hemodynamic goals, Pv-aCO2still fluctuated with microcirculatory perfusion while there was no association between Pv-aCO2and cardiac output, demonstrating that Pv-aCO2may be a reliable indicator reflecting microcirculatory flow alterations.[51]

    DISCUSSION

    This review considers the application of blood gas parameters in microcirculatory monitoring based on the dynamic evolution of tissue hypoxia: (1) reduced SvO2and increased O2ER indicate hypoxia; (2) hyperlactatemia and an elevated Cv-aCO2/Ca-vO2(or Pv-aCO2/Ca-vO2)ratio are signs of deteriorating hypoxia and the emergence of anaerobic metabolism; and (3) parameters including hemoglobin, Pv-aCO2, SaO2, and PaO2may help to distinguish between various hypoxia-causing processes.

    Blood gas parameters have certain limitations.First,the parameters essentially reflect global O2metabolism and cannot accurately follow the complex changes within the microvascular environment.Analysis of blood gas parameters must thus be combined with organ-perfusion performance.Second, the parameters are affected by multiple factors; a satisfactory value is never the ultimate target during septic treatment, and only a comprehensive assessment can reveal the tissue metabolism.Despite these limitations, blood gas analysis provides valuable information on tissue O2metabolism, especially when advanced technologies for microcirculatory measurements are not available.

    Taken together with medical practice, the recommended interpretation of blood gas analysis is presented in Figure 3.Lactate should be included in the initial clinical evaluation, given that it is acquired from arterial blood, which involves a relatively less-invasive procedure that is readily available in the ED.Notably,physicians need to be aware that interpretations should be combined with clinical judgments, and the ultimate goal of resuscitation is to improve clinical performance,rather than correcting the specific values.

    CONCLUSIONS

    Figure 3.Integrated interpretation of blood gas analysis in hemodynamic monitoring.O2ER: O2 extraction rate; SvO2: venous O2 saturation; Pv-aCO2: venous to arterial CO2 tension; Ca-vCO2: arterial to venous CO2 content; Ca-vO2: arterial to venous O2 content; SaO2:arterial O2 saturation; ScvO2: central venous O2 saturation; SmvO2:mixed venous O2 saturation.

    This review contributes to our understanding of the use of blood gas analysis as a surrogate for visualizing microcirculation and tissue O2metabolism.Despite its drawbacks, evidence suggests that blood gas analysis,combined with clinical performance, provides a feasible and reliable alternative for microcirculatory management.We believe that further insights into the DO2/VO2ratio will help ED physicians utilize blood gas analysis effectively, leading to improved judgments and better decision-making in the treatment of sepsis.

    Funding:This work was supported by the grants from Innovation Fund for Medical Sciences (CIFMS) from Chinese Academy of Medical Sciences (No.2021-I2M-1-062); National Key R&D Program of China from Ministry of Science and Technology of the People’s Republic of China (No.2022YFC2304601,2021YFC2500801); National High Level Hospital Clinical Research Funding (2022-PUMCH-D-005, 2022-PUMCH-D-111,2022-PUMCH-B-126); National key clinical specialty construction projects from National Health Commission.

    Ethical approval:Not needed.

    Conflicts of interest:All authors declare that they do not have any potential conflict of interest in relation to this manuscript.

    Author contribution:JYW and JX substantially contributed to the conception and design of the review; JYW was in charge of conducting the literature search, interpreting the results, and producing the initial draft; LW, JX and BD provided critical revisions to the manuscript.The final version of the manuscript was approved by all authors.

    All the supplementary files in this paper are available at http://wjem.com.cn.

    国产免费现黄频在线看| 欧美精品啪啪一区二区三区| 自线自在国产av| 国产一卡二卡三卡精品| 99riav亚洲国产免费| 自拍欧美九色日韩亚洲蝌蚪91| 欧美最黄视频在线播放免费 | 一二三四在线观看免费中文在| 好男人电影高清在线观看| 日韩欧美三级三区| 一夜夜www| 午夜福利乱码中文字幕| 窝窝影院91人妻| xxxhd国产人妻xxx| xxxhd国产人妻xxx| 免费日韩欧美在线观看| 免费久久久久久久精品成人欧美视频| 香蕉国产在线看| 麻豆av在线久日| 欧美在线一区亚洲| 国产成人精品无人区| 精品国产一区二区三区久久久樱花| 天堂中文最新版在线下载| 亚洲一码二码三码区别大吗| 丝袜美腿诱惑在线| 欧美日韩中文字幕国产精品一区二区三区 | 午夜福利乱码中文字幕| 老汉色∧v一级毛片| 国产精品99久久99久久久不卡| 少妇 在线观看| 婷婷成人精品国产| 欧美日韩亚洲高清精品| 男人舔女人的私密视频| 男人舔女人的私密视频| 日本五十路高清| 亚洲欧美色中文字幕在线| 丁香欧美五月| 黄色女人牲交| 日韩欧美三级三区| 欧美日韩一级在线毛片| 精品国产乱子伦一区二区三区| 9热在线视频观看99| 999久久久精品免费观看国产| 女性被躁到高潮视频| 怎么达到女性高潮| 精品国产乱子伦一区二区三区| 久久午夜综合久久蜜桃| 国产精品一区二区精品视频观看| 黄色女人牲交| 国产精品成人在线| 啦啦啦在线免费观看视频4| 超碰97精品在线观看| 欧美午夜高清在线| 欧美日韩成人在线一区二区| 男女高潮啪啪啪动态图| 久久香蕉精品热| 久久中文看片网| 国产精品久久视频播放| 最新美女视频免费是黄的| 一边摸一边做爽爽视频免费| 欧美午夜高清在线| 国产精品成人在线| 我的亚洲天堂| 黄色 视频免费看| 亚洲久久久国产精品| 18禁裸乳无遮挡免费网站照片 | 999久久久国产精品视频| 美女高潮喷水抽搐中文字幕| 欧美色视频一区免费| 91老司机精品| 国产高清视频在线播放一区| 国产成人精品在线电影| 国产精品秋霞免费鲁丝片| 国产1区2区3区精品| 久久久久久人人人人人| 亚洲性夜色夜夜综合| 精品一区二区三区四区五区乱码| 欧美乱码精品一区二区三区| av中文乱码字幕在线| 国产xxxxx性猛交| 国产午夜精品久久久久久| 国产成人影院久久av| 男女高潮啪啪啪动态图| 国产高清视频在线播放一区| 狠狠婷婷综合久久久久久88av| 国产区一区二久久| 老司机在亚洲福利影院| 中文字幕人妻丝袜一区二区| 精品福利永久在线观看| 男人的好看免费观看在线视频 | 变态另类成人亚洲欧美熟女 | 黄色丝袜av网址大全| 日日爽夜夜爽网站| 亚洲色图av天堂| 日韩制服丝袜自拍偷拍| 精品视频人人做人人爽| 国产免费现黄频在线看| 91国产中文字幕| 久久久久视频综合| 日日爽夜夜爽网站| 欧美日韩av久久| 日韩欧美一区视频在线观看| 欧美日韩视频精品一区| 中文字幕高清在线视频| 精品国产一区二区三区四区第35| tocl精华| 久久精品亚洲精品国产色婷小说| 久久狼人影院| 欧美乱妇无乱码| 欧美最黄视频在线播放免费 | 国产真人三级小视频在线观看| 亚洲av熟女| 精品午夜福利视频在线观看一区| 建设人人有责人人尽责人人享有的| 亚洲男人天堂网一区| 一区二区三区精品91| 夜夜躁狠狠躁天天躁| 午夜两性在线视频| 一个人免费在线观看的高清视频| 成人国语在线视频| 亚洲欧美日韩另类电影网站| 色94色欧美一区二区| 精品国产一区二区久久| 热re99久久国产66热| 日韩欧美国产一区二区入口| 亚洲一码二码三码区别大吗| 99精品在免费线老司机午夜| 日韩成人在线观看一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 高清毛片免费观看视频网站 | 国产精品久久久久久精品古装| 变态另类成人亚洲欧美熟女 | 国产精品免费大片| 丝袜美足系列| 亚洲中文字幕日韩| 搡老岳熟女国产| 午夜福利在线免费观看网站| 男人操女人黄网站| 国产片内射在线| 99国产精品一区二区三区| 精品电影一区二区在线| 另类亚洲欧美激情| 欧美日韩乱码在线| 黄色片一级片一级黄色片| 亚洲专区字幕在线| 久久狼人影院| 热99re8久久精品国产| 午夜福利影视在线免费观看| av中文乱码字幕在线| 日本a在线网址| 成人18禁在线播放| 极品少妇高潮喷水抽搐| 又大又爽又粗| 欧美日韩国产mv在线观看视频| 巨乳人妻的诱惑在线观看| 久久天躁狠狠躁夜夜2o2o| 9色porny在线观看| 亚洲国产精品sss在线观看 | 日本wwww免费看| 久久精品亚洲熟妇少妇任你| 久久久久精品人妻al黑| 人妻久久中文字幕网| 天天躁日日躁夜夜躁夜夜| 午夜两性在线视频| www.自偷自拍.com| 国产日韩欧美亚洲二区| 一进一出抽搐gif免费好疼 | 亚洲伊人色综图| 亚洲美女黄片视频| 色在线成人网| 老汉色av国产亚洲站长工具| 免费人成视频x8x8入口观看| 两人在一起打扑克的视频| 国产精品电影一区二区三区 | 欧美亚洲 丝袜 人妻 在线| 国产精品久久电影中文字幕 | 丝瓜视频免费看黄片| 亚洲久久久国产精品| 18禁裸乳无遮挡免费网站照片 | 久久 成人 亚洲| 女人高潮潮喷娇喘18禁视频| 超色免费av| 男男h啪啪无遮挡| 免费黄频网站在线观看国产| 波多野结衣一区麻豆| 成人永久免费在线观看视频| 男女床上黄色一级片免费看| 婷婷丁香在线五月| 悠悠久久av| 亚洲性夜色夜夜综合| 欧美中文综合在线视频| 人人妻,人人澡人人爽秒播| 久久精品国产亚洲av高清一级| 国产aⅴ精品一区二区三区波| 精品电影一区二区在线| 欧美亚洲 丝袜 人妻 在线| 王馨瑶露胸无遮挡在线观看| 国产一区二区激情短视频| 一区在线观看完整版| 国产99久久九九免费精品| 国产xxxxx性猛交| 在线观看免费日韩欧美大片| 国产亚洲精品一区二区www | 老司机深夜福利视频在线观看| 一区二区日韩欧美中文字幕| 美女 人体艺术 gogo| 欧美不卡视频在线免费观看 | 久久精品成人免费网站| 亚洲一区二区三区不卡视频| 午夜福利,免费看| 亚洲欧美激情综合另类| 一区二区三区激情视频| 日韩视频一区二区在线观看| 国产片内射在线| 日韩制服丝袜自拍偷拍| 超色免费av| 成人永久免费在线观看视频| 国产高清激情床上av| 欧美日韩福利视频一区二区| 亚洲欧美精品综合一区二区三区| 久久中文字幕一级| 欧美最黄视频在线播放免费 | 欧美日本中文国产一区发布| av网站在线播放免费| 国产成人欧美| 一级,二级,三级黄色视频| 男男h啪啪无遮挡| 精品国产美女av久久久久小说| 视频区图区小说| 老司机亚洲免费影院| 99国产精品免费福利视频| 老司机午夜十八禁免费视频| 一区二区三区激情视频| 久久久久久久精品吃奶| 黑人操中国人逼视频| 国产精品国产av在线观看| 国产精品秋霞免费鲁丝片| 亚洲欧美激情在线| 久久99一区二区三区| 亚洲精品av麻豆狂野| 久久精品国产亚洲av香蕉五月 | avwww免费| av福利片在线| 九色亚洲精品在线播放| 精品国产一区二区三区久久久樱花| 国内久久婷婷六月综合欲色啪| 成人av一区二区三区在线看| 日韩大码丰满熟妇| 女性被躁到高潮视频| 国产欧美日韩精品亚洲av| 99久久综合精品五月天人人| 天天躁夜夜躁狠狠躁躁| 欧美亚洲 丝袜 人妻 在线| 亚洲一区二区三区不卡视频| 国产精品九九99| 亚洲综合色网址| 亚洲 国产 在线| 最近最新免费中文字幕在线| av电影中文网址| 国产精品二区激情视频| 男女高潮啪啪啪动态图| 波多野结衣av一区二区av| 国产成人影院久久av| 一本综合久久免费| av有码第一页| 黄色a级毛片大全视频| tube8黄色片| 中文欧美无线码| 曰老女人黄片| 天堂中文最新版在线下载| 精品国内亚洲2022精品成人 | 日本vs欧美在线观看视频| 国产无遮挡羞羞视频在线观看| 午夜福利,免费看| 精品国产一区二区久久| 脱女人内裤的视频| 久久久精品区二区三区| 日韩欧美国产一区二区入口| 中文字幕人妻丝袜一区二区| 成人黄色视频免费在线看| 国产1区2区3区精品| 久久国产乱子伦精品免费另类| 交换朋友夫妻互换小说| av一本久久久久| 老司机靠b影院| 色94色欧美一区二区| 欧美日韩一级在线毛片| netflix在线观看网站| 午夜福利视频在线观看免费| 免费女性裸体啪啪无遮挡网站| 欧美日韩亚洲国产一区二区在线观看 | 亚洲色图av天堂| 在线免费观看的www视频| 午夜精品久久久久久毛片777| 91在线观看av| 日韩精品免费视频一区二区三区| 国产精品久久视频播放| 国产成人av激情在线播放| 亚洲专区中文字幕在线| 欧美日韩亚洲综合一区二区三区_| 91麻豆av在线| 亚洲欧美色中文字幕在线| 精品无人区乱码1区二区| 国产亚洲一区二区精品| 狠狠狠狠99中文字幕| 久久精品国产综合久久久| 十八禁网站免费在线| 亚洲精品国产色婷婷电影| 免费少妇av软件| 久久这里只有精品19| 欧美 日韩 精品 国产| 麻豆av在线久日| 曰老女人黄片| 母亲3免费完整高清在线观看| 免费在线观看视频国产中文字幕亚洲| 中文字幕人妻丝袜制服| 好看av亚洲va欧美ⅴa在| 久久久水蜜桃国产精品网| 国产在线精品亚洲第一网站| 一本一本久久a久久精品综合妖精| 国内久久婷婷六月综合欲色啪| 精品国产一区二区三区四区第35| 成熟少妇高潮喷水视频| 精品视频人人做人人爽| 国产成人啪精品午夜网站| 色在线成人网| 少妇的丰满在线观看| 黑人巨大精品欧美一区二区蜜桃| 热99re8久久精品国产| 12—13女人毛片做爰片一| 青草久久国产| 国产成人欧美| 欧美日韩福利视频一区二区| 男人舔女人的私密视频| 久久久精品国产亚洲av高清涩受| 老熟女久久久| 女人精品久久久久毛片| 天天躁狠狠躁夜夜躁狠狠躁| 精品无人区乱码1区二区| 久久久久久久国产电影| 日韩有码中文字幕| 亚洲精品国产区一区二| 午夜精品久久久久久毛片777| 妹子高潮喷水视频| 两性夫妻黄色片| 亚洲三区欧美一区| 午夜精品在线福利| 女人被躁到高潮嗷嗷叫费观| 日韩有码中文字幕| 99久久人妻综合| 女警被强在线播放| 久久人人97超碰香蕉20202| 国产av又大| 建设人人有责人人尽责人人享有的| 久久精品成人免费网站| 久久久精品区二区三区| 青草久久国产| 久久久久久人人人人人| 久久性视频一级片| 国产无遮挡羞羞视频在线观看| 超色免费av| 中文亚洲av片在线观看爽 | 纯流量卡能插随身wifi吗| 男人操女人黄网站| 亚洲全国av大片| 女警被强在线播放| 女人高潮潮喷娇喘18禁视频| 狂野欧美激情性xxxx| 国产在线观看jvid| 成人三级做爰电影| 在线永久观看黄色视频| 丰满人妻熟妇乱又伦精品不卡| 一区二区日韩欧美中文字幕| 欧美大码av| 一进一出好大好爽视频| 淫妇啪啪啪对白视频| 18禁国产床啪视频网站| 我的亚洲天堂| 久久久久久久午夜电影 | 韩国精品一区二区三区| 亚洲欧美激情综合另类| 国产成人系列免费观看| 91麻豆av在线| 国产免费av片在线观看野外av| 国产精品免费大片| 宅男免费午夜| 亚洲色图综合在线观看| 免费高清在线观看日韩| av电影中文网址| 一个人免费在线观看的高清视频| 中文字幕高清在线视频| 少妇裸体淫交视频免费看高清 | 久久久久久免费高清国产稀缺| 久久午夜亚洲精品久久| 国产高清视频在线播放一区| 极品人妻少妇av视频| 精品人妻1区二区| 亚洲免费av在线视频| 在线视频色国产色| 日韩欧美在线二视频 | 美女福利国产在线| 免费高清在线观看日韩| 国产精品乱码一区二三区的特点 | 久久精品人人爽人人爽视色| 久久精品亚洲精品国产色婷小说| 交换朋友夫妻互换小说| 成人特级黄色片久久久久久久| 制服诱惑二区| 丝瓜视频免费看黄片| 亚洲成a人片在线一区二区| 波多野结衣av一区二区av| 老司机福利观看| 国产av一区二区精品久久| 国产精品永久免费网站| 欧美激情 高清一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 19禁男女啪啪无遮挡网站| 一级毛片精品| 天天添夜夜摸| 国产在视频线精品| 亚洲av熟女| 变态另类成人亚洲欧美熟女 | 老鸭窝网址在线观看| 国产精品1区2区在线观看. | 国产精品1区2区在线观看. | 精品少妇一区二区三区视频日本电影| 91国产中文字幕| 一进一出抽搐gif免费好疼 | 不卡av一区二区三区| 国产精品久久久久久人妻精品电影| 欧美不卡视频在线免费观看 | 91老司机精品| 90打野战视频偷拍视频| 欧美精品啪啪一区二区三区| a在线观看视频网站| 亚洲精品在线美女| 操出白浆在线播放| 午夜影院日韩av| 国产男女内射视频| 国产精品二区激情视频| 亚洲av成人一区二区三| 人成视频在线观看免费观看| 热re99久久精品国产66热6| 操出白浆在线播放| 欧美精品高潮呻吟av久久| 91麻豆av在线| 精品乱码久久久久久99久播| 亚洲中文日韩欧美视频| 亚洲一码二码三码区别大吗| 国产亚洲一区二区精品| 很黄的视频免费| 无遮挡黄片免费观看| 法律面前人人平等表现在哪些方面| 制服诱惑二区| 成人国产一区最新在线观看| 免费不卡黄色视频| 午夜福利乱码中文字幕| 黑人欧美特级aaaaaa片| 人人妻人人澡人人爽人人夜夜| 国产免费男女视频| 18在线观看网站| 不卡一级毛片| 久久这里只有精品19| 十八禁高潮呻吟视频| 一进一出抽搐动态| 不卡一级毛片| 久久精品91无色码中文字幕| 欧美日韩国产mv在线观看视频| 91麻豆精品激情在线观看国产 | 久久这里只有精品19| 欧美精品亚洲一区二区| 精品久久久久久久毛片微露脸| 亚洲精品久久午夜乱码| 一进一出好大好爽视频| 校园春色视频在线观看| 国产精品久久久av美女十八| 操美女的视频在线观看| 纯流量卡能插随身wifi吗| 国产精品成人在线| 一级a爱视频在线免费观看| 少妇裸体淫交视频免费看高清 | 精品福利永久在线观看| www日本在线高清视频| 久久中文字幕人妻熟女| 少妇猛男粗大的猛烈进出视频| 久久香蕉国产精品| 国产99久久九九免费精品| 美女高潮喷水抽搐中文字幕| 成人三级做爰电影| 国产精品亚洲av一区麻豆| 国产亚洲一区二区精品| 丝袜人妻中文字幕| 国产99白浆流出| 香蕉国产在线看| 久久婷婷成人综合色麻豆| 欧美日韩视频精品一区| 精品一区二区三区视频在线观看免费 | 激情在线观看视频在线高清 | 侵犯人妻中文字幕一二三四区| 电影成人av| 中文亚洲av片在线观看爽 | 亚洲精品中文字幕在线视频| 午夜福利在线观看吧| 欧美日韩精品网址| 久久久久国内视频| 在线十欧美十亚洲十日本专区| 叶爱在线成人免费视频播放| 在线观看免费高清a一片| 在线天堂中文资源库| 日日夜夜操网爽| 大香蕉久久网| 我的亚洲天堂| 久久久久精品人妻al黑| 国产99久久九九免费精品| 一二三四社区在线视频社区8| 日日爽夜夜爽网站| 国产精品av久久久久免费| 欧美国产精品va在线观看不卡| 一级,二级,三级黄色视频| 侵犯人妻中文字幕一二三四区| 动漫黄色视频在线观看| 伊人久久大香线蕉亚洲五| 精品一品国产午夜福利视频| √禁漫天堂资源中文www| 午夜福利乱码中文字幕| 午夜成年电影在线免费观看| 丁香欧美五月| 欧美成人免费av一区二区三区 | 男女下面插进去视频免费观看| 成年版毛片免费区| 丝袜人妻中文字幕| 天堂俺去俺来也www色官网| a在线观看视频网站| 在线观看66精品国产| 老鸭窝网址在线观看| 国产精品98久久久久久宅男小说| 中亚洲国语对白在线视频| 亚洲一区中文字幕在线| 国产成人精品无人区| 国产精品99久久99久久久不卡| 一边摸一边抽搐一进一小说 | 国产黄色免费在线视频| 亚洲欧美精品综合一区二区三区| av超薄肉色丝袜交足视频| 女同久久另类99精品国产91| 两性夫妻黄色片| 女人被躁到高潮嗷嗷叫费观| 国产麻豆69| 亚洲欧美色中文字幕在线| 亚洲国产中文字幕在线视频| 国产精品国产av在线观看| 久久久久久久久免费视频了| 在线天堂中文资源库| 色播在线永久视频| 欧美激情高清一区二区三区| 岛国在线观看网站| 亚洲av熟女| 精品国产亚洲在线| 久久久国产成人精品二区 | 制服诱惑二区| 久久精品熟女亚洲av麻豆精品| 久久午夜综合久久蜜桃| 老汉色av国产亚洲站长工具| 国产人伦9x9x在线观看| 亚洲欧美一区二区三区久久| 一个人免费在线观看的高清视频| 精品国内亚洲2022精品成人 | 日本a在线网址| av免费在线观看网站| 国产色视频综合| 天天躁夜夜躁狠狠躁躁| 国产区一区二久久| 在线观看免费视频网站a站| 久久久久久久久免费视频了| 亚洲人成77777在线视频| 欧美乱码精品一区二区三区| 久久中文字幕人妻熟女| 无限看片的www在线观看| 亚洲黑人精品在线| 亚洲三区欧美一区| 欧美日韩福利视频一区二区| 新久久久久国产一级毛片| 一级片'在线观看视频| 国产不卡av网站在线观看| 免费观看精品视频网站| 90打野战视频偷拍视频| av不卡在线播放| 久久久久国内视频| 女人被躁到高潮嗷嗷叫费观| 国产成人免费观看mmmm| av欧美777| 国产在线精品亚洲第一网站| 久久精品人人爽人人爽视色| 国产精品乱码一区二三区的特点 | 午夜福利视频在线观看免费| www.精华液| www.999成人在线观看| 成人精品一区二区免费| 91av网站免费观看| 精品福利观看| 两性夫妻黄色片| www.自偷自拍.com| 成人影院久久| 最近最新中文字幕大全免费视频| 嫩草影视91久久| 国产高清国产精品国产三级| 中文字幕另类日韩欧美亚洲嫩草| 纯流量卡能插随身wifi吗| 国产高清国产精品国产三级| 久久99一区二区三区| 亚洲伊人色综图| 免费观看精品视频网站| 久久精品成人免费网站| 啦啦啦免费观看视频1| 亚洲午夜理论影院|