• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The role of melt cooling rate on the interface between 18R and Mg matrix in Mg97Zn1Y2 alloys

    2023-11-18 01:12:36JinShoLiPengLvZhngLi
    Journal of Magnesium and Alloys 2023年8期

    Q.Q. Jin, X.H. Sho, J.M. Li, Z.Z. Peng, M. Lv, B. Zhng, Y.M. Li, X.L. M

    a

    Materials Science and Engineering Research Center, Guangxi University of Science and Technology, Liuzhou 545006, China

    b Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

    c School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China

    Received 6 May 2021; received in revised form 17 August 2021; accepted 5 November 2021

    Available online 9 December 2021

    Abstract The role of melt cooling rate on the interface morphology and dislocation configuration between 18R long-period stacking ordered (LPSO)structure and Mg matrix in Mg97Zn1Y2 (at.%) alloys was investigated by atomic-scale HAADF-STEM imaging. The 18R/Mg interface is step-like both in the near-equilibrium alloy and non-equilibrium alloy. Lower cooling rate makes the step size more regular and larger. Only 54R structure can be observed at the interface in the near-equilibrium alloy, and the dislocations are highly ordered. 54R and 54R′ structure sandwiched by b1 and b2 + b3 dislocation arrays, and new dislocation configuration can be detected at the interface in the non-equilibrium alloy, but the dislocations are less ordered. 18R/Mg interface containing 54R or 54R′ in equilibrium width, parallel to the (01ˉ10) plane,should be most stable based on elastic calculation. The segregation of solute atoms and its strong interaction with dislocations dominate the LPSO/Mg interface via diffusion-displacive transformation.

    Keywords: Magnesium alloys; Long-period stacking ordered phases; Dislocations; Interface structure.

    1. Introduction

    Interfaces, such as twin boundaries, grain boundaries, and phase boundaries, have substantial influences on the behavior of polycrystalline solids [1–6]. For instance, the (111) coherent twin boundaries are known to be as effective as conventional grain boundaries in strengthening materials for facecentered cubic metals,but much more stable against migration for their lower excess energy [1–3]. The nucleation and migration of complex semi-coherent twin grain boundaries play a crucial role in the twinning and detwinning process [4–6].The phase boundaries in alloys are effective to block dislocation motion and crack propagation. The strength effect and migration behavior of phase boundaries are usually related to interfacial dislocations and segregation of solution atoms[7–10].

    In the past decades, magnesium alloys containing longperiod stacking ordered (LPSO) structures have attracted considerable attention for their unique structural characteristics [11–20] and superior mechanical properties [21–24]. For example, the Mg97Zn1Y2(at.%) alloys exhibited high tensile yield strength both at ambient and elevated temperature[21,23],which is strongly related to the high intrinsic mechanical properties [25] and thermal stability of LPSO structures[21].It is necessary to study the formation and transformation of the long-period stacking ordered structures during heat treatment to order alloys containing LPSO structures, which has a great influence on damping and mechanical properties[26,27]. Usually, the migration of incoherent (01ˉ10) interface between LPSO structure and Mg matrix plays an important role in determining the growth and decomposition of the LPSO structures [28]. Investigating the boundary structure helps better understand the growth of LPSO structures and the stability of the interface and interpret their morphology. Previous works [28] have attempted to investigate the incoherent(01ˉ10) boundaries. However, no detailed structural information of interfacial dislocation configuration was provided,mainly because the boundaries are not sharp in the alloy solution treated at 500 °C and followed by water quenching.

    We recently succeeded in obtaining sharp LPSO/Mg boundaries by fabricating Mg97Zn1Y2(at.%) alloys under the near-equilibrium condition [29]. We visualized that highly ordered complex incoherent 18R/Mg boundaries dissociated intob1dislocation array andb2+b3dislocation array with a slice of 54R sandwiched between them.The irregular 14H/Mg semi-coherent (SC) interface features alternately arrangement of two dislocations with an equal magnitude but opposite Burgers vectors. The behavior of the SC interfaces was dominated by the interaction between the dislocation pairs and solution atoms. In the present work, we will further unravel the role of melt cooling rate on the interface morphology and corresponding dislocation configurations between 18R and Mg matrix in the Mg97Zn1Y2(at.%) alloys.

    2. Experimental

    To investigate the characteristics of semi-coherent (SC)boundaries between 18R LPSO structures and Mg matrix,two Mg97Zn1Y2(at.%) alloys were prepared by melting high purity Mg, Zn, and Mg-30 wt.% Y master ingots in a resistance furnace, under a protective mixed gas of SF6(0.5 vol.%) and CO2(99.5 vol.%). The near-equilibrium alloy was obtained by cooling down to the room temperature in the furnace at 4 °C/min. The other non-equilibrium alloy was obtained by casting in a pre-heated graphite crucible mold under the protective gas. Thin foils for scanning transmission electron microscope (STEM) observations were cut from as-cast ingots, ground, and punched to a specific size with a diameter of 3 mm and thickness of 50 μm. They were firstly thinned by twin-jet electropolishing in a solution of 1% HClO4in ethanol under the conditions of 20 mA,35 V, and – 20 °C. They were then further thinned by low energy ion beams in a Gatan precision ion polishing system cooled by liquid nitrogen, with an incidence angle of 4°and voltages in the range of 3.5 ~1.0 kV for 1 h. The high angle annular dark-field scanning transmission electron microscope (HAADF-STEM) imaging was performed by an aberration-corrected Titan3TMG260–300 scanning transmission electron microscope equipped with a high-brightness field-emission gun (X-FEG) and double Cs correctors from CEOS, operated at 300 kV. All the HAADF-STEM images in this work were recorded along [2ˉ1ˉ10]αzone axis.

    3. Results and discussion

    3.1. Interface between 18R and Mg matrix in a near-equilibrium alloy

    We have observed and investigated 18R/Mg boundaries in the near-equilibrium Mg97Zn1Y2(at.%) alloy cooled in the furnace at 4 °C/min [29]. HAADF-STEM image in Fig. 1a shows that the interface between 18R structure and Mg matrix exhibits step-like morphology, and the size of the majority of the steps is several hundred nanometers. The step-like interface consists of (0001) coherent interface and (01ˉ10) semicoherent(SC)interface.HAADF-STEM image at higher magnification in Fig. 1b shows that one in three fringes extends into the Mg matrix, forming a highly ordered fence-shaped structure at the SC interface. The dissociation of the 18R/Mg interface into a pure edge dislocation (b1) array and a doublecore dislocation (b2+b3) array leads to the formation of a 54R structure. Theb1array in the 54R/Mg interface and the(b2+b3) array in the 54R/18R interface result in a tilt angle of the basal plane of 54R by 2.26° The interaction forces between the dislocations in each interface make the walls the most stable on the (01ˉ10) plane [29]. Thus, the step-shaped 18R/Mg boundaries can be observed in the near-equilibrium alloy, as is shown in Fig. 1a. Meanwhile, the interaction force between the two walls dominates the equilibrium width of 54R. The experimental width of the 54R in Fig. 1b varies in the range of 3.4 ~7.8 nm and is larger than the evaluated equilibrium width (approximately 2.8 nm) [27].

    3.2. Interface between 18R and Mg matrix in a non-equilibrium alloy

    The microstructure of the non-equilibrium Mg97Zn1Y2(at.%) alloy cast in a graphite crucible mold was investigated in Figs. 2 and 3 to clarify the role of melt cooling rate on the interface morphology and interfacial dislocations configuration. A low-magnification HAADF-STEM micrograph provided by Fig. 2a presents the interface between 18R structure and Mg matrix. The interface features the irregular step-like morphology, and the size of each step is less than 100 nm.Fringes with a spacing ofy0= 6 ×d0002= 1.56 nm are readily observed in the 18R structure exhibiting bright contrast,while the Mg matrix exhibits dark contrast. One in three fringes extends into the Mg matrix, forming a new fenceshaped structure in the SC interfaces, which can also be determined as 54R. Besides, the spacing of some neighboring fringes extending into the matrix is 4y0, as is indicated by arrows. To identify the structure details of the front tips of 18R/Mg SC interfaces, an atomic-resolution image was obtained in Fig.2b.The interfacial dislocations were determined to be 30° and 90° Shockley partial dislocations by measuring their edge components via open rectangular rings. Five AB′C′A blocks extended into Mg matrix, and only two dislocations at the end of blocks 1 and 14 are 90° Shockley partial dislocations. Two dislocations at the end of blocks 7 and 10 extending into Mg matrix are 30° Shockley partial dislocations. The distorted region exists at the end of two neighboring blocks, such as blocks 4 and 5, blocks 8 and 9.The edge component of the Burgers vector of the dislocation at their ends indicates they are 30° partial dislocations.The dislocations at the end of the rest blocks are 30° partial dislocations. Interestingly, the sum of Burgers vectors of dislocations at the end of each block group (1, 2 and 3), (4, 5 and 6), (7, 8 and 9), (12, 13 and 14) is zero. The 30° dislocation at the end of block 4 and 5 can be dissociated into one 90° partial dislocation and one 30° partial dislocation,i.e., 30° →90° + 30° We can also argue that block 4 and 5 are exactly bounded by a 90° partial dislocation and a 30°partial dislocation, respectively, and their summation is the 30° partial dislocation. The dislocations at the end of blocks 1 and 2 show a similar pattern.

    Fig. 1. (a) Low-magnification HAADF-STEM image showing the coherent and SC interface between 18R and Mg matrix in a near-equilibrium Mg97Zn1Y2 alloy. (b) HAADF-STEM image of the complex 18R/Mg SC interface at atomic scale, which is split into b1, b2 dislocation array and b3 dislocation array with a slap of 54R between them.

    Fig. 3 investigated a novel interface structure between 18R and Mg matrix in the non-equilibrium Mg97Zn1Y2(at.%) alloy. The low-magnification HAADF-STEM image in Fig. 3a also presents a step-like interface, and each step is tens of nanometers in width. Surprisingly, two in three fringes extend into the Mg matrix, forming a new fence-shaped structure in the SC interfaces. An atomic-resolution HAADF-STEM image was obtained in Fig. 3b to identify its detailed structure character. Two AB′C′A building blocks in three of the 18R extended into the matrix periodically withb2andb3dislocations at their ends, forming a 54R′structure expressed as (F2F8)3[16]. It is interesting to note that the presence of 54R′leads to the decomposition of the 18R/Mg interface into 54R′/Mg and 18R/54R′tilt boundaries. The wall positioned at the 54R′/18R interface comprises pure edge (90°)Shockley partial dislocations with Burgers vectorb1equal tobobs= 1/3[0ˉ110]. Another wall consisting ofb2andb3is positioned at the 54R′/Mg interface, with both of their edge componentsb2eandb3eequal tobobs= 1/6[01ˉ10], suggesting they are mixed (30°) Shockley partial dislocations. The sign of their screw componentsb2sandb3scannot be determined from Fig. 1b. Our experiment proved that neither tilt angle nor twist angle between 18R and Mg matrix,suggesting the sum of both edge components and screw components ofb1,b2, andb3is zero. Thus, we can deduceb2= 1/3[10ˉ10]andb3= 1/3[ˉ1100] (orb2= 1/3[ˉ1100] andb3= 1/3[10ˉ10])with their screw components of opposite sign. Based on our previous estimation [29], the two walls with theb1,b2, andb3alternative arrangement will be most stable. Accordingly,the dislocation configuration at the 54R′/Mg and 18R/54R′interfaces lead to a 2.26° tilt angle along the basal plane of 54R′.

    3.3. The role of elastic interaction on interface structure

    The elastic forces acting on theb1,b2, andb3dislocations were calculated to interpret the morphology and the dislocation configuration of the complex boundaries. Fig. 4a present the forces on dislocationbqand a solute atom due to the stress field of dislocationbp. Fig. 4b,c presents the arrangement ofb1,b2, andb3dislocations responsible for the transformation from 18R/Mg SC interface into 54R and 54R’structure.Here,b1= 1/3[0ˉ110],b2= 1/3[10ˉ10], andb3= 1/3[ˉ1100]. Since the basal plane containing the dislocation line and its Burgers vector is the only slip plane for a Shockley partial dislocation inhcpMg structure, the component of forceFpq,x(noted asFpqin present work) along the slip direction betweenbpandbqdislocations is most important in determining the behavior of the dislocations in Fig. 4. The interaction forces and that contributed by their edge or screw components between two neighboring dislocations in each wall are plotted againstxin Fig. 4a in our previous work [29]. It follows thatb1array is most stable when the dislocations lie on the (01ˉ10) plane,leading to the formation of a low-angle tilt boundary in the 54R/Mg or 54R′/18R interface.The sum of Burgers vectors ofb2andb3is a pure edge dislocation with the same magnitude and opposite sense asb1.Such a double-core dislocation array is most stable when they lie on the (01ˉ10) plane forming a low-angle tilt boundary in the 54R/18R or 54R′/Mg interface.

    We analyzed the equilibrium width of the 54R or 54R′structure via thermodynamics consideration of the complex boundaries with unit thickness, a length of 3ny0and a width ofω. The 54R with a width ofωcan be transformed from 1/3ω18R and 2/3ωMg via the repulse of two walls by a relative distance ofω, which can be expressed as:

    Fig. 2. (a) Low-magnification and (b) Atomic-resolution HAADF-STEM images showing the irregular interface between 18R and Mg matrix in a nonequilibrium Mg97Zn1Y2 alloy cast in a graphite crucible mold. The dislocation configuration of the SC interface is illustrated in (b).

    The 54R′with a width ofωcan be transformed from 2/3ω18R and 1/3ωMg via repulse of two walls by a relative distance ofω, which can be expressed as:

    The interaction force betweenb1andb2(orb3) dislocations in two walls is

    Fig. 3. (a) Low-magnification HAADF-STEM image showing a type of novel SC interface between 18R and Mg matrix in a non-equilibrium Mg97Zn1Y2 alloy cast in a graphite crucible mold. (b) Atomic-resolution HAADF-STEM images showing the complex 18R/Mg interface split into two dislocation arrays with a slap of 54R’ between them.

    3.4. Cooling rate on the structure of interface structure

    Fig. 5. Force considered for the b2 and b3 walls acting on the center b1 dislocation, and the role of free energy on the equilibrium width ω contributed by the interaction force, considering the interface contains 27 AB′C′A building blocks. The values of x and ω are expressed in units of y0, while the values of force and free energy are expressed in units of Gb2/2πy0 and Gb2/2π, respectively. The value of x with the positive and negative value presents the formation of 54R and 54R’ structure, respectively.

    Table 1 The distinguished differences of the LPSO/Mgs non-equilibrium Mg97Zn1Y2 (at.%) alloys.

    In this work, we investigated the SC interface between 18R and Mg matrix and calculated the elastic interaction between interfacial dislocations. Several distinguished characterizations could be concluded for the near-equilibrium and non-equilibrium Mg97Zn1Y2(at.%) alloys, as listed in Table 1. We’ll rationalize these from thermodynamics and dynamics. Firstly, ifb1,b2, andb3dislocations arrange ordered on the 18R/Mg interface, the sum of Burgers vector of dislocations at the end of any three neighboring building blocks is zero, which produces no macro strain. Theb1,b2, andb3dislocations arrange highly ordered in the SC interface in the near-equilibrium alloy, forming a perfect 54R structure, as shown in Fig. 1. Nevertheless, the disordered arrangement of dislocations and one Shockley partial dislocation at the end of two neighboring blocks can be occasionally observed in the SC interface in the non-equilibrium alloy, as shown in Figs. 2 and 3. Secondly, the dislocations on the 18R/Mg interface tend to split intob1dislocation array andb2+b3double-core dislocation array, because they are edge dislocations with Burgers vector of opposite signs. 54R or 54R’ formed on the 18R interface and the interface should be the most stable if their width is 1.8y0merely considering the elastic interaction between the two arrays, as shown in Fig. 5. Thirdly, based on the calculation of the elastic interaction F11betweenb1dislocations and F23betweenb2andb3dislocations (Fig 2c in Ref. [29]), the interface should be the most stable if theb1dislocation array andb2+b3dislocation array are strictly parallel to the (01ˉ10) plane. Experimentally,the dislocation array is strictly parallel to (01ˉ10) plane in the near-equilibrium alloy cooled in the furnace. Comparatively,the dislocation array is not strictly parallel to (01ˉ10) plane in the non-equilibrium alloy. Fourthly, the morphology of the interfaces is more regular and the size of the steps is larger in the near-equilibrium alloy than those in the non-equilibrium alloy. The dislocations on neighboring steps are not parallel to (01ˉ10) plane, thus more steps will result in higher interface energy. Formation of 18R/Mg SC interface with regular morphology strictly parallel to (01ˉ10) plane, a larger size of steps, and highly ordered dislocation configuration minimize the free energy of the interface. The alloy cooled at a lower rate will encounter a long-time high-temperature state, which should help the minimization of the free energy of the interface. Only 54R was observed in the SC interface between 18R structure and Mg matrix in the near-equilibrium alloy.In contrast, both 54R and 54R′structures were observed in the SC interface in the non-equilibrium alloy. However, both dislocation configurations in Fig. 4b and c are stable merely considering the elastic interaction between the two dislocation arrays. The phenomenon accounts for the better mobility of theb1dislocation and stronger interaction with solute atoms than theb2andb3dislocation.All the 54R′can transform into 54R during the long-time high-temperature state in the nearequilibrium alloy becauseb1dislocation can overcome the energy barrier. Part of 54R′was kept in the non-equilibrium alloy due to a higher cooling rate.

    The cooling rate during fabrication has been proved to dominate the diffusion of solute atoms and the dislocation network during materials fabrication and heat treatment in steel and superalloys [7,30]. The formation of LPSO structures in Mg alloys is considered a diffusional-displacive transformation [31,32]. Y/Zn atomic clusters are expected to form first in the super-saturated Mg matrix followed by the formation of Y/Zn enriched GP zones on the basal planes of the Mg matrix. Above a critical amount of Y and Zn atoms in the GP zones, LPSO structures are formed from the GP zones by the generation and propagation of Shockley partial dislocations [32]. The Shockley partial dislocations are assumed to be triggered by the volume increase in the super-saturated Mg matrix owing to the Y/Zn clusters and the GP zone. That is, the amount of Y/Zn at the Mg matrix should be the key factor for the formation of LPSO structures. Therefore, the cooling rates that significantly affect the diffusion of solute atoms would lead to the formation of different interface morphology and dislocation configuration at the LPSO/Mg matrix interface.

    4. Conclusion

    We directly visualized the microstructure of interfaces between 18R and Mg matrix in near-equilibrium and nonequilibrium Mg97Zn1Y2(at.%) alloys to unravel the role of melt cooling rate on the interface morphology and the dislocation configuration. The main conclusions can be summarized as follows:

    (1) Melt cooling rate plays a crucial role on the step-like interface of 18R LPSO structure. 18R/Mg interface consists of 54R structure under the lower cooling rate, while is composed of 54R and 54R′under higher cooling rate. The diffusion-displacive transformation dominates the interface of LPSO structures in Mg alloys.

    (2) The presence of a 54R (or 54R′) structure leads to the dissociation of the 18R/Mg interface into two tilt boundaries. The pure edge dislocation (b1) array in the 54R/Mg(or 54R′/18R) interface and the double-core dislocation(b2+b3) array in the 54R/18R (or 54R′/Mg) interface lead to a tilt angle of basal plane of 54R (or 54R′) by 2.26°

    (3) The interaction forces between the dislocations on each wall make the interfaces the most stable on the (01ˉ10)plane, and the interaction forces between the two dislocation walls affect the equilibrium width of 54R (or 54R′).

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China(grant number 51801214 and 51871222),Guangxi Science and Technology Base and Talents Special Project (Guike AD20297034), Liaoning Provincial Natural Science Foundation (2019-MS-335), Research Start-up Funding from Guangxi University of Science and Technology (No.03200150), Natural Science Foundation of Hebei Province of China (grant number E2020208083).

    激情五月婷婷亚洲| 婷婷色综合www| 国产精品女同一区二区软件| 麻豆国产97在线/欧美| 精品国产三级普通话版| eeuss影院久久| 久久久午夜欧美精品| 免费观看av网站的网址| 日韩,欧美,国产一区二区三区| 波多野结衣巨乳人妻| 亚洲天堂国产精品一区在线| 91精品国产九色| 三级国产精品片| 性色avwww在线观看| 69人妻影院| 深爱激情五月婷婷| 偷拍熟女少妇极品色| 亚洲国产欧美人成| xxx大片免费视频| 亚洲国产精品专区欧美| 久久久久精品久久久久真实原创| 91午夜精品亚洲一区二区三区| 国内精品美女久久久久久| 在线天堂最新版资源| 国产高清不卡午夜福利| 欧美不卡视频在线免费观看| 亚洲,欧美,日韩| 久久亚洲国产成人精品v| 国产又色又爽无遮挡免| 秋霞伦理黄片| 波多野结衣巨乳人妻| 青春草视频在线免费观看| 国产在线一区二区三区精| 91精品国产九色| 国产美女午夜福利| 久99久视频精品免费| 亚洲国产色片| 乱系列少妇在线播放| 国产亚洲精品久久久com| 天天躁日日操中文字幕| 午夜福利视频精品| 在线观看免费高清a一片| 日日干狠狠操夜夜爽| 视频中文字幕在线观看| 免费观看性生交大片5| 欧美性感艳星| 中国国产av一级| 国产亚洲最大av| 国产高清国产精品国产三级 | 特大巨黑吊av在线直播| 成年人午夜在线观看视频 | 婷婷色av中文字幕| 亚洲av不卡在线观看| 日韩一区二区三区影片| 国产片特级美女逼逼视频| 亚洲欧美清纯卡通| 在线 av 中文字幕| 能在线免费观看的黄片| 在线免费观看不下载黄p国产| 久久久久久久久中文| 男人狂女人下面高潮的视频| 免费黄频网站在线观看国产| 亚洲av成人精品一区久久| 国产色爽女视频免费观看| 尤物成人国产欧美一区二区三区| 国产久久久一区二区三区| 特大巨黑吊av在线直播| 欧美成人午夜免费资源| 欧美高清性xxxxhd video| 99久久人妻综合| 久久久久久久亚洲中文字幕| 欧美变态另类bdsm刘玥| 少妇的逼水好多| 久久亚洲国产成人精品v| 国产午夜精品论理片| 亚洲最大成人中文| 亚洲av二区三区四区| 在线天堂最新版资源| 国产一级毛片七仙女欲春2| 边亲边吃奶的免费视频| 男女边摸边吃奶| 神马国产精品三级电影在线观看| 婷婷色麻豆天堂久久| 亚洲成人精品中文字幕电影| 久久99热这里只有精品18| 亚洲综合色惰| 天堂√8在线中文| 成人特级av手机在线观看| 午夜激情久久久久久久| 日韩强制内射视频| 日本av手机在线免费观看| 久久97久久精品| 午夜老司机福利剧场| 欧美日韩国产mv在线观看视频 | 免费观看精品视频网站| 午夜视频国产福利| 色综合色国产| 亚洲成人av在线免费| 国产一级毛片七仙女欲春2| 国产精品国产三级专区第一集| 两个人的视频大全免费| 亚洲av不卡在线观看| 国产熟女欧美一区二区| 国产黄频视频在线观看| 亚洲伊人久久精品综合| 欧美97在线视频| 亚洲国产精品国产精品| 久久久久久久亚洲中文字幕| 国产精品不卡视频一区二区| 亚洲最大成人中文| 熟女电影av网| 成人毛片a级毛片在线播放| 婷婷色麻豆天堂久久| 男人舔女人下体高潮全视频| 国产一区亚洲一区在线观看| 淫秽高清视频在线观看| 一夜夜www| videossex国产| 能在线免费观看的黄片| 女的被弄到高潮叫床怎么办| 99久久人妻综合| 日韩欧美一区视频在线观看 | 日韩在线高清观看一区二区三区| 亚洲欧美日韩东京热| 夜夜看夜夜爽夜夜摸| 日韩av不卡免费在线播放| 美女国产视频在线观看| 18禁在线播放成人免费| 亚洲国产色片| 亚洲国产成人一精品久久久| av在线老鸭窝| 18+在线观看网站| 国产成人freesex在线| 你懂的网址亚洲精品在线观看| 永久免费av网站大全| 国产真实伦视频高清在线观看| 国产成人91sexporn| 精品午夜福利在线看| 听说在线观看完整版免费高清| av在线播放精品| 日韩亚洲欧美综合| 美女高潮的动态| 观看免费一级毛片| 国产午夜精品论理片| 国产有黄有色有爽视频| 久久99精品国语久久久| 亚洲精品日韩av片在线观看| 日本-黄色视频高清免费观看| 国产精品1区2区在线观看.| 99re6热这里在线精品视频| 色网站视频免费| 亚洲精品亚洲一区二区| 精品国产三级普通话版| 国产欧美另类精品又又久久亚洲欧美| 欧美性感艳星| 午夜免费激情av| 非洲黑人性xxxx精品又粗又长| 欧美成人午夜免费资源| 大又大粗又爽又黄少妇毛片口| 午夜激情福利司机影院| 三级国产精品片| 中文字幕人妻熟人妻熟丝袜美| 可以在线观看毛片的网站| 亚洲欧美日韩东京热| 高清午夜精品一区二区三区| 亚洲精品,欧美精品| 日日撸夜夜添| 我要看日韩黄色一级片| 一区二区三区乱码不卡18| 午夜激情福利司机影院| 日日啪夜夜爽| 久久久欧美国产精品| 三级男女做爰猛烈吃奶摸视频| 免费高清在线观看视频在线观看| 亚洲伊人久久精品综合| 舔av片在线| 亚洲最大成人手机在线| 少妇熟女欧美另类| 99久久人妻综合| 免费av观看视频| 一级毛片黄色毛片免费观看视频| 自拍偷自拍亚洲精品老妇| 国产欧美另类精品又又久久亚洲欧美| 亚洲av电影在线观看一区二区三区 | 国产精品久久久久久久久免| 可以在线观看毛片的网站| 成人亚洲精品一区在线观看 | 欧美一区二区亚洲| av国产久精品久网站免费入址| 久久午夜福利片| 国产人妻一区二区三区在| av线在线观看网站| 久久久久国产网址| 一个人看的www免费观看视频| 亚洲第一区二区三区不卡| 国产精品国产三级专区第一集| 天堂√8在线中文| 精品久久久精品久久久| 国产69精品久久久久777片| 又黄又爽又刺激的免费视频.| 国产精品人妻久久久久久| 日本-黄色视频高清免费观看| 少妇被粗大猛烈的视频| 久久久精品94久久精品| 一本久久精品| 亚洲不卡免费看| 18+在线观看网站| 国产高清不卡午夜福利| 亚洲欧美精品专区久久| 国产男人的电影天堂91| 午夜福利在线观看吧| 欧美 日韩 精品 国产| 精品久久久久久久人妻蜜臀av| 夜夜看夜夜爽夜夜摸| 热99在线观看视频| 国产精品女同一区二区软件| 在现免费观看毛片| 亚洲国产精品国产精品| 亚洲无线观看免费| 永久网站在线| 街头女战士在线观看网站| 国产男人的电影天堂91| 亚洲婷婷狠狠爱综合网| 亚洲国产成人一精品久久久| 日韩在线高清观看一区二区三区| 亚洲电影在线观看av| 美女主播在线视频| 一级二级三级毛片免费看| 在线 av 中文字幕| 高清在线视频一区二区三区| 国产精品一区二区三区四区免费观看| 汤姆久久久久久久影院中文字幕 | 一区二区三区乱码不卡18| 51国产日韩欧美| 观看免费一级毛片| 亚洲色图av天堂| 街头女战士在线观看网站| 夫妻午夜视频| 一级毛片我不卡| 特大巨黑吊av在线直播| 亚洲精华国产精华液的使用体验| 免费观看在线日韩| 男女下面进入的视频免费午夜| 青春草亚洲视频在线观看| 中文乱码字字幕精品一区二区三区 | 国产 一区 欧美 日韩| 成人亚洲欧美一区二区av| 欧美日韩在线观看h| 舔av片在线| 日韩 亚洲 欧美在线| 成人美女网站在线观看视频| 美女脱内裤让男人舔精品视频| 精品国产三级普通话版| 欧美激情在线99| 免费看日本二区| 中国美白少妇内射xxxbb| 熟女电影av网| 最近最新中文字幕免费大全7| 嫩草影院入口| 午夜福利成人在线免费观看| 日日摸夜夜添夜夜添av毛片| 国产乱人视频| 又粗又硬又长又爽又黄的视频| 男插女下体视频免费在线播放| 亚洲精品乱码久久久v下载方式| 天天一区二区日本电影三级| 日韩精品青青久久久久久| 中文精品一卡2卡3卡4更新| 大片免费播放器 马上看| 亚洲国产成人一精品久久久| 久久久久久久久久成人| 亚洲精品乱码久久久久久按摩| 国产成人精品婷婷| 亚洲丝袜综合中文字幕| 日本免费在线观看一区| 亚州av有码| 午夜精品在线福利| 老师上课跳d突然被开到最大视频| 女人久久www免费人成看片| 亚洲熟女精品中文字幕| 国产亚洲最大av| 国产精品美女特级片免费视频播放器| 国产日韩欧美在线精品| 国产精品久久久久久久电影| 中文欧美无线码| 免费观看性生交大片5| 嘟嘟电影网在线观看| 伦精品一区二区三区| 精品人妻视频免费看| 国产精品女同一区二区软件| 久久人人爽人人片av| 亚洲三级黄色毛片| 国内少妇人妻偷人精品xxx网站| 国产亚洲91精品色在线| 在现免费观看毛片| 免费黄频网站在线观看国产| 一个人看的www免费观看视频| 亚洲国产av新网站| 最近手机中文字幕大全| 日本一本二区三区精品| 纵有疾风起免费观看全集完整版 | 亚洲av免费高清在线观看| 99热这里只有是精品50| 亚洲欧美一区二区三区黑人 | 特级一级黄色大片| av播播在线观看一区| 一级毛片电影观看| 99热这里只有是精品在线观看| 日韩成人伦理影院| 免费观看a级毛片全部| 男插女下体视频免费在线播放| av黄色大香蕉| 国产午夜福利久久久久久| 一级a做视频免费观看| 韩国av在线不卡| 免费av观看视频| 美女主播在线视频| 精品久久久久久久末码| 直男gayav资源| 99视频精品全部免费 在线| 久久久久久久久久黄片| 2021少妇久久久久久久久久久| 中文字幕久久专区| 汤姆久久久久久久影院中文字幕 | 国产单亲对白刺激| 亚洲最大成人中文| 久久这里只有精品中国| 免费观看的影片在线观看| 日韩欧美一区视频在线观看 | 亚洲综合色惰| 国产在视频线精品| 中文字幕久久专区| 日产精品乱码卡一卡2卡三| 免费大片18禁| 亚洲av不卡在线观看| 在线a可以看的网站| 黑人高潮一二区| 亚洲人与动物交配视频| 日韩成人伦理影院| 国产伦精品一区二区三区视频9| 亚洲最大成人手机在线| 99热这里只有是精品50| 日韩一本色道免费dvd| 嫩草影院精品99| 欧美 日韩 精品 国产| 九九在线视频观看精品| 亚洲av免费在线观看| 最近的中文字幕免费完整| 中国美白少妇内射xxxbb| 精品久久久久久久久亚洲| 亚洲婷婷狠狠爱综合网| 免费少妇av软件| 久久精品人妻少妇| 国产av国产精品国产| 亚洲在线自拍视频| 天天躁夜夜躁狠狠久久av| 18禁在线播放成人免费| 九九爱精品视频在线观看| 国产有黄有色有爽视频| 日本猛色少妇xxxxx猛交久久| 麻豆精品久久久久久蜜桃| 亚洲色图av天堂| 一边亲一边摸免费视频| 亚洲人与动物交配视频| 天天一区二区日本电影三级| 丰满人妻一区二区三区视频av| 少妇熟女欧美另类| 九草在线视频观看| 国产精品人妻久久久影院| 在线免费观看不下载黄p国产| 岛国毛片在线播放| 亚洲熟妇中文字幕五十中出| 国产精品一区www在线观看| 80岁老熟妇乱子伦牲交| 亚洲精品日韩av片在线观看| 欧美日韩国产mv在线观看视频 | 精品一区二区免费观看| 老司机影院成人| 99久久精品一区二区三区| 91av网一区二区| 国产亚洲精品久久久com| 欧美变态另类bdsm刘玥| 97人妻精品一区二区三区麻豆| 亚洲精品影视一区二区三区av| 亚洲av成人精品一区久久| 亚洲真实伦在线观看| 精品一区在线观看国产| 亚洲av电影不卡..在线观看| 成人毛片60女人毛片免费| 超碰av人人做人人爽久久| 精品人妻一区二区三区麻豆| 欧美精品一区二区大全| 视频中文字幕在线观看| 又黄又爽又刺激的免费视频.| 亚洲乱码一区二区免费版| 嫩草影院入口| 国产在线男女| 26uuu在线亚洲综合色| 久99久视频精品免费| 白带黄色成豆腐渣| 床上黄色一级片| 国产v大片淫在线免费观看| 少妇猛男粗大的猛烈进出视频 | 精品久久久精品久久久| 十八禁国产超污无遮挡网站| 久久久亚洲精品成人影院| 男女视频在线观看网站免费| 国产激情偷乱视频一区二区| 久久国产乱子免费精品| 亚洲精品日本国产第一区| 伦理电影大哥的女人| 亚洲国产欧美在线一区| 亚洲成人一二三区av| 日本免费在线观看一区| 亚洲最大成人av| 极品少妇高潮喷水抽搐| 波野结衣二区三区在线| 日韩三级伦理在线观看| 好男人在线观看高清免费视频| 亚洲欧美日韩东京热| 亚洲熟妇中文字幕五十中出| 韩国高清视频一区二区三区| 欧美激情久久久久久爽电影| 五月玫瑰六月丁香| 久久久久久久大尺度免费视频| 国内精品美女久久久久久| 少妇裸体淫交视频免费看高清| 国产乱人偷精品视频| 免费高清在线观看视频在线观看| 性插视频无遮挡在线免费观看| 尾随美女入室| 黑人高潮一二区| 亚洲成人久久爱视频| 精品一区二区三卡| 亚洲熟女精品中文字幕| 亚洲aⅴ乱码一区二区在线播放| 国产三级在线视频| 精品久久久久久久久亚洲| 国产精品一区www在线观看| 成人亚洲精品一区在线观看 | 女的被弄到高潮叫床怎么办| 国产女主播在线喷水免费视频网站 | 国产精品熟女久久久久浪| 国产成人精品福利久久| 国产亚洲91精品色在线| 又爽又黄无遮挡网站| 一区二区三区高清视频在线| 日韩av在线大香蕉| 欧美变态另类bdsm刘玥| 国产精品一及| 成人二区视频| 国产有黄有色有爽视频| 两个人视频免费观看高清| 日本一本二区三区精品| 免费观看a级毛片全部| 在线免费观看不下载黄p国产| 精品国产一区二区三区久久久樱花 | 毛片一级片免费看久久久久| 午夜免费观看性视频| 久久久成人免费电影| 韩国av在线不卡| 国产女主播在线喷水免费视频网站 | 男人狂女人下面高潮的视频| 欧美精品一区二区大全| 亚洲精品影视一区二区三区av| 看黄色毛片网站| 亚洲av.av天堂| 欧美 日韩 精品 国产| 婷婷色麻豆天堂久久| 午夜精品在线福利| 亚洲av二区三区四区| av在线天堂中文字幕| 老师上课跳d突然被开到最大视频| 亚洲国产精品sss在线观看| 成人性生交大片免费视频hd| 亚洲经典国产精华液单| 18禁在线播放成人免费| 国产淫语在线视频| 国产成人免费观看mmmm| 女人被狂操c到高潮| 日本黄大片高清| 卡戴珊不雅视频在线播放| 97超碰精品成人国产| 国产成人精品婷婷| 亚洲图色成人| 亚洲欧美精品专区久久| 亚洲人与动物交配视频| 大话2 男鬼变身卡| 欧美日韩国产mv在线观看视频 | 免费观看无遮挡的男女| 80岁老熟妇乱子伦牲交| 国产欧美另类精品又又久久亚洲欧美| 精品久久久久久成人av| 97人妻精品一区二区三区麻豆| 亚洲精品第二区| 国产一级毛片七仙女欲春2| 18禁在线无遮挡免费观看视频| 久久精品国产亚洲av涩爱| 激情五月婷婷亚洲| 免费人成在线观看视频色| 精品一区二区免费观看| 久热久热在线精品观看| 亚洲精品视频女| 午夜福利视频1000在线观看| 一个人看的www免费观看视频| 少妇裸体淫交视频免费看高清| 国产激情偷乱视频一区二区| 国产欧美另类精品又又久久亚洲欧美| 亚洲av电影不卡..在线观看| 日韩欧美精品v在线| 麻豆精品久久久久久蜜桃| 亚洲激情五月婷婷啪啪| 中文乱码字字幕精品一区二区三区 | 免费看a级黄色片| 老司机影院成人| 日本-黄色视频高清免费观看| 亚洲高清免费不卡视频| 黄色配什么色好看| 嫩草影院新地址| 久久精品国产亚洲av涩爱| 乱人视频在线观看| 80岁老熟妇乱子伦牲交| 亚洲内射少妇av| 精品国内亚洲2022精品成人| 国产精品久久久久久精品电影| 亚洲va在线va天堂va国产| www.av在线官网国产| 国产精品女同一区二区软件| 成人欧美大片| 亚洲熟妇中文字幕五十中出| 在线观看人妻少妇| 丰满人妻一区二区三区视频av| 色尼玛亚洲综合影院| 亚洲欧洲国产日韩| 久久久久久久大尺度免费视频| 久久国产乱子免费精品| 久久精品久久久久久久性| 自拍偷自拍亚洲精品老妇| 麻豆乱淫一区二区| freevideosex欧美| 亚洲人与动物交配视频| 边亲边吃奶的免费视频| 国产淫片久久久久久久久| av.在线天堂| 男插女下体视频免费在线播放| 免费av不卡在线播放| 欧美激情在线99| 国产精品人妻久久久久久| 日韩av免费高清视频| 成人鲁丝片一二三区免费| 少妇高潮的动态图| 亚洲国产精品sss在线观看| 亚洲欧美日韩卡通动漫| 欧美 日韩 精品 国产| 亚洲,欧美,日韩| 国产午夜精品久久久久久一区二区三区| 嫩草影院新地址| 国产色婷婷99| 免费电影在线观看免费观看| 亚洲精品一区蜜桃| 精品久久久久久电影网| 乱码一卡2卡4卡精品| 亚洲av福利一区| 国产淫语在线视频| 久久久久久久午夜电影| 成人一区二区视频在线观看| 国产一区二区亚洲精品在线观看| 99久久精品一区二区三区| 亚洲国产欧美人成| 免费看不卡的av| 日本免费a在线| 免费大片黄手机在线观看| 六月丁香七月| 精品不卡国产一区二区三区| 婷婷色综合www| 1000部很黄的大片| 秋霞在线观看毛片| 国产午夜精品久久久久久一区二区三区| 欧美成人精品欧美一级黄| 欧美bdsm另类| 亚洲av在线观看美女高潮| 七月丁香在线播放| 国产免费又黄又爽又色| 激情五月婷婷亚洲| 国产亚洲精品av在线| 搡老妇女老女人老熟妇| 中文资源天堂在线| 69av精品久久久久久| 免费无遮挡裸体视频| 一级毛片我不卡| 你懂的网址亚洲精品在线观看| 麻豆成人午夜福利视频| 男女边摸边吃奶| 亚洲一区高清亚洲精品| 日韩中字成人| 亚洲国产精品国产精品| 国产精品一区二区三区四区久久| 波多野结衣巨乳人妻| 观看美女的网站| 色综合色国产| videossex国产| 麻豆久久精品国产亚洲av| 日韩 亚洲 欧美在线| 亚洲av国产av综合av卡| 欧美3d第一页| 免费播放大片免费观看视频在线观看| videos熟女内射| 精品久久国产蜜桃| 久久久久久久久久成人| 大片免费播放器 马上看| 国产免费一级a男人的天堂| 久久人人爽人人片av| 少妇被粗大猛烈的视频| 最近最新中文字幕大全电影3| 国产成人91sexporn|