王鵬,譚杭波
無錫雪浪數(shù)制科技有限公司,江蘇無錫,214131
航空工業(yè)是反映一個國家綜合國力和軍事實力的戰(zhàn)略性高科技產(chǎn)業(yè)。它是國防建設(shè)和航空運輸?shù)奈镔|(zhì)基礎(chǔ),對國家經(jīng)濟、社會發(fā)展和技術(shù)創(chuàng)新具有重要意義[1]。航空工業(yè)的快速發(fā)展加速了技術(shù)進步和產(chǎn)業(yè)升級,促進了國民經(jīng)濟和就業(yè)增長,并為國家安全和國防能力建設(shè)提供了堅實的支撐。航空工業(yè)是一個高端技術(shù)聚集的領(lǐng)域,具有技術(shù)密集、高度綜合和廣泛協(xié)同的特點,并是多品種、小批量和離散制造的典型代表[2]。
近年來,航空制造業(yè)面臨著越來越短的開發(fā)周期、越來越高的交付質(zhì)量要求以及不斷增長的新產(chǎn)品需求的巨大壓力[3]。目前的協(xié)同制造模式,主機和配套廠商信息相對滯后,缺乏科學(xué)、系統(tǒng)、集中化的倉儲和物流管理系統(tǒng)。首先,由于統(tǒng)計和賬戶信息不清晰,倉庫無法及時獲取準(zhǔn)確的物料庫存信息,從而無法很好地組織生產(chǎn)。其次,缺乏科學(xué)有效的存儲設(shè)施和運輸設(shè)備,使物流時效性的預(yù)測成難題,結(jié)果造成大量資源浪費和成本上漲。更為嚴(yán)重的是,它阻礙了生產(chǎn)效率提高,并導(dǎo)致無法按時交貨,使協(xié)同制造模式難以滿足生產(chǎn)需求或成功完成開發(fā)任務(wù)[4]。
信息技術(shù)的不斷發(fā)展為信息網(wǎng)絡(luò)化和智能技術(shù)帶來了新的視角,并出現(xiàn)了各種自動化倉儲和運輸設(shè)備[5]??湛秃筒ㄒ魧⑽锫?lián)網(wǎng)射頻識別技術(shù)應(yīng)用在供應(yīng)鏈、飛機制造、倉儲和售后管理等方面,以更好地識別、跟蹤和監(jiān)控實際情況[6]。
盡管當(dāng)前的解決方案僅僅通過信息技術(shù)手段實現(xiàn)了航空制造企業(yè)內(nèi)部所有環(huán)節(jié)的數(shù)據(jù)循環(huán),但企業(yè)間的信息仍處于封閉孤立狀態(tài),不同設(shè)備、不同站點和不同車間之間仍存在許多信息孤島。目前,由于航空企業(yè)信息技術(shù)水平不高造成的壁壘已成為供應(yīng)鏈和生產(chǎn)流程中的一個巨大障礙。由于信息基礎(chǔ)薄弱,生產(chǎn)過程中的信息傳遞和流通經(jīng)常會中斷,從而導(dǎo)致信息無法持續(xù)且及時傳遞。另外,信息流和物流之間的不同步引入了物料等待、倉庫積壓等問題,嚴(yán)重影響物流效率。因此,如何有效地預(yù)測物流是亟待解決的問題[7]。
為了更好地解決上述問題,研究發(fā)現(xiàn)基于PLC控制立體倉庫[8]、煙葉復(fù)烤生產(chǎn)流程[9]等均引入自動導(dǎo)引車(AGV)技術(shù),故對航空航天制造廠、倉庫、配送中心和傳輸終端引入了基于AGV的內(nèi)部車輛運輸系統(tǒng),以提高物流效率和精度,即AGV系統(tǒng)。AGV系統(tǒng)的設(shè)計和控制過程涉及導(dǎo)引路徑設(shè)計、所需車輛數(shù)量的估計、車輛調(diào)度、空閑車輛定位、電池管理、車輛路由和鎖死解決等多方面。特別是,指導(dǎo)路徑設(shè)計是一個戰(zhàn)略級問題,此級別的決策對其他級別的影響很大[10]。飛機制造是一個復(fù)雜的工程問題,涉及裝配前[11]的許多工藝、材料和半成品,本文重點關(guān)注使用AGV系統(tǒng)運輸作業(yè)車間使用的材料和半成品的物流問題。
相關(guān)物流問題在文獻(xiàn)[12]中被建立為一個單目標(biāo)優(yōu)化模型,該模型考慮了一些特殊因素,將各種相關(guān)的關(guān)注點包含在一個單一的目標(biāo)函數(shù)中。此外,為了提高飛機制造的能源效率,還考慮了AGV的最優(yōu)速度,驗證了該優(yōu)化模型比許多其他優(yōu)化模型更為有效。盡管如此,在多因素和約束條件之間很難達(dá)到平衡,只能得到單一的解決方案,沒有任何替代方案。因此,本文建立了一個有約束的多目標(biāo)優(yōu)化模型用于航空制造物流問題,旨在同時優(yōu)化多個目標(biāo)并滿足多個約束條件。為了建立優(yōu)化模型,采用了許多先進的約束多目標(biāo)元啟發(fā)式算法,以獲得滿足所有約束條件并在目標(biāo)之間進行多樣化權(quán)衡的多種解決方案。實驗結(jié)果表明,該方法比現(xiàn)有方法表現(xiàn)更好。
飛機制造車間通常位于巨大的空間內(nèi),需要將大量材料和半成品從倉庫運輸至生產(chǎn)線上的組裝點。借助自動化技術(shù)和信息技術(shù),飛機制造車間正變得越來越智能化,常使用配備物聯(lián)網(wǎng)設(shè)備的自由導(dǎo)航AGV[11]來處理運輸任務(wù)。盡管如此,這樣的物流問題并不簡單,因為需要考慮到許多限制和成本,例如倉庫的最大容量約束、在倉庫存放材料和半成品的成本、AGV處理運輸任務(wù)的運輸成本、能源消耗成本、運輸時間成本等。這些考慮高度依賴于倉庫的位置、AGV運輸時的速度以及倉庫服務(wù)的組裝點,需要充分優(yōu)化以提高效率。
在文獻(xiàn)[12]中,已經(jīng)提出了一種使用AGV來解決飛機制造物流問題的優(yōu)化模型,但在實際應(yīng)用中存在一定的局限性。首先,該模型考慮到了倉庫位置和AGV速度的優(yōu)化,但忽略了哪些倉庫需要由哪些組裝點服務(wù)的問題。其次,該模型涉及四個按用戶定義的權(quán)重系數(shù)合并的優(yōu)化目標(biāo),從而將其轉(zhuǎn)化為單一目標(biāo)優(yōu)化問題。然而,在實際場景中,不同的生產(chǎn)車間可能隨時間變化而有不同的需求,多個目標(biāo)的聚合無法滿足不同場景中的不同需求。此外,通過經(jīng)驗很難確定最優(yōu)權(quán)重系數(shù)。因此,在本文中,我們構(gòu)建了一個更為精細(xì)的優(yōu)化模型,將各個目標(biāo)分別處理,并對更多的變量進行優(yōu)化。
鑒于不同情境下裝配點的倉庫數(shù)量和位置存在差異,本文提出的模型中,第一部分決策變量是為m個裝配點選擇n個倉庫的位置。此外,考慮到每個倉庫的服務(wù)能力有限,需要將每個倉庫服務(wù)的裝配點指標(biāo)作為第二部分決策變量。另外,由于AGV的速度與交付時間和能量損耗有關(guān),模型的第三部分決策變量包括每個用于交付過程的AGV的速度。值得注意的是,我們在此方面做出了一些假設(shè):AGV從倉庫出發(fā),在倉庫和裝配點之間往返運送材料;AGV在倉庫和裝配點之間的速度保持恒定。因此,本文所提出的優(yōu)化模型的完整決策向量如圖1所示。具體而言,每個解向量都由一個混合向量表示,其中,表示第個倉庫的位置,,表示屬于第個倉庫的AGV的速度,,表示第個裝配點由第個倉庫服務(wù)。
圖1 優(yōu)化模型的編碼方案
基于提出的編碼方案,我們在優(yōu)化模型中定義了四個最小化目標(biāo),其中涉及的符號見表1。為了降低AGV從倉庫到裝配點運輸物料和半成品的成本,第一個目標(biāo)基于不同需求的倉庫和裝配點間的距離評估運輸成本,表示為:
表1 所提出的優(yōu)化模型中使用的形式化符號
第二個目標(biāo)與每個倉庫的存儲能力有關(guān)??紤]到儲存能力越大,可能帶來的成本越高,因此第二個目標(biāo)基于每個倉庫服務(wù)的所有裝配點的總需求評估倉儲成本,表示為:
考慮到AGV在運輸物料和半成品時消耗能量,為了提高效率并降低對環(huán)境的能量消耗影響,第三個目標(biāo)基于運輸物料的重量和每個AGV的運輸路徑長度評估能量消耗,表示為:
考慮到物料運輸時間將會影響生產(chǎn)線操作時間和員工資源的安排,第四個目標(biāo)是基于倉庫和裝配點之間的距離和AGV的速度計算AGV運輸物料和半成品的時間,表示為:
最后,考慮到一個倉庫的存儲容量是有限的,我們加入一個約束來確保所有由第個倉庫服務(wù)的裝配點的總需求不超過其最大容量,表示為:
綜上所述,我們建立了以下帶約束的多目標(biāo)優(yōu)化模型來解決飛機制造中的物流問題:
這四個目標(biāo)之間存在一定程度的沖突,特別是表示能量消耗的第三個目標(biāo)和表示運輸時間的第四個目標(biāo)。通常情況下,運輸時間越短,能源消耗就越大,反之亦然。因此,很難通過定義權(quán)重系數(shù)來平衡這些目標(biāo)。更重要的是,在最小化目標(biāo)之前需要強制滿足約束條件,這也可能會破壞目標(biāo)的優(yōu)化性能。因此,此模型相對較為復(fù)雜,給通用優(yōu)化算法帶來了困難。
基于問題,我們使用多目標(biāo)進化算法(MO EAs),直接處理混合變量和非凸函數(shù),并且在不聚合任何目標(biāo)的情況下,在多個目標(biāo)之間取得良好的平衡。
航空航天和工作室物流問題涉及多個目標(biāo)的優(yōu)化和同時滿足多個約束[13-15],這些問題被稱為受限多目標(biāo)優(yōu)化問題(CMOPs)。CMOP在數(shù)學(xué)上的定義如下:
受到進化論和自然的群體行為的啟發(fā),進化算法在優(yōu)化過程中演化出一個種群而不是一個單個解,并可以在單次運行中近似一組Pareto最優(yōu)解,提供多種選擇作為最終的輸出[17]。在過去幾十年中,進化算法的研究發(fā)展迅速,多目標(biāo)進化算法(MOEAs)提出了各種后代生成方案(例如,遺傳算子[18]、差分進化[19]、粒子群優(yōu)化[20]和分布估計算法[21])和環(huán)境選擇策略(例如,非支配排序[22]、目標(biāo)分解[23]和基于指標(biāo)的選擇[24])。MOEAs從一個隨機初始化的種群開始,通過后代生成方案迭代產(chǎn)生新的后代解,并通過環(huán)境選擇策略保留更好的解。經(jīng)過多代的重復(fù)操作后,種群可以逐漸逼近Pareto最優(yōu)解[25],且具有良好收斂性和多樣性。
相較于傳統(tǒng)的優(yōu)化算法,多目標(biāo)進化算法(MOEAs)可以直接處理混合變量和非凸函數(shù),并且在不聚合任何目標(biāo)的情況下,在多個目標(biāo)之間取得良好的平衡。盡管約束多目標(biāo)優(yōu)化問題(CMOPs)引入了在優(yōu)化目標(biāo)之前需要滿足的額外約束條件,但近年來MOEAs的研究集中在解決CMOPs上,在此期間提出了許多有效的MOEAs,能夠在不懲罰任何約束的情況下[26],在目標(biāo)和約束之間取得良好的平衡。
由于本文所定義的優(yōu)化模型是一個典型的混合變量CMOP,因此在本文中采用以下五種代表性的MOEAs來解決CMOPs。
NSGA-Ⅱ[18]將可行性優(yōu)勢原則嵌入Pareto優(yōu)勢中以解決CMOPs。在該算法中,滿足所有約束的解優(yōu)先于不滿足約束的解,剩余的滿足約束的解則按照其違反約束的程度進行支配。由于NSGA-Ⅱ總是對約束的優(yōu)先級高于目標(biāo),因此由于需要滿足約束,它的解可能會陷入局部最優(yōu)。
CCMO[27]通過解決一個簡單的輔助問題,為CMOPs提出了一個協(xié)同進化的約束多目標(biāo)優(yōu)化框架。CCMO分別演化出具有相同優(yōu)化模式的兩個種群,其中第一個種群用于解決原始CMOP,第二個種群用于解決從原始CMOP衍生出的幫助問題。CCMO中的協(xié)作相比已有的MOEAs較弱,但在解決CMOPs方面證實更加有效。
BiCo[28]嘗試通過雙向協(xié)同進化搜索范式來解決CMOPs。BiCo協(xié)同進化兩個種群(即樣本種群和歸檔種群),能夠有效地將解從可行和不可行的搜索空間中推向Pareto前沿,這對于約束多目標(biāo)優(yōu)化至關(guān)重要。BiCo設(shè)計了一種有效的基于角度的選擇策略來更新歸檔種群,不僅可以維持種群多樣性,還能找到更優(yōu)質(zhì)的解。
DCNSGA-Ⅲ[29]提出了一種處理CMOPs的問題轉(zhuǎn)化技術(shù)。具體地,它將高度約束問題轉(zhuǎn)換為一個約束條件很容易滿足的動態(tài)CMOP。利用問題轉(zhuǎn)化技術(shù),隨著搜索的進行,約束的難度逐漸增加。對于給定的時刻,轉(zhuǎn)換后的問題可以被解決。通過一般MOEAs解決一個無約束問題。此外,動態(tài)約束可以幫助MOEAs在多樣性和收斂性之間進行平衡,而不必過多考慮約束滿足度。
CMOEA-MS[30]設(shè)計了一個解決具有復(fù)雜可行域的CMOPs的兩階段框架。該算法將進化過程分為兩個階段,并使用不同的適應(yīng)度計算方法調(diào)整目標(biāo)和約束的優(yōu)先級。第一階段顯示得到的解大多無法使用,并且為了覆蓋可行區(qū)域,各個目標(biāo)給予同等的優(yōu)先級。相反,第二階段顯示得到的解大多可行,目標(biāo)的優(yōu)先級低于約束。
為了驗證所提出的優(yōu)化模型和使用的算法的有效性,本文在所構(gòu)造的數(shù)據(jù)集上進行了各個方法效果的對比。
為了驗證所提出的優(yōu)化模型和使用的算法的有效性,本文構(gòu)建了一個合成數(shù)據(jù)集,并在實驗中使用,其中包括n=3個倉庫和m=50個裝配點。裝配點的坐標(biāo)在二維歐幾里得空間中隨機設(shè)置在(0,0)和(100,100)之間,并且每個裝配點的需求也在[10,100]內(nèi)隨機設(shè)置。對于所有使用的MOEAs,人口規(guī)模設(shè)置為30,函數(shù)評估次數(shù)設(shè)置為60000。為了充分探索MOEAs在提出的優(yōu)化模型上的性能,每個MOEA都配備兩種類型的后代生成方案,即遺傳算子(GA)和差分進化算子(DE)。遺傳算子包括模擬二進制交叉[31]和多項式變異[32],而差分進化算子包括DE/rand/1[33]和多項式變異。交叉概率設(shè)置為1,變異概率設(shè)置為1/D,交叉和變異的分布指數(shù)設(shè)置為20,DE/rand/1中的參數(shù)為CR=0.9和F=0.5。
另一方面,為了驗證所提出的多目標(biāo)優(yōu)化模型的優(yōu)越性,將其與文獻(xiàn)[11]中的異構(gòu)粒子群優(yōu)化算法HPSO進行比較,該算法解決了用于航空航天物流問題的單目標(biāo)優(yōu)化模型。該算法的參數(shù)為k=1.86/m,。此外,它解決以下單目標(biāo)優(yōu)化模型:
表2比較了六種算法HPSO、NSGA-Ⅱ、CCMO、BiCo、DCNSGA-Ⅲ和CMOEA_MS在30次獨立運行中獲得的標(biāo)準(zhǔn)化超體積(HV)的均值和標(biāo)準(zhǔn)差[34]。較高的HV值表示所得種群的收斂和多樣性更好。結(jié)果表明,五個多目標(biāo)優(yōu)化算法的HV值明顯高于單目標(biāo)優(yōu)化算法HPSO。此外,圖2和圖3繪制了HV的收斂過程,這個過程由HPSO和分別使用遺傳算子和差分進化算子的5個MOEAs獲得。
表2 HPSO、NSGA-Ⅱ、CCMO、BICO、DCNSGA-Ⅲ和CMOEA MS 的HV 值
圖2 使用遺傳算子獲取的HPSO、NSGA-Ⅱ、CCMO、BiCo、DCNSGA-Ⅲ和CMOEA MS 的HV 值的收斂過程
圖3 使用差分進化獲取的HPSO、NSGA-Ⅱ、CCMO、BiCo、DCNSGA-Ⅲ和CMOEA MS 的HV 值的收斂過程
從圖中可以看出,五個多目標(biāo)優(yōu)化算法比HPSO收斂更快,并且最終得到的HV值也更高。因此,多目標(biāo)優(yōu)化算法的優(yōu)越性已得證。此外,使用遺傳算子的多目標(biāo)優(yōu)化算法表現(xiàn)更好,因為它可以更好地從所提出的優(yōu)化模型的景觀中逃脫局部最優(yōu)值。
為了進行直觀比較,圖4列出了六種算法所獲得的非支配解,依據(jù)不同目標(biāo)進行排序??梢园l(fā)現(xiàn),對于所提出的優(yōu)化模型而言,多目標(biāo)優(yōu)化算法特別是CMOEA_MS可以得到許多非主導(dǎo)解,而單目標(biāo)優(yōu)化算法HPSO所得到的解被許多其他解所支配。事實上,HPSO通過預(yù)定義的權(quán)重系數(shù)對四個目標(biāo)進行加權(quán)求和以得到單目標(biāo)優(yōu)化,因此,得到的解傾向于節(jié)約能量,而對于運輸成本、倉儲成本和運輸時間的目標(biāo)優(yōu)化較差。因此,證明了對于航空航天物流問題,多目標(biāo)優(yōu)化技術(shù)優(yōu)于單目標(biāo)優(yōu)化技術(shù)。為了清晰地比較各種算法所獲得的解,圖5描述了每個倉庫解碼后覆蓋的裝配點,選擇每個算法所獲得的最靠近目標(biāo)空間原點的解進行繪制。顯然,多目標(biāo)優(yōu)化算法獲得的解與HPSO獲得的解相比有更少的交叉路徑,因此在實踐中更有效率。此外,表3列出了比較算法所獲得的三個倉庫的速度,多目標(biāo)優(yōu)化算法獲得的解具有比HPSO更高的速度,因此在交付時間方面更短。最后,為了比較算法的優(yōu)化效率,表4顯示了它們所消耗的運行時間,其中多目標(biāo)優(yōu)化算法的計算復(fù)雜度與單目標(biāo)優(yōu)化算法 HPSO相似。因此,所提出的多目標(biāo)優(yōu)化模型以及先進的多目標(biāo)優(yōu)化算法對于航空制造物流問題是有效的和高效的。
表3 HPSO、NSGA-Ⅱ、CCMO、BICO、DCNSGA-Ⅲ和CMOEA MS 的速度
表4 HPSO、NSGA-Ⅱ、CCMO、BiCo、DCNSGA-Ⅲ和CMOEA MS 的運行時間
圖4 HPSO、NSGA-Ⅱ、CCMO、BiCo、DCNSGA-Ⅲ和CMOEA MS 獲得的非支配解
圖5 HPSO、NSGA-Ⅱ、CCMO、BiCo、DCNSGA-Ⅲ和CMOEA MS 獲得的解碼后的倉庫覆蓋的裝配點
為了解決飛機制造中的物流問題,本文建立了一個受約束的多目標(biāo)優(yōu)化模型,其中包含了一個混合決策向量、四個相互沖突的目標(biāo)和若干約束條件。為了解決這個復(fù)雜的優(yōu)化模型,本文選擇了五種最先進的受約束多目標(biāo)優(yōu)化算法。通過實驗結(jié)果的分析,本文驗證了受約束多目標(biāo)優(yōu)化技術(shù)在現(xiàn)有研究中明顯優(yōu)于使用的單目標(biāo)優(yōu)化技術(shù)。
未來可以開發(fā)更有效的元啟發(fā)式算法以獲得更好的優(yōu)化性能。此外,本文僅驗證了通用多目標(biāo)優(yōu)化算法在黑盒優(yōu)化中的優(yōu)越性,對于解決物流問題,可以定制更多的啟發(fā)式搜索策略,并滿足不同場景中的額外考慮因素。