楊麗,曹洪波,張學(xué)英,翟含含,李辛淼,彭佳偉,田義,陳海江
桃生長勢相關(guān)基因功能鑒定
1河北農(nóng)業(yè)大學(xué)園藝學(xué)院,河北保定 071000;2喀什職業(yè)技術(shù)學(xué)院,新疆喀什 844000;3河北農(nóng)業(yè)大學(xué)山區(qū)研究所/河北省山區(qū)農(nóng)業(yè)技術(shù)創(chuàng)新中心/國家北方山區(qū)農(nóng)業(yè)工程技術(shù)研究中心,河北保定 071001
【目的】克隆桃樹勢相關(guān)基因,分析其對多種激素的響應(yīng),鑒定其在調(diào)控?cái)M南芥生長勢中的作用,為科學(xué)合理調(diào)控樹勢提供分子依據(jù)?!痉椒ā恳浴杏腕?號’為材料進(jìn)行激素處理,利用實(shí)時(shí)熒光定量分析在24 h內(nèi)的動(dòng)態(tài)響應(yīng);以桃品種‘久艷’為材料克隆;構(gòu)建過量表達(dá)載體,將其轉(zhuǎn)化擬南芥;對轉(zhuǎn)基因擬南芥進(jìn)行表型觀察,對同時(shí)播種的轉(zhuǎn)基因與野生型擬南芥進(jìn)行萌芽率統(tǒng)計(jì),對萌發(fā)一致的生長7 d擬南芥進(jìn)行根長及下胚軸的測量,對萌發(fā)一致的擬南芥進(jìn)行不同濃度的激素處理;取7 d大小的兩個(gè)轉(zhuǎn)基因株系及野生型擬南芥材料進(jìn)行轉(zhuǎn)錄組測序,對差異表達(dá)基因進(jìn)行功能分析、KEGG通路富集分析,并分析調(diào)控基因。【結(jié)果】能夠?qū)に靥幚碜龀隹焖夙憫?yīng)。過表達(dá)能夠影響擬南芥種子萌芽,轉(zhuǎn)基因擬南芥幼苗下胚軸及根長較野生型長,蓮座大,整體長勢好于野生型,且降低了對生長素的敏感性。過表達(dá)的轉(zhuǎn)錄組分析結(jié)果顯示,在兩個(gè)對比組中均表達(dá)的差異基因有128個(gè),其中有84個(gè)上調(diào)基因,44個(gè)下調(diào)基因,并對20個(gè)表達(dá)量較高的差異基因進(jìn)行了描述。對過表達(dá)產(chǎn)生的差異表達(dá)基因進(jìn)行GO功能顯著性富集分析,結(jié)果表明差異表達(dá)基因在細(xì)胞組分方面富集的基因最多,定位在細(xì)胞質(zhì)、細(xì)胞膜、細(xì)胞器和細(xì)胞外區(qū)域。對差異表達(dá)基因進(jìn)行KEGG通路富集分析,結(jié)果表明差異表達(dá)基因主要富集到苯丙氨酸生物合成通路、植物激素信號轉(zhuǎn)導(dǎo)通路、淀粉蔗糖代謝通路等代謝通路。在苯丙氨酸生物合成通路中,能夠調(diào)控編碼過氧化物酶基因AT1G05260、AT3G01190、AT3G32980、AT5G15180表達(dá)上調(diào),過氧化物酶與木質(zhì)素合成相關(guān),木質(zhì)素含量與植株長勢呈顯著相關(guān),暗示過表達(dá)可能參與調(diào)控?cái)M南芥木質(zhì)素合成從而調(diào)控長勢。在植物激素信號轉(zhuǎn)導(dǎo)通路中,生長素信號轉(zhuǎn)導(dǎo)中的一些生長素響應(yīng)基因等表達(dá)下調(diào),脫落酸信號轉(zhuǎn)導(dǎo)途徑中磷酸酶蛋白表達(dá)上調(diào),而脫落酸信號通路基因表達(dá)下調(diào)。能夠調(diào)控?cái)M南芥長勢,參與多種激素信號轉(zhuǎn)導(dǎo)?!窘Y(jié)論】能夠快速對激素做出響應(yīng),且能夠調(diào)控轉(zhuǎn)基因擬南芥長勢;過量表達(dá)導(dǎo)致的差異基因主要富集到苯丙氨酸生物合成通路、植物激素信號轉(zhuǎn)導(dǎo)通路、淀粉蔗糖代謝通路等代謝通路;調(diào)控IAA、ABA信號轉(zhuǎn)導(dǎo),推測其在桃樹的生長發(fā)育過程中起到了重要作用。
桃;;基因表達(dá);激素處理;信號轉(zhuǎn)導(dǎo)
【研究意義】桃(L.)屬于薔薇科(Rosaceae)植物,落葉小喬木。桃樹營養(yǎng)生長旺盛,新梢生長量大,一年可形成多次副梢,生產(chǎn)中經(jīng)常通過修剪以及噴施生長調(diào)節(jié)劑對樹勢進(jìn)行控制,否則便會(huì)造成樹冠郁閉,影響樹體的通風(fēng)透光,從而影響果實(shí)品質(zhì)。因此,挖掘桃樹勢生長調(diào)控基因,明確樹勢調(diào)控機(jī)制十分必要?!厩叭搜芯窟M(jìn)展】生長素調(diào)節(jié)植物生長發(fā)育,早期生長素反應(yīng)基因介導(dǎo)其對植物生長發(fā)育的基因組效應(yīng)。()于1987年被發(fā)現(xiàn),是最大的早期生長素響應(yīng)基因家族[1]。在前人提出的生長素介導(dǎo)細(xì)胞擴(kuò)增的酸生長機(jī)制中發(fā)揮核心作用[2]。盡管早期發(fā)現(xiàn)了它們的生長素反應(yīng)性,但其功能和作用方式長期以來仍有待解析[3]。近年來,人們對在動(dòng)態(tài)調(diào)控生長和適應(yīng)性調(diào)控生長中的重要性以及SAUR蛋白作用的分子機(jī)制日益了解。目前,該基因家族已在擬南芥、棉花、茄子及葡萄等多個(gè)物種中得到鑒定[4-5]。一些主要在下胚軸或其他伸長組織中表達(dá),在調(diào)節(jié)細(xì)胞伸長中發(fā)揮重要作用[6-7]。能夠通過負(fù)調(diào)節(jié)PP2C蛋白磷酸酶來調(diào)節(jié)質(zhì)膜H+-ATP酶活性,從而促進(jìn)細(xì)胞擴(kuò)增[7]。在擬南芥內(nèi)胚層中表達(dá),參與側(cè)根發(fā)育,過表達(dá)的擬南芥會(huì)出現(xiàn)下胚軸伸長,影響側(cè)根發(fā)育,使花瓣膨脹和花序莖發(fā)生扭曲[8]。此外,一些還可以對生長素的合成運(yùn)輸產(chǎn)生負(fù)調(diào)控,過表達(dá)的擬南芥幼苗下胚軸變短且直,并且可以通過施加外源生長素緩解這種癥狀[9]。在水稻中,過表達(dá)對生長素的生物合成和運(yùn)輸產(chǎn)生負(fù)調(diào)控,降低生長素的轉(zhuǎn)運(yùn)活性[10],這表明不同的SAUR蛋白可能具有相反的功能。還可以受到大量其他上游因素的調(diào)控,從而根據(jù)內(nèi)部和環(huán)境信號動(dòng)態(tài)調(diào)節(jié)生長[11-15]。此外,一些在葉片衰老、細(xì)胞分裂及響應(yīng)干旱、低溫、病蟲害等過程中發(fā)揮作用[8-10]?!颈狙芯壳腥朦c(diǎn)】桃是原產(chǎn)我國的一種極為重要的大宗水果,但其樹體偏大,普遍存在樹冠郁閉不便管理的問題,大量使用人工導(dǎo)致生產(chǎn)成本增加[16-17]。筆者課題組前期在對不同樹勢的桃樹進(jìn)行轉(zhuǎn)錄組數(shù)據(jù)分析時(shí)獲得了與調(diào)控樹勢相關(guān)的18個(gè)關(guān)鍵基因,并對其中的進(jìn)行了功能鑒定,發(fā)現(xiàn)該基因過量表達(dá)促進(jìn)器官伸長[18]。為進(jìn)一步探究其余的差異基因是否也存在相似或者相反的表型,對轉(zhuǎn)錄組中篩選得到的與樹勢相關(guān)的(XM_007201374.1)進(jìn)行功能鑒定,探究過表達(dá)擬南芥是否具有調(diào)控長勢的功能,并觀察過表達(dá)擬南芥對激素的響應(yīng)情況?!緮M解決的關(guān)鍵問題】克隆桃并穩(wěn)定遺傳轉(zhuǎn)化擬南芥,進(jìn)行表型觀察及轉(zhuǎn)錄組測序分析,結(jié)合表達(dá)對激素的響應(yīng),鑒定的基因功能,為調(diào)控桃樹體長勢提供分子依據(jù)。
試驗(yàn)于2022年在河北農(nóng)業(yè)大學(xué)園藝學(xué)院、保定市滿城區(qū)國家良種基地進(jìn)行。
本試驗(yàn)用于克隆基因的RNA提取自桃品種‘久艷’,砧木為‘毛桃’,采用常規(guī)田間管理。用于田間激素處理的RNA提取自桃品種‘中油蟠9號’,由保定市滿城區(qū)國家桃良種基地提供。
本研究使用的擬南芥為哥倫比亞型(Col-0)。
1.2.1 構(gòu)建桃與擬南芥長勢相關(guān)蛋白系統(tǒng)發(fā)育樹 通過文獻(xiàn)獲得擬南芥()SAUR家族與長勢相關(guān)的蛋白序列信息,將桃PpSAUR5、PpSAUR73和擬南芥SAUR蛋白序列置于MEGA7軟件中,使用ClustalW程序進(jìn)行多重序列比對,將得到的結(jié)構(gòu)采用鄰接法(Neighbor-Joining,NJ),參數(shù)默認(rèn),Bootstrap鄰接值設(shè)置為1 000,構(gòu)建系統(tǒng)發(fā)育樹。
1.2.2 桃對激素的瞬時(shí)響應(yīng) 于2022年9月20日,選取長至20 cm的‘中油蟠9號’嫩梢對其進(jìn)行生長調(diào)節(jié)劑處理。試驗(yàn)以噴施0.7%無水乙醇溶液為對照,分別向葉面噴施100 mg?L-1吲哚-3-乙酸IAA、100 mg?L-1赤霉素(GA)、50 mg?L-1鄰氨甲酰苯甲酸(NPA)、50 mg?L-1的乙烯利(ETH)和100 mg?L-1的脫落酸(ABA)。取樣時(shí)間為處理后0 min、3 min、5 min、1 h、3 h和24 h。樣品采集部位為葉片,直接在液氮中冷凍后儲存于-80 ℃。
利用OminiPlant RNA Kit(康為世紀(jì),北京,CW2598S)提取樣品RNA,采用HiFiScript gDNA Removal RT MasterMix(康為世紀(jì),北京,CW2020M)試劑盒進(jìn)行反轉(zhuǎn)錄,合成cDNA第一鏈,用于quantitative real-time PCR(qRT-PCR)分析,儀器為LightCycler?96(Roche,德國)。選取桃樹(Prupe.6G163400)作為內(nèi)參基因[19],每個(gè)樣品3次重復(fù),用2-ΔΔCT方法計(jì)算基因相對表達(dá)量[20]。反應(yīng)條件設(shè)定:預(yù)變性95 ℃、300 s;95 ℃、10 s變性,58 ℃、10 s退火,72 ℃、10 s后延伸,循環(huán)45次。本研究所需引物見表1。
表1 qRT-PCR驗(yàn)證引物序列
1.2.3 桃轉(zhuǎn)基因擬南芥表型觀察 構(gòu)建PRI101-FLAG-過表達(dá)載體,利用花序浸染法轉(zhuǎn)化擬南芥[18],獲得轉(zhuǎn)基因株系。在同一四分板MS培養(yǎng)基播種野生型與3個(gè)轉(zhuǎn)基因株系擬南芥種子,每個(gè)株系播種20粒種子,4 ℃春化2 d,之后放置在組培室培養(yǎng),每12 h進(jìn)行一次萌發(fā)率統(tǒng)計(jì)(種子露出白色胚根即為成功萌發(fā)),試驗(yàn)重復(fù)3次。萌發(fā)率(%)=萌發(fā)種子數(shù)/培養(yǎng)皿中全部種子數(shù)×100%。游標(biāo)卡尺統(tǒng)計(jì)根長、下胚軸長度。
1.2.4轉(zhuǎn)基因擬南芥轉(zhuǎn)錄組測序分析 選取MS培養(yǎng)基中生長7 d的野生型與轉(zhuǎn)基因擬南芥幼苗用液氮速凍,干冰運(yùn)輸至百邁客公司,文庫質(zhì)檢合格后,使用Illumina NovaSeq6000測序平臺進(jìn)行測序,利用百邁客云平臺進(jìn)行數(shù)據(jù)分析。
為進(jìn)一步研究PpSAUR73與擬南芥的系統(tǒng)進(jìn)化關(guān)系,采用MEGA7軟件構(gòu)建了桃、擬南芥長勢相關(guān)的SAUR蛋白系統(tǒng)進(jìn)化樹。PpSAUR73與AtSAUR14、15、19蛋白的關(guān)系較近(圖1)。
為了探究桃對各種激素的響應(yīng)情況,對‘中油蟠9號’嫩梢進(jìn)行激素噴施并取樣,定量分析的表達(dá)量。結(jié)果顯示,桃能在噴施IAA后3 min內(nèi)出現(xiàn)快速響應(yīng),表達(dá)量是對照(0 min)的3.1倍,在噴施后3 h時(shí)表達(dá)量達(dá)到對照的14.9倍,在24 h時(shí)為對照的4.6倍;在噴施NPA后,的表達(dá)量呈先下降再上升趨勢,在1 h時(shí)的表達(dá)量僅為對照的0.54倍,24 h時(shí)上升到與對照持平水平;在噴施ABA后,表達(dá)量整體呈上升趨勢,最高在3 h時(shí),為對照的3.4倍;在噴施乙烯后,的表達(dá)量呈上升下降再上升下降的趨勢,1 h時(shí)表達(dá)量最高,為對照的2.4倍(圖2)。
圖1 PpSAUR73與擬南芥長勢相關(guān)蛋白的系統(tǒng)發(fā)育樹
圖2 PpSAUR73表達(dá)對激素的響應(yīng)分析
為探究的基因功能,構(gòu)建了過表達(dá)載體,遺傳轉(zhuǎn)化擬南芥,獲得轉(zhuǎn)基因擬南芥。結(jié)果顯示,種子萌芽率在24 h時(shí)出現(xiàn)顯著性差異,野生型擬南芥的萌芽率僅45%,但轉(zhuǎn)基因擬南芥能夠達(dá)到70%,甚至96%(圖3)。表明過量表達(dá)能夠影響種子萌芽。
對萌發(fā)7 d的轉(zhuǎn)基因擬南芥的根長、下胚軸進(jìn)行觀察統(tǒng)計(jì)。結(jié)果顯示,相較于野生型,轉(zhuǎn)基因株系的根長顯著增加,分別增加了32%、43%和43%;下胚軸長度分別顯著增加60%、59%和74%(圖4),表明也具有促進(jìn)器官伸長的功能。此外,過表達(dá)的擬南芥較野生型的蓮座大,一直到結(jié)果期,過表達(dá)的擬南芥都表現(xiàn)出長勢顯著好于野生型。
Col-0:野生型;SAUR73-1、SAUR73-14、SAUR73-2:轉(zhuǎn)基因擬南芥株系。不同小寫字母表示差異顯著(P<0.05)。下同
圖4 野生型及轉(zhuǎn)基因擬南芥表型觀察
為了探究對激素的響應(yīng),對野生型與過表達(dá)擬南芥進(jìn)行了不同濃度的IAA、GA及NPA處理(圖5)。結(jié)果顯示,與野生型相比,轉(zhuǎn)基因株系對IAA的敏感性大幅度降低。與Col-0相比,50 nmol?L-1IAA對3個(gè)轉(zhuǎn)基因擬南芥根長生長的抑制率分別降低了11%、4%和6%;75 nmol?L-1IAA對轉(zhuǎn)基因擬南芥根長生長的抑制率分別降低約8%、6%和4%;100 nmol?L-1IAA對轉(zhuǎn)基因擬南芥根長生長的抑制率分別降低約7%、7%和6%,隨著處理濃度增大,IAA對各擬南芥根系的抑制作用逐漸增大。與野生型相比,轉(zhuǎn)基因株系對GA與NPA的敏感性明顯增加。50 μmol?L-1的GA對各擬南芥根長生長的抑制差異并不顯著,均約為23%;100 μmol?L-1GA對不同擬南芥根長生長的抑制作用存在顯著性差異,分別約為28%、36%、38%和47%;150 μmol?L-1GA對擬南芥根長生長的抑制作用更加明顯,抑制率分別約為46%、53%、55%和57%。10和20 μmol?L-1NPA對轉(zhuǎn)基因擬南芥根長生長的抑制率均顯著高于野生型。由此可知,過量表達(dá)降低了植株對IAA的敏感性,提高了對GA與NPA敏感性。
圖5 IAA、GA及NPA對擬南芥根長生長的影響
對野生型(CK)及SAUR73-1、SAUR73-14兩個(gè)轉(zhuǎn)基因擬南芥株系進(jìn)行轉(zhuǎn)錄組測定,從轉(zhuǎn)錄組中篩選出9個(gè)基因進(jìn)行qRT-PCR驗(yàn)證(圖6)。轉(zhuǎn)錄組測得的FPKM值與這9個(gè)基因相對表達(dá)量的變化趨勢一致,從而驗(yàn)證了RNA-seq數(shù)據(jù)的可靠性。
圖6 差異表達(dá)基因的qRT-PCR驗(yàn)證
將SAUR73-1、SAUR73-14分別與CK進(jìn)行差異比較分析(圖7),顯示在兩個(gè)對比組中均表達(dá)的差異基因有128個(gè),其中有84個(gè)上調(diào)基因,44個(gè)下調(diào)基因,對這些差異基因的表達(dá)繪制熱圖,篩選出20個(gè)表達(dá)量相對高的差異基因(表2)。
將CK與SAUR73-1、SAUR73-14的共同差異基因進(jìn)行GO功能顯著性富集分析。結(jié)果表明,差異表達(dá)基因在細(xì)胞組分方面富集的基因最多,定位在細(xì)胞質(zhì)、細(xì)胞膜、細(xì)胞器和細(xì)胞外區(qū)域等;其次是生物學(xué)過程方面富集的基因,與細(xì)胞過程、代謝過程、生物調(diào)節(jié)和對刺激的反應(yīng)等有關(guān);在分子功能方面富集的基因較少,與其他物質(zhì)結(jié)合、催化活性、核酸結(jié)合轉(zhuǎn)錄因子活性、結(jié)構(gòu)分子活性、抗氧化活性以及分子功能調(diào)節(jié)劑等有關(guān)(圖8-A)。對差異表達(dá)基因進(jìn)行KEGG通路富集分析(圖8-B),結(jié)果顯示,差異基因主要富集到苯丙氨酸生物合成通路、植物激素信號轉(zhuǎn)導(dǎo)通路、淀粉蔗糖代謝通路、MAPK信號通路。其中,苯丙氨酸生物合成通路與植物激素信號轉(zhuǎn)導(dǎo)通路可能與生長勢密切相關(guān)。
對苯丙氨酸代謝合成通路進(jìn)行分析(圖9),挖掘差異表達(dá)基因(表3),發(fā)現(xiàn)差異基因中AT1G05260、AT3G01190、AT3G32980、AT5G15180 4個(gè)編碼過氧化物酶基因表達(dá)上調(diào),而過氧化物酶在木質(zhì)素的合成過程中發(fā)揮關(guān)鍵作用[21],推測過表達(dá)可能參與調(diào)控木質(zhì)素合成。
A:樣品間差異表達(dá)基因維恩圖;B:共同差異表達(dá)基因熱圖
KEGG通路富集顯示(圖10),過表達(dá)擬南芥的差異基因在生長素信號轉(zhuǎn)導(dǎo)、脫落酸信號轉(zhuǎn)導(dǎo)通路富集。對上述通路中的差異表達(dá)基因進(jìn)行分析,發(fā)現(xiàn)過量表達(dá)下調(diào)生長素的響應(yīng)基因AT1G16510()、AT1G56150()、AT1G75580()、AT3G12830()、AT4G34770()表達(dá),其中基因AT1G16510()與AT1G75580()還可對植物的衰老進(jìn)行調(diào)控,AT1G56150()表達(dá)對ABA信號傳導(dǎo)和葉綠體的功能狀態(tài)進(jìn)行調(diào)控[22]。在脫落酸信號轉(zhuǎn)導(dǎo)通路,過量表達(dá)上調(diào)磷酸酶蛋白AT3G11410()表達(dá),下調(diào)脫落酸信號通路基因AT5G05440(),編碼ABA信號傳導(dǎo)負(fù)調(diào)節(jié)器,而能夠調(diào)節(jié)絲氨酸、蘇氨酸磷酸酶活性。盡管是生長素響應(yīng)基因,但對脫落酸通路有調(diào)控作用,并且田間激素噴施試驗(yàn)也發(fā)現(xiàn)對脫落酸有響應(yīng)。
表2 SAUR73部分共同差異基因的信息描述
廣泛參與細(xì)胞生理發(fā)育過程,涉及植物生長發(fā)育的激素和環(huán)境調(diào)控過程,而植物激素之間也存在相互作用,互相影響[23]。作為生長素響應(yīng)基因,擬南芥能夠?qū)AA作出快速響應(yīng)[8],在IAA處理30 min后,—都發(fā)生兩到三倍的上調(diào)[24],過表達(dá)—能夠?qū)TH作出響應(yīng),突變體對ETH的敏感性降低[25]。本研究通過對田間桃樹進(jìn)行激素噴施,發(fā)現(xiàn)對IAA能夠做出快速響應(yīng),并且發(fā)現(xiàn)其也能對ABA、ETH作出響應(yīng)。轉(zhuǎn)擬南芥影響種子萌芽,而種子萌芽受到赤霉素的調(diào)控[26],但轉(zhuǎn)錄組數(shù)據(jù)中并沒有富集到赤霉素信號轉(zhuǎn)導(dǎo),推測是在種子萌芽期間影響赤霉素水平,但在幼苗及成苗以后不影響。以上均說明可能參與多種激素信號轉(zhuǎn)導(dǎo)過程。擬南芥種子的萌發(fā)、根長、下胚軸長度等與激素水平有關(guān),且激素在調(diào)控樹勢生長中也具有重要的作用,有研究表明蘋果倒貼皮和矮化中間砧可以降低韌皮部IAA水平從而使樹體矮化[27];ABA水平與核桃實(shí)生苗生長勢呈負(fù)相關(guān)[28];GA處理24 h后,栽培種和野生種曼陀羅種子的發(fā)芽率和幼苗的鮮質(zhì)量、干質(zhì)量、根長以及根表面積均顯著提高[29]。本研究發(fā)現(xiàn)擬南芥萌發(fā)、根長、下胚軸長度都發(fā)生了變化,能夠促進(jìn)器官伸長,猜測該基因可能具有影響激素水平的功能,而激素是調(diào)控樹體生長發(fā)育的關(guān)鍵因素之一,由此推測,該基因也可能通過影響激素水平而調(diào)控桃樹樹勢。
A:SAUR73共同差異表達(dá)基因的GO功能類別;B:SAUR73共同差異表達(dá)基因的KEGG代謝通路富集
表3 苯丙氨酸合成代謝通路中涉及的差異基因
圖 9 苯丙氨酸合成代謝通路圖
圖10 植物激素信號轉(zhuǎn)導(dǎo)中差異表達(dá)基因聚類熱圖
擬南芥中發(fā)現(xiàn)多個(gè)基因能夠調(diào)控細(xì)胞伸長,定位在細(xì)胞質(zhì)膜上,在下胚軸和根中高表達(dá),正向調(diào)控?cái)M南芥的生長和生長素轉(zhuǎn)運(yùn),過表達(dá)使細(xì)胞擴(kuò)張導(dǎo)致下胚軸長度增加[6,24-25,30];過表達(dá)會(huì)導(dǎo)致細(xì)胞與器官的伸長并且影響頂鉤的發(fā)育[11];在擬南芥中發(fā)現(xiàn)過表達(dá)融合蛋白能夠使下胚軸、雄蕊絲變長,并且發(fā)現(xiàn)下胚軸中積累的IAA較多[6];—通過影響擬南芥的乙烯受體信號傳導(dǎo)并促進(jìn)植物生長,使子葉、蓮座葉變大,葉片表皮細(xì)胞面積變大[25];過表達(dá)—也均被發(fā)現(xiàn)能夠促進(jìn)細(xì)胞伸長[6,24,30-35]。筆者實(shí)驗(yàn)室前期研究也發(fā)現(xiàn),過表達(dá)能夠使擬南芥器官伸長[18]。與前人研究一致,本研究中的表型試驗(yàn)表明過表達(dá)能夠使轉(zhuǎn)基因擬南芥的根及下胚軸伸長、蓮座變大。
過表達(dá)影響生長素水平、生長素極性轉(zhuǎn)運(yùn)和生長素通路基因的表達(dá)[6,8,24,36]。同樣在本研究轉(zhuǎn)錄組測序中發(fā)現(xiàn),過表達(dá)對IAA信號轉(zhuǎn)導(dǎo)發(fā)生調(diào)控,下調(diào)生長素的響應(yīng)基因AT1G16510()、AT1G56150()、AT1G75580()、AT3G12830()、AT4G34770()表達(dá),其中AT1G16510()與AT1G75580()基因還可對植物的衰老進(jìn)行調(diào)控。過表達(dá)上調(diào)擬南芥表達(dá),下調(diào)的表達(dá)。由此猜測過表達(dá)也對擬南芥的IAA水平產(chǎn)生影響。前人研究表明,已有許多對脫落酸有反應(yīng)[11],如與脫落酸信號轉(zhuǎn)導(dǎo)相關(guān)[10,37]。同樣,本研究發(fā)現(xiàn)能夠調(diào)控IAA信號轉(zhuǎn)導(dǎo),且能夠調(diào)控ABA信號轉(zhuǎn)導(dǎo),這與相似。轉(zhuǎn)錄組數(shù)據(jù)顯示在野生型與SAUR73-1、SAUR73-14株系中均表達(dá)的差異基因有128個(gè),在差異基因的KEGG代謝途徑分析中顯示,有4個(gè)編碼過氧化物酶基因表達(dá)上調(diào),而過氧化物酶在木質(zhì)素的合成過程中發(fā)揮關(guān)鍵作用,而已有研究表明木質(zhì)素水平與長勢呈顯著相關(guān)[38-43],這暗示很可能是通過促進(jìn)木質(zhì)素的合成來調(diào)控植株的生長勢。前人研究發(fā)現(xiàn)可通過與PP2C.D磷酸酶相互作用并抑制其磷酸酶活性,使質(zhì)外體酸化,細(xì)胞壁松弛,促進(jìn)細(xì)胞的伸長生長[2,7,24,44-45]。本研究轉(zhuǎn)錄組測序結(jié)果顯示,對PP2CA表達(dá)量產(chǎn)生了上調(diào),但是否存在與相似的功能還需要進(jìn)一步鑒定。
本研究發(fā)現(xiàn)能夠快速對激素做出響應(yīng),且能夠調(diào)控轉(zhuǎn)基因擬南芥長勢;過量表達(dá)導(dǎo)致的差異基因主要富集到苯丙氨酸生物合成通路、植物激素信號轉(zhuǎn)導(dǎo)通路、淀粉蔗糖代謝通路等代謝通路;調(diào)控IAA、ABA信號轉(zhuǎn)導(dǎo),推測其在桃樹的生長發(fā)育過程中發(fā)揮重要作用,研究結(jié)果為采用分子手段控制樹勢提供了參考。
[1] STORTENBEKER N, BEMER M. The SAUR gene family: The plant’s toolbox for adaptation of growth and development. Journal of Experimental Botany, 2019, 70(1): 17-27.
[2] SPARTZ A K, LOR V S, REN H, OLSZEWSKI N E, MILLER N D, WU G S, SPALDING E P, GRAY W M. Constitutive expression of() in tomato confers auxin-independent hypocotyl elongation. Plant Physiology, 2017, 173(2): 1453-1462.
[3] BEMER M, VAN MOURIK H, MUI?O J M, FERRáNDIZ C, KAUFMANN K, ANGENENT G C. FRUITFULL controls SAUR10 expression and regulatesgrowth and architecture. Journal of Experimental Botany, 2017, 68(13): 3391-3403.
[4] LI X H, LIU G Y, GENG Y H, WU M, PEI W F, ZHAI H H, ZANG X S, LI X L, ZHANG J F, YU S X, YU J W. A genome-wide analysis of the small auxin-up RNA (SAUR) gene family in cotton. BMC Genomics, 2017, 18(1): 815.
[5] WU J, LIU S Y, HE Y J, GUAN X Y, ZHU X F, CHENG L, WANG J, LU G. Genome-wide analysis of SAUR gene family in Solanaceae species. Gene, 2012, 509(1): 38-50.
[6] CHAE K, ISAACS C G, REEVES P H, MALONEY G S, MUDAY G K, NAGPAL P, REED J W.SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. The Plant Journal, 2012, 71(4): 684-697.
[7] SPARTZ A K, REN H, PARK M Y, GRANDT K N, LEE S H, MURPHY A S, SUSSMAN M R, OVERVOORDE P J, GRAY W M. SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in. The Plant Cell, 2014, 26(5): 2129-2142.
[8] KONG Y Y, ZHU Y B, GAO C, SHE W J, LIN W Q, CHEN Y, HAN N, BIAN H W, ZHU M Y, WANG J H. Tissue-specific expression of SMALL AUXIN UP RNA41 differentially regulates cell expansion and root meristem patterning in. Plant and Cell Physiology, 2013, 54(4): 609-621.
[9] PARK J E, KIM Y S, YOON H K, PARK C M. Functional characterization of agene in apical hook development in. Plant Science, 2007, 172(1): 150-157.
[10] KANT S, BI Y M, ZHU T, ROTHSTEIN S J. SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiology, 2009, 151(2): 691-701.
[11] KODAIRA K S, QIN F, TRAN L S P, MARUYAMA K, KIDOKORO S, FUJITA Y, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K.Cys2/His2 zinc-finger proteins AZF1and AZF2negatively regulate abscisic acid-repressive and auxin-inducible genes under abiotic stress conditions. Plant Physiology, 2011, 157(2): 742-756.
[12] FAVERO D S, LE K N, NEFF M M. Brassinosteroid signaling converges with suppressor of phytochrome b4-#3 to influence the expression of small auxin up rna genes and hypocotyl growth. The Plant Journal, 2017, 89(6): 1133-1145.
[13] HU W F, YAN H W, LUO S S, PAN F, WANG Y, XIANG Y. Genome-wide analysis of poplar SAUR gene family and expression profiles under cold, polyethylene glycol and indole-3-acetic acid treatments. Plant Physiology and Biochemistry, 2018, 128: 50-65.
[14] OH E, ZHU J Y, BAI M Y, ARENHART R A, SUN Y, WANG Z Y. Cell elongation is regulated through a central circuit of interacting transcription factors in thehypocotyl. eLife, 2014, 3: e03031.
[15] VAN MOURIK H, VAN DIJK A D J, STORTENBEKER N, ANGENENT G C, BEMER M. Divergent regulation ofSAUR genes: a focus on the SAUR10-clade.BMC Plant Biology, 2017, 17(1): 1-14.
[16] 翟宇杰. 不同品種桃樹生長勢的差異及相關(guān)基因的表達(dá)與調(diào)控[D]. 保定: 河北農(nóng)業(yè)大學(xué), 2020.
ZHAI Y J. Difference of growth potential of different peach cultivars and expression and regulation of related genes [D]. Baoding: Hebei Agricultural University, 2020. (in Chinese)
[17] 周曉雅. 多效唑抑制桃新梢生長的效應(yīng)及相關(guān)分子機(jī)理研究[D]. 保定: 河北農(nóng)業(yè)大學(xué), 2020.
ZHOU X Y. Study on the effect of paclobutrazol on inhibiting the growth of peach shoots and its related molecular mechanism [D]. Baoding: Hebei Agricultural University, 2020. (in Chinese)
[18] 翟含含, 翟宇杰, 田義, 張葉, 楊麗, 溫陟良, 陳海江. 桃SAUR家族基因分析及功能鑒定. 園藝學(xué)報(bào), 2023, 50(1): 1-14.
ZHAI H H, ZHAI Y J, TIAN Y, ZHANG Y, YANG L, WEN Z L, CHEN H J. Genome-wide identification of peach SAUR gene family and characterization ofgene. Acta Horticulturae Sinica, 2023, 50(1): 1-14. (in Chinese)
[19] 王文然, 樊秀彩, 張文穎, 劉崇懷, 房經(jīng)貴, 王晨. 果樹赤霉素代謝與信號途徑研究進(jìn)展. 生物技術(shù)通報(bào), 2017, 33(11): 1-7.
WANG W R, FAN X C, ZHANG W Y, LIU C H, FANG J G, WANG C. Study progress on gibberellin metabolism and signaling transduction pathway in fruits trees. Biotech Bulletin, 2017, 33(11): 1-7. (in Chinese)
[20] 徐獻(xiàn)斌, 耿曉月, 李慧, 孫麗娟, 鄭煥, 陶建敏. 基于轉(zhuǎn)錄組分析ABA促進(jìn)葡萄花青苷積累相關(guān)基因. 中國農(nóng)業(yè)科學(xué), 2022, 55(1): 134-151. doi: 10.3864/j.issn.0578-1752.2022.01.012.
XU X B, GENG X Y, LI H, SUN L J, ZHENG H, TAO J M. Transcriptome analysis of genes involved in ABA-induced anthocyanin accumulation in grape. Scientia Agricultura Sinica, 2022, 55(1): 134-151. doi: 10.3864/j.issn.0578-1752.2022.01.012. (in Chinese)
[21] WEI J H, SONG Y R. Recent advances in study of lignin biosynthesis and manipulation. Journal of Integrative Plant Biology, 2001, 43(8): 771-779.
[22] ZENG Y, ZHAO T H, KERMODE A R. A conifer ABI3-interacting protein plays important roles during key transitions of the plant life cycle. Plant Physiology, 2013, 161(1): 179-195.
[23] SWARUP R, PERRY P, HAGENBEEK D, VAN DER STRAETEN D, BEEMSTER G T S, SANDBERG G, BHALERAO R, LJUNG K, BENNETT M J. Ethylene upregulates auxin biosynthesis inseedlings to enhance inhibition of root cell elongation. The Plant Cell, 2007, 19(7): 2186-2196.
[24] SPARTZ A K, LEE S H, WENGER J P, GONZALEZ N, ITOH H, INZé D, PEER W A, MURPHY A S, OVERVOORDE P J, GRAY W M. The saur19 subfamily of small auxin up RNA genes promote cell expansion. The Plant Journal, 2012, 70(6): 978-990.
[25] LI Z G, CHEN H W, LI Q T, TAO J J, BIAN X H, MA B, ZHANG W K, CHEN S Y, ZHANG J S. Retraction Note: Three SAUR proteins SAUR76, SAUR77 and SAUR78 promote plant growth in. Scientific Reports, 2022, 12: 1994.
[26] 吳慧娟, 劉艷, 王錫鋒. 小麥矮縮病毒引起的植株矮化與赤霉素代謝的相關(guān)性分析. 中國農(nóng)業(yè)科學(xué), 2017, 50(17): 3337-3343. doi: 10.3864/j.issn.0578-1752.2017.17.008.
WU H J, LIU Y, WANG X F. Correlational analyses between dwarfing of plant height induced by wheat dwarf virus (WDV) infection and gibberellin metabolism. Scientia Agricultura Sinica, 2017, 50(17): 3337-3343. doi: 10.3864/j.issn.0578-1752.2017.17.008. (in Chinese)
[27] LOCKARD R G, SCHNEIDER G W. Stock and scion growth relationships and the dwarfing mechanism in apple//Horticultural Reviews. Wiley Online Books, 1981: 315-375.
[28] 張志華, 劉新彩, 劉彥紅, 高儀, 王紅霞. 核桃幼樹內(nèi)源激素與生長勢的關(guān)系. 林業(yè)科學(xué), 2006, 42(9): 131-133.
ZHANG Z H, LIU X C, LIU Y H, GAO Y, WANG H X. Study on relationship between hormone and growth vigor of young. Scientia Silvae Sinicae, 2006, 42(9): 131-133. (in Chinese)
[29] 閆艷華. 不同外源激素處理對曼陀羅種子萌發(fā)及幼苗生長的影響. 北方園藝, 2020(23): 115-122.
YAN Y H. Effects of different exogenous hormones on seed germination and seedling growth of. Northern Horticulture, 2020(23): 115-122. (in Chinese)
[30] STAMM P, KUMAR P P. Auxin and gibberellin responsiveSMALL AUXIN UP RNA36 regulates hypocotyl elongation in the light. Plant Cell Reports, 2013, 32(6): 759-769.
[31] HARMER S L, BROOKS C J. Growth-mediated plant movements: hidden in plain sight. Current Opinion in Plant Biology, 2018, 41: 89-94.
[32] SHIN J H, MILA I, LIU M C, RODRIGUES M A, VERNOUX T, PIRRELLO J, BOUZAYEN M. The RIN-regulated Small Auxin-Up RNA SAUR69 is involved in the unripe-to-ripe phase transition of tomato fruit via enhancement of the sensitivity to ethylene. The New Phytologist, 2019, 222(2): 820-836.
[33] WANG J J, SUN N, ZHANG F F, YU R B, CHEN H D, DENG X W, WEI N. SAUR17 and SAUR50 differentially regulate PP2C-D1 during apical hook development andopening in. The Plant Cell, 2020, 32(12): 3792-3811.
[34] HOU K, WU W, GAN S S. SAUR36, a small auxin up RNA gene, is involved in the promotion of leaf senescence in. Plant Physiology, 2013, 161(2): 1002-1009.
[35] 余洪, 易倩, 張曼曼, 朱世平, 王福生, 趙曉春. CclSAUR49基因的表達(dá)特征及對類檸檬苦素生物合成的影響. 果樹學(xué)報(bào), 2021, 38(8): 1240-1251.
YU H, YI Q, ZHANG M M, ZHU S P, WANG F S, ZHAO X C. Characteristics of CclSAUR49 expression and its effect on limonoids bio-synthesis in citrus. Journal of Fruit Science, 2021, 38(8): 1240-1251. (in Chinese)
[36] REN H, GRAY W. SAUR proteins as effectors of hormonal and environmental signals in plant growth. Molecular Plant, 2015, 8(8): 1153-1164.
[37] KANT S, PENG M S, ROTHSTEIN S J. Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in. PLoS Genetics, 2011, 7(3): e1002021.
[38] 李偉. 榿木苗期不同無性系PAL和木質(zhì)素及生長關(guān)系的研究[D]. 北京: 中國林業(yè)科學(xué)研究院, 2001.
LI W. Study on the relationship between PAL and lignin and growth of different clones ofat seedling stage [D]. Beijing: Chinese Academy of Forestry, 2001. (in Chinese)
[39] 佘恒志, 聶姣, 李英雙, 劉星貝, 胡丹, 馬珊, 次仁卓嘎, 汪燦, 吳東倩, 阮仁武, 易澤林. 不同抗倒伏能力甜蕎品種莖稈木質(zhì)素及其單體合成特征. 中國農(nóng)業(yè)科學(xué), 2017, 50(7): 1202-1209. doi: 10.3864/j.issn.0578-1752.2017.07.003.
SHE H Z, NIE J, LI Y S, LIU X B, HU D, MA S, CIRENZHUOGA, WANG C, WU D Q, RUAN R W, YI Z L. Lignin and lignin monomer synthetic characteristics of culm in common buckwheat with different lodging resistance capabilities. Scientia Agricultura Sinica, 2017, 50(7): 1202-1209. doi: 10.3864/j.issn.0578-1752.2017.07.003. (in Chinese)
[40] 郭光艷, 柏峰, 劉偉, 秘彩莉. 轉(zhuǎn)錄因子對木質(zhì)素生物合成調(diào)控的研究進(jìn)展. 中國農(nóng)業(yè)科學(xué), 2015, 48(7): 1277-1287. doi: 10.3864/ j.issn.0578-1752.2015.07.03.
GUO G Y, BAI F, LIU W, BI C L. Advances in research of the regulation of transcription factors of lignin biosynthesis. Scientia Agricultura Sinica, 2015, 48(7): 1277-1287. doi: 10.3864/j.issn.0578- 1752.2015.07.03. (in Chinese)
[41] 胡丹, 劉星貝, 汪燦, 楊浩, 李鶴鑫, 阮仁武, 袁曉輝, 易澤林. 不同抗倒性甜蕎莖稈木質(zhì)素合成關(guān)鍵酶基因的表達(dá)分析. 中國農(nóng)業(yè)科學(xué), 2015, 48(9): 1864-1872. doi: 10.3864/j.issn.0578-1752.2015. 09.20.
HU D, LIU X B, WANG C, YANG H, LI H X, RUAN R W, YUAN X H, YI Z L. Expression analysis of key enzyme genes in lignin synthesis of culm among different lodging resistances of common buckwheat (moench). Scientia Agricultura Sinica, 2015, 48(9): 1864-1872. doi: 10.3864/j.issn.0578-1752.2015. 09.20. (in Chinese)
[42] 呂婷雯, 沈汝波, 楊洪強(qiáng), 范偉國, 張瑞雪, 王利, 徐穎, 曹輝, 寧留芳, 周春然. 施加有機(jī)肥下木質(zhì)素對平邑甜茶根系活力及根際土壤微生態(tài)的影響. 山東農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2018, 49(4): 561-565.
Lü T W, SHEN R B, YANG H Q, FAN W G, ZHANG R X, WANG L, XU Y, CAO H, NING L F, ZHOU C R. Effects of lignin on root activity ofrehd. and microecology in rhizosphere soil under organic fertilizer. Journal of Shandong Agricultural University (Natural Science Edition), 2018, 49(4): 561-565. (in Chinese)
[43] 孫瑞敏, 翟夢華, 李虎, 李孟華, 王鳳, 張樺. 木質(zhì)素合成與梭梭生長發(fā)育的關(guān)系研究. 現(xiàn)代農(nóng)業(yè)科技, 2019(5): 126-127.
SUN R M, ZHAI M H, LI H, LI M H, WANG F, ZHANG H. Study on the relationship between lignin synthesis andgrowth and development. XianDai NongYe KeJi, 2019(5): 126-127. (in Chinese)
[44] KATHARE P K, DHARMASIRI S, DHARMASIRI N. SAUR53 regulates organ elongation and apical hook development in. Plant Signaling & Behavior, 2018, 13(10): e1514896.
[45] WONG J H, SPARTZ A K, PARK M Y, DU M M, GRAY W M. Mutation of a conserved motif of PP2C.D phosphatases confers SAUR immunity and constitutive activity. Plant Physiology, 2019, 181(1): 353-366.
Functional Identification of Peach Gene
YANG Li1, CAO HongBo1, ZHANG XueYing1, ZHAI HanHan2, LI XinMiao1, PENG JiaWei1, TIAN Yi3, CHEN HaiJiang1
1Horticultural Department, Agricultural University of Hebei, Baoding 071000, Hebei;2Kashgar Vocational and Technical College, Kashgar 844000, Xinjiang;3Mountainous Areas Research Institute, Hebei Agricultural University/Technology Innovation Center for Agriculture in Mountainous Areas of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071001, Hebei
【Objective】 The object of this study was to isolate a peach potential-related gene, to analyze its expression response to hormones, and to identify its role in regulating seedling growth in transgenic Arabidopsis, so as to provide the molecular basis for the regulation of tree potential. 【Method】 Using Zhongyou Pan 9 as the material for hormone treatment, the real-time fluorescence quantitative analysis was used to analyze the dynamic response ofwithin 24 hours.was cloned from the peach variety Jiuyan. PpSAUR73 overexpression vector was constructed and transformed into. Phenotypic observation of genetical modified Arabidopsis was carried out, and the germination rate statistics of both genetically modified and wild-type Arabidopsis sown simultaneously were performed too. The root length and hypocotyl of 7-day growing Arabidopsis with consistent germination were measured, and Arabidopsis with consistent germination was treated with different concentration hormone. Transcriptome sequencing was performed using 7-day-old seedlings, and the differentially expressed genes were analyzed by functional analysis, KEGG pathway enrichment analysis, and regulatory genes analysis, respectively.【Result】could respond quickly to hormone treatments. The overexpression ofcould affect the germination of Arabidopsis seeds. The hypocotyl and root length of seedlings were longer than those of wild type. In addition, the rosette of transgenic Arabidopsis was larger, and the overall growth potential was larger than wild type. The transgenic Arabidopsis showed decreased sensitivity to auxin. The transcriptome analysis of overexpressingshowed that there were 128 differentially expressed genes in both control groups, including 84 up-regulated genes and 44 down-regulated genes, and 20 differentially expressed genes were described. The GO function significant enrichment analysis of the differentially expressed genes generated by overexpression ofshowed that the differentially expressed genes were the most abundant in cell components, located in cytoplasm, cell membrane, organelle and extracellular regions. KEGG pathway enrichment analysis on differentially expressed genes were conducted, and the results showed that the differentially expressed genes in pairwise comparisons CK vsand CK vswere mainly enriched in phenylalanine biosynthesis pathway, plant hormone signal transduction pathway, starch sucrose metabolic pathway and other metabolic pathways. In the phenylalanine biosynthesis pathway,could regulate the upregulation of peroxidase encoding genes,,and. Peroxidases were associated with lignin synthesis, and lignin content was significantly correlated with plant growth, suggesting that overexpression ofmight be involved in regulating lignin synthesis inand thus growth. In plant hormone signal transduction pathway, the expression of some auxin responsive genes of,,,andin abscisic acid signal transduction pathway was up-regulated, and the expression of abscisic acid signal pathway genewas down-regulated.could regulate the growth ofand participate in multiple hormone signal transduction pathways. 【Conclusion】This study found thatcould quickly respond to hormones and regulate the growth in transgenic. The differentially expressed genes caused by overexpressed genes caused by overexpression ofwere mainly enriched in metabolic pathways, such as phenylalanine biosynthesis pathway, plant hormone signaling pathway, and starch sucrose metabolism pathway.also played an important role in IAA and ABA signal transduction pathways, it was speculated that it played an important role in the growth and development of peach trees.
peach;; gene expression; hormone treatment; signal transduction
10.3864/j.issn.0578-1752.2023.20.012
2023-03-24;
2023-06-30
財(cái)政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系資助項(xiàng)目(CARS-30-2-03)、河北省重點(diǎn)研發(fā)計(jì)劃(20326804D)、熱雜果現(xiàn)代種業(yè)科技創(chuàng)新團(tuán)隊(duì)(21326310D)
楊麗,E-mail:1097125451@qq.com。通信作者陳海江,chenhaijiang2001@163.com。通信作者田義,tianyi@hebau.edu.cn
(責(zé)任編輯 趙伶俐)