• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fast period estimation of X-ray pulsar signals using an improved fast folding algorithm

    2023-11-10 02:16:14MinzhngSONGYidiWANGWeiZHENGLinshengLIYusongWANGXioweiHUYulongWU
    CHINESE JOURNAL OF AERONAUTICS 2023年10期

    Minzhng SONG, Yidi WANG, Wei ZHENG, Linsheng LI,Yusong WANG, Xiowei HU, Yulong WU

    a College of Aerospace Sciences and Engineering, National University of Defense Technology, Changsha 410073, China

    b Unit 71770 of PLA, Taian 271000, China

    c Beijing Institute of Control Engineering, Beijing 100076, China

    KEYWORDS

    Abstract An accurate period is important to recover the pulse profile from a recorded photon event series of an X-ray pulsar and to estimate the pulse time of arrival, which is the measurement of X-ray pulsar navigation.Epoch folding is a classical period estimation method in the time domain; however, its computational complexity grows as the number of trail periods increases.In order to reduce the computational complexity, this paper improves the fast folding algorithm through segment correlation and amplitude accumulation,which is based on the post-order traversal of a binary tree.Compared with epoch folding,the improved fast folding algorithm can achieve a similar accuracy at the cost of a lower computational burden.Compared with the original fast folding algorithm,the improved algorithm can be applied to detectors with a much smaller effective area.The performance of the method is investigated by simulation data and observation data from the Neutron star Interior Composition Explorer (NICER).

    1.Introduction

    A pulsar, a rapid spinning neutron star, radiates particle beams outward from its two magnetic poles.When a beam sweeps over a spacecraft, the spacecraft receives a pulsed signal.1Pulsars can be employed as natural beacons to help a spacecraft determine its position and velocity in space.2Moreover, a high-precision time scale, pulsar timescale, can be constructed by pulsar timing.3

    The key techniques of pulsar navigation are spin period estimation and pulse profile recovery.Currently,epoch folding is commonly employed to estimate the spin period of an X-ray pulsar.4Under epoch folding, data is firstly folded modulo a trial period and then binned, and Pearson’s χ2is used to test the recovered profile.5–6Nevertheless, the computational cost of epoch folding grows as the number of trial periods increases.7

    For a radio pulsar signal,in order to accelerate epoch folding,the Fast Folding Algorithm(FFA),which works based on the light curve of the radio signal, was originally designed by Stealin.8This algorithm operates in the time domain and is particularly effective at finding long-period radio pulsars.9Lovelace et al.implemented the algorithm on radio data from the Arecibo, leading to the discovery of pulsar PSR B2016+28.10In 2004,this algorithm was successful at finding a pulsar with a period of 7.7 s.11Kondratiev et al.used the FFA to search for pulsed radio emission.12Scholz et al.attempted to find an underlying periodicity on the Arecibo and Green Bank Telescope (GBT) observations using the FFA.13Parent et al.’s work demonstrated that the FFA exceeded the performance of the Fast Fourier Transform(FFT)in the white-noise regime in the case of long-period pulsars.14Morello et al.developed an FFA pipeline to process radio observations.15

    Although the FFA has been successfully applied to the radio pulsar astronomy, it cannot be directly applied to an X-ray pulsar, because the X-ray signal of a pulsar can only be recorded as a form of photon instead of a continuous signal.16In a study by Zhang et al., through photon counting,a photon event series was converted to a pulse intensity matrix which could be processed by the FFA.17However,this method is only applicable to cases where a high photon count rate is available.For detection of an X-ray pulsar, a high photon count rate can be achieved by employing an X-ray detector with a large effective area.However, the detection efficiency of an X-ray detector is always below 50%,18and it is impractical for an X-ray detector to have an area of about 1 m2.Thus,the pulse intensity matrix constructed by using Zhang’s method will be extremely sparse,17and it is difficult to estimate the period of an X-ray pulsar by using an individual output matrix (see Section 3).In this paper, we find a way to mix the output matrices of different data segments together to obtain an accumulated output matrix that can be used to estimate the spin period of an X-ray pulsar.

    The organization of this paper proceeds as follows: Section 2 describes the principle of the FFA;Section 3 introduces the post-order traversal of a binary tree into the FFA and proposes an improved FFA useful to estimate the spin period of an X-ray pulsar;Section 4 verifies the performance of the proposed method by simulation data and real data from the Neutron star Interior Composition Explorer (NICER) mission.

    2.Brief review of FFA

    In the example shown in Fig.1, we generated an evenlysampled artificial periodic pulsed signal containing N=8 cycles with m=8 phase bins in each cycle, an initial phase of φ=2 bins and a pulse period P (8tbin

    Considering the range of a folding period([mtbin,(m+1)tbin]), for each subset, in fact, the pair can be integrated with the trial period of mtbinor (m+1)tbin.For example, the folding transforms of the first two rows are

    In the 1st output matrix,each subset contains 4 rows.After the folding transform of the first subset (see the first blocks highlighted in orange in the second panel from the left), we can obtain the first 4 matrix rows of the 2nd output matrix(see the upper half highlighted in red in the third panel from the left),as shown in Eq.(3).Each matrix row now represents an integrated profile with the folding periods of mtbin,(m+1/3)tbin,(m+2/3)tbin, and (m+1)tbin, respectively.

    Fig.1 An example of FFA.

    More generally, for each subset (highlighted in orange) of the ithoutput matrix,the kthrow of the lower half(highlighted in blue)needs to be cyclically shifted to the left by k phase bins and k+1 phase bins, respectively.Then, add them to the kthrow of the upper half (highlighted in red) respectively as the 2kthand (2k+1)throws of the corresponding block of the(i+1)thoutput matrix.

    It should be noted that, for the FFA, in order to avoid aliasing in calculation, N satisfies the following equation17:

    After fast folding, each row of the final output matrix represents a cumulative profile, and the folding period of the kthrow is

    In the example shown in Fig.1,the pulses drift in phase by S=4 bins over the total observation time.In the output matrix, a visible peak denotes a candidate periodic signal,and the row and column indices of the peak correspond to its period and initial phase,respectively.The peak’s row index is equal to S+1,indicating that the period of the pulsed signal is [m+S/(N-1)]tbin.

    3.Improved FFA

    3.1.A binary tree-based FFA

    The original FFA is stored and calculated in the unit of data block, which leads to a high CPU cache burden and a lack of flexibility when the calculation scale is large.If we are only interested in the profiles integrated by some certain folding periods, in addition to outputting the required information(i.e., the corresponding rows of the final output matrix), the original FFA also performs many useless calculations.For the example shown in Fig.2,supposing that we want to obtain the 5th row of the output matrix, then in the 3rd output matrix, only the 3rd row of the upper half and the 3rd row of the lower half are needed, and so on until we trace back to each row of the pulse intensity matrix.The tracing path of the above process is shown as the red lines in Fig.2.This is a typical recursive process, and all traversed nodes form a full binary tree.The cumulative profile (i.e., the 5th row of the output matrix) can be obtained through the post-order traversal of a binary tree.Thus, a node data structure is defined,which contains four attributes:profile is an array with m elements that stores the corresponding pulse profile; offset represents the number of phase bins that the profile of the right child node left circularly shifted when calculating the profile of this node;left is the left child node;right is the right child node.

    The process of integrating the cumulative profile of the root node can be divided into three steps:

    Step 1.Initialize the binary tree.It includes specifying the connection relationship of nodes according to the properties of the full binary tree and assigning the profile of each leaf node to the corresponding row of the pulse intensity matrix.The detailed process is shown as the pseudo code in Algorithm 1.

    Algorithm 1.Initialize binary tree.

    Initialize binary tree:InitFFAtree Input:N: Number of rows of the pulse intensity matrix;P0: The initial trial value of the spin period;TOAs: Times of arrival;Bins: Total number of phase bins Output:FFAnodes: Node set of the binary tree 1.FFAnodes ←new Node[2N-1]2.for i=0,1,???,2N-2 do if i

    Step 2.Calculate the offset of each non-leaf node.For a trial period, there is a corresponding binary tree to integrate the cumulative profile.Binary trees of different trial periods have the same leaf nodes, and only the offset attributes of the non-leaf nodes are different.Therefore, when integrating the cumulative profile of a different trial period, it is not necessary to build a new binary tree,but to re-assign the offset of each non-leaf node.As shown in the pseudo code below, a breadth-first traversal of the binary tree is performed to calculate the offset of each non-leaf node (see Algorithm 2).

    Algorithm 2.Calculate offset attribute of each non-leaf node.

    Calculate offset attribute of each node: CalculateOffset Input:k: Row index of the pulse profile to be output;FFAnodes: Node set of the binary tree Output:root: Root node of the binary tree 1.N ← FFAnodes.Length+1) / 2 2.depth ←1 3.for i=0,1,...,N-2 do if k % 2=0 FFAnodes[i].offset ←k/2 else FFAnodes[i].offset ←(k+1)/2 end if if i+2=2depth k ←k/2 depth ←depth+1 end if end for 4.return FFAnodes[0](

    Step 3.Calculate the profile of the root node.By a postorder traversal, the profile of each leaf node is integrated to the profile of the root node (see Algorithm 3).

    Algorithm 3.Calculate pulse profile of target node.

    Calculate the pulse profile of the target node: getProfile Input:root: Target node Output:root profile: Pulse profile of the target node if root.left=null return root.profile else leftchild profile ←getProfile(root.left)rightchild profile ←getProfile(root.right)return leftchild profile,root.offset)end if profile + recircle(rightchild

    By introducing the post-order traversal of the binary tree into the FFA, the data is no longer stored and calculated in blocks.Meanwhile, the algorithm can output cumulative profiles according to requirements, which reduces redundant calculations and makes the algorithm be able to be combined with an optimization algorithm to improve the calculation efficiency.

    3.2.FFA for a photon event series

    X-ray pulsars are very faint, so a spacecraft can only record a series of X-ray photon events rather than a continuous pulsed signal.16Thus, as a preliminary step, the photon event series needs to be converted into a pulse intensity matrix.This procedure is performed as follows: select photon events within a time interval[t0,t0+NP0], where t0and P0represent the start time and the initial trial value of the spin period, respectively,and N is a power of 2.Then,each P0is further divided into m equal-length phase bins.Then, with the number of photon events in each phase bin being counted,we obtain an intensity sequence with a length ofNm.Finally,the intensity sequence is reshaped into a pulse intensity matrix with N rows and m columns.

    Since the photon flux of an X-ray pulsar is a constant,for the same type of detector, the average photon count rate is determined by the effective area of the detector.For the NICER, the source pulsed rate and the total non-pulsed rate of the Crab pulsar are 660 counts/s and 13860.2 counts/s,respectively.19Photon events are recorded by 56 concentrator-detector pairs, and each pair has a collection area of about 30 cm2.In order to analyze the performance of the FFA in the case of a small collection area, we select the observation data of 5 concentrator-detector pairs.The data is converted into a pulse intensity matrix following the steps above and then processed by the FFA(m=N=256), and Pearson’s χ2is used to test the cumulative profiles in the FFA output matrix.Results show that the curve of the χ2value with the folding period doesn’t have an obvious peak (see Fig.3), meaning that the spin period cannot be accurately estimated by the FFA in the case of a small effective area.

    The underlying cause leading to the failure of the FFA is that the integration time of the FFA is limited, over which there are not enough photons to integrate a cumulative profile with an acceptable Signal-to-Noise Ratio (SNR).Since the spin period cannot be accurately estimated by any individual output matrix, we contrive to prolong the integration time by mixing the output matrices of different data segments together.

    The phases of the FFA output matrix are referred to as the start times of the corresponding data segments.The start times of data segments are different from each other, so the FFA output matrices cannot be added directly.For example, there is a photon event seriesTOAs.Taking P0as the folding period,TOAs is epoch folded by start time t0and t1=t0+0.25P0,respectively.As shown in Fig.4, the red curve is circularly shifted to the right for 0.25 cycle, and it will coincide with the blue curve, indicating that the start time can be adjusted from t1to t0only by circularly shifting the pulse profile to the right for (t1-t0)/P0cycle.

    Let tibe the start time of the ithdata segment.The kthrow of the ithFFA output matrix, whose folding period is Pk={ 1 + (k-1)/[m(N-1)]} P0, needs to cyclically shift to the right by m{[(ti-t0)/Pk]%1} phase bins.We call this process phase calibration.The FFA output matrices after phase calibration can be added together to obtain an accumulated output matrix that can be used to estimate the pulse period of the X-ray pulsar.As shown in Fig.5, for the accumulated output matrix of the NICER’s observation data,the curve of the χ2value with the folding period has an obvious and narrow peak, indicating that the spin period can be accurately estimated by this method.

    4.Performance analysis and discussion

    In this section,we employ Monte Carlo simulations20and real data from the NICER to investigate the proposed algorithm.

    Fig.3 Processing results of NICER’s observation data by FFA.

    Fig.4 Phase shift of cumulative profile caused by different start times.

    4.1.Simulation data

    In order to compare the performance of the improved FFA with those of traditional methods, assume that the flux of the Crab pulsar is 1.54 counts?cm-2?s-1and the non-pulsed rate is 10 times of the source pulsed rate21,set the effective area to be different values, and then perform Monte Carlo simulations respectively.For each simulation data, the improved FFA (m=N=512, and the number of mixed matrices is 5),epoch folding, and the original FFA (m=N=512) are used to estimate the period and the initial phase22,respectively.Note that the magnitude of the estimation error of the initial phase φ0, is calculated modulo one cycle, i.e.,

    where ^φ0is an estimate of the initial phase.

    Fig.5 Processing results of NICER’s observation data through segment correlation and amplitude accumulation.

    In Fig.6,the Root Mean Square(RMS)of the initial-phase estimation errors for different methods is plotted.It shows that as the effective area of the detector increases,for the three different methods, the variance of estimation error demonstrates a decreasing trend.The curve with square markers is in strong agreement with the curve with circular markers, implying that the improved FFA can achieve a similar accuracy compared with that of epoch folding.However, for the original FFA,the initial phase can be accurately estimated only when the effective area is large.

    Fig.7 Computational costs of improved FFA, epoch folding,and original FFA.

    Fig.6 RMS errors of improved FFA, epoch folding, and original FFA.

    As Fig.7 shows, with an increase of the effective area, the computation cost of the epoch folding method rises rapidly,while the computational cost of the improved FFA is not affected by the effective area of the detector.This is because,under epoch folding,all the photon phases need to be recalculated when the folding period changes.To complete a search of N trial periods, the improved FFA only demands to calculate the photon phases for the initial folding period P0to generate q pulse intensity matrices, q(Nlog2N-N+1) cyclic shifts, and qmN(log2N+1) additions.However, under epoch folding,about qN2P0f multiplication and modulus operations are required, where f is the average photon count rate.Since the original FFA is only effective when the effective area is large,the speeds of the improved FFA and the original FFA are compared when the effective area is larger than 700 cm2.It can be seen that both of them are much faster than epoch folding, but the improved algorithm has a slight advantage.

    Fig.8 Performance analysis of improved FFA at different SNR conditions.

    Fig.9 Comparison between results of improved FFA and ephemeris published by Jodrell Bank observatory.

    In order to verify the performance of the algorithm at low-SNR conditions, the source pulsed rate is set as 50 counts/s,and different SNR cases are constructed by changing the total non-pulsed rate,generating 1000 s simulation data to estimate the period of each simulation data by the improved FFA.As shown in Fig.8, the improved FFA maintains high performance at low-SNR conditions.

    4.2.Real data

    The effectiveness of the proposed algorithm is further investigated by the observation data of the Crab pulsar from the NICER.The NICER has an extremely high time resolution and has accumulated up to 4 years of observation data since its launch.The improved FFA (m=N=1024, and the number of mixed matrices is 5) is used to estimate the spin frequency of each data segment.Then, a quadratic polynomial function is used to fit the function of estimated spin frequency and time.As shown in Fig.9,results of the improved FFA are in strong agreement with the ephemeris published by the Jodrell Bank observatory.Since the Crab is a young pulsar with unstable rotation, glitches often occur.According to the report, a large glitch occurred at MJD 58064.555.From the results, we can see that the fitting residuals near MJD 58065 increase suddenly.

    5.Conclusions

    In this work,we conduct a systematic study on the application of the FFA on the spin period estimation of an X-ray pulsar,and propose an improved algorithm which can be applied to detectors with a much smaller effective area.Simulation results indicate that the improved FFA has a lower computational cost and maintains a high performance at low-SNR conditions.In order to further elevate the computational efficiency of the algorithm, we introduce the post-order traversal of a binary tree into the FFA.In this variant algorithm, data is no longer stored and operated in blocks, and cumulative profiles can be integrated according to requirements, which reduces redundant calculations and gains more flexibility for the algorithm.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China (No.61703413).

    国产精品一区二区精品视频观看| 免费观看av网站的网址| 日本一区二区免费在线视频| 看免费av毛片| 国产日韩欧美视频二区| 美女中出高潮动态图| 午夜福利免费观看在线| 两性夫妻黄色片| 日韩大片免费观看网站| 亚洲,一卡二卡三卡| 欧美国产精品va在线观看不卡| 亚洲精品国产av蜜桃| 国产精品久久久人人做人人爽| av.在线天堂| 欧美精品一区二区免费开放| av福利片在线| 极品人妻少妇av视频| 亚洲国产精品一区二区三区在线| 九色亚洲精品在线播放| 久久 成人 亚洲| 亚洲精品国产av成人精品| 久久久久国产精品人妻一区二区| 亚洲精品国产av蜜桃| 一区福利在线观看| 国产一区有黄有色的免费视频| 天天影视国产精品| 亚洲中文av在线| 一级片免费观看大全| 日韩精品有码人妻一区| 亚洲免费av在线视频| 一级毛片电影观看| 久久韩国三级中文字幕| 高清欧美精品videossex| 日韩 亚洲 欧美在线| 九色亚洲精品在线播放| 男人舔女人的私密视频| 国产色婷婷99| 日韩欧美一区视频在线观看| 欧美老熟妇乱子伦牲交| 久久精品国产亚洲av涩爱| 国产在线视频一区二区| 午夜福利在线免费观看网站| 精品免费久久久久久久清纯 | 免费看av在线观看网站| 在线观看人妻少妇| a级片在线免费高清观看视频| 女人久久www免费人成看片| 大陆偷拍与自拍| 纵有疾风起免费观看全集完整版| 亚洲av欧美aⅴ国产| 街头女战士在线观看网站| 一级毛片 在线播放| 国产精品欧美亚洲77777| 美女扒开内裤让男人捅视频| 久久综合国产亚洲精品| 免费日韩欧美在线观看| 午夜福利视频精品| 啦啦啦中文免费视频观看日本| 2018国产大陆天天弄谢| 操出白浆在线播放| 日韩人妻精品一区2区三区| 亚洲av日韩精品久久久久久密 | 啦啦啦在线免费观看视频4| xxxhd国产人妻xxx| 国产成人a∨麻豆精品| 丰满少妇做爰视频| 高清不卡的av网站| av电影中文网址| 久热爱精品视频在线9| 国产亚洲一区二区精品| 新久久久久国产一级毛片| 国产亚洲av片在线观看秒播厂| 国产精品国产av在线观看| h视频一区二区三区| 亚洲,欧美,日韩| 男女免费视频国产| 日韩人妻精品一区2区三区| 中文欧美无线码| 少妇的丰满在线观看| 欧美精品av麻豆av| 午夜日韩欧美国产| 国产成人a∨麻豆精品| 男男h啪啪无遮挡| netflix在线观看网站| 少妇猛男粗大的猛烈进出视频| 99久久综合免费| 欧美成人午夜精品| 久久久久久人人人人人| 999精品在线视频| 九色亚洲精品在线播放| 午夜91福利影院| av电影中文网址| 9191精品国产免费久久| 亚洲,一卡二卡三卡| 最近最新中文字幕免费大全7| av在线观看视频网站免费| 亚洲av中文av极速乱| 成年人免费黄色播放视频| 高清在线视频一区二区三区| 中文字幕亚洲精品专区| 999久久久国产精品视频| 国产在视频线精品| 久久97久久精品| 日本爱情动作片www.在线观看| 久久精品亚洲熟妇少妇任你| 中文字幕亚洲精品专区| 国产又爽黄色视频| 在线观看人妻少妇| 热99久久久久精品小说推荐| 久久亚洲国产成人精品v| 亚洲av电影在线进入| 十八禁人妻一区二区| 亚洲欧美成人综合另类久久久| 国产成人免费观看mmmm| www.熟女人妻精品国产| 热re99久久国产66热| 在线免费观看不下载黄p国产| 美女视频免费永久观看网站| 男女高潮啪啪啪动态图| 91aial.com中文字幕在线观看| 这个男人来自地球电影免费观看 | 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品久久久久久婷婷小说| 国产av码专区亚洲av| 大话2 男鬼变身卡| 如日韩欧美国产精品一区二区三区| 日本一区二区免费在线视频| 精品久久蜜臀av无| 日本av手机在线免费观看| 综合色丁香网| 亚洲国产欧美网| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品久久午夜乱码| 丁香六月欧美| 无限看片的www在线观看| 亚洲一区中文字幕在线| a 毛片基地| 另类精品久久| 黄色 视频免费看| 国产乱人偷精品视频| 国产精品久久久人人做人人爽| 狠狠精品人妻久久久久久综合| 另类精品久久| 精品久久久精品久久久| 国产老妇伦熟女老妇高清| 国产高清国产精品国产三级| 成年女人毛片免费观看观看9 | 日本av免费视频播放| 欧美日韩一级在线毛片| 免费在线观看黄色视频的| 十八禁人妻一区二区| 99精品久久久久人妻精品| 少妇人妻久久综合中文| 在线观看三级黄色| 国产视频首页在线观看| 久久久久久久久免费视频了| 黄色毛片三级朝国网站| 欧美日韩国产mv在线观看视频| 一二三四中文在线观看免费高清| 欧美乱码精品一区二区三区| 99久国产av精品国产电影| 久久久久国产精品人妻一区二区| 亚洲精品成人av观看孕妇| 欧美日韩精品网址| 亚洲欧美一区二区三区久久| 校园人妻丝袜中文字幕| 天美传媒精品一区二区| 两个人看的免费小视频| 一本久久精品| 国产精品99久久99久久久不卡 | 久久精品熟女亚洲av麻豆精品| 精品一区二区三卡| avwww免费| 国产又色又爽无遮挡免| 亚洲国产日韩一区二区| 国产成人精品福利久久| 黄色一级大片看看| 中文字幕人妻丝袜制服| 国产精品av久久久久免费| 亚洲精品aⅴ在线观看| 亚洲激情五月婷婷啪啪| 久久天躁狠狠躁夜夜2o2o | 欧美日本中文国产一区发布| 成人亚洲欧美一区二区av| 日韩人妻精品一区2区三区| 香蕉国产在线看| 少妇的丰满在线观看| 日韩一卡2卡3卡4卡2021年| 黄片无遮挡物在线观看| 亚洲美女黄色视频免费看| 69精品国产乱码久久久| av片东京热男人的天堂| 国产精品免费大片| 日本猛色少妇xxxxx猛交久久| 一边亲一边摸免费视频| 亚洲色图综合在线观看| 亚洲成国产人片在线观看| 在线观看三级黄色| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品亚洲av一区麻豆 | 纯流量卡能插随身wifi吗| 午夜影院在线不卡| 国产乱来视频区| 秋霞在线观看毛片| 一本大道久久a久久精品| 91精品国产国语对白视频| 99九九在线精品视频| 亚洲情色 制服丝袜| 夫妻午夜视频| 亚洲国产精品一区三区| 伊人亚洲综合成人网| 亚洲av中文av极速乱| 亚洲国产欧美一区二区综合| 永久免费av网站大全| 日本一区二区免费在线视频| 欧美少妇被猛烈插入视频| 99久久综合免费| 亚洲欧美精品综合一区二区三区| 伊人久久大香线蕉亚洲五| 人妻 亚洲 视频| 亚洲人成77777在线视频| 黑丝袜美女国产一区| 国产成人精品无人区| 亚洲一区二区三区欧美精品| 国产精品一国产av| 女人精品久久久久毛片| 国产 一区精品| 99香蕉大伊视频| 一级毛片 在线播放| 男女边吃奶边做爰视频| 国产精品女同一区二区软件| 国产免费一区二区三区四区乱码| 五月天丁香电影| 妹子高潮喷水视频| 精品人妻一区二区三区麻豆| 午夜福利一区二区在线看| 亚洲国产日韩一区二区| 丝袜美腿诱惑在线| 母亲3免费完整高清在线观看| 亚洲精品久久久久久婷婷小说| 少妇人妻久久综合中文| 久久久久国产一级毛片高清牌| 黄片播放在线免费| 亚洲成人手机| 最近的中文字幕免费完整| 久久精品国产a三级三级三级| 午夜福利一区二区在线看| 欧美日韩亚洲综合一区二区三区_| 久久性视频一级片| 777米奇影视久久| 中文字幕高清在线视频| 国产日韩欧美视频二区| 18禁观看日本| 少妇被粗大的猛进出69影院| 深夜精品福利| 国产成人精品久久久久久| 男人操女人黄网站| 免费久久久久久久精品成人欧美视频| 黄色怎么调成土黄色| 我要看黄色一级片免费的| 欧美日韩亚洲高清精品| 国产精品香港三级国产av潘金莲 | 午夜福利视频在线观看免费| 亚洲成人国产一区在线观看 | 大香蕉久久网| 欧美亚洲 丝袜 人妻 在线| 亚洲一区二区三区欧美精品| 国产精品偷伦视频观看了| 丝袜人妻中文字幕| 亚洲av成人精品一二三区| 日日摸夜夜添夜夜爱| 热re99久久精品国产66热6| 天堂俺去俺来也www色官网| 妹子高潮喷水视频| 国产野战对白在线观看| 一级爰片在线观看| 18禁国产床啪视频网站| 亚洲精品美女久久久久99蜜臀 | 99re6热这里在线精品视频| 大话2 男鬼变身卡| 18禁裸乳无遮挡动漫免费视频| 天堂8中文在线网| 亚洲精品第二区| 久久国产精品男人的天堂亚洲| 国产一区二区三区综合在线观看| 男女边摸边吃奶| 亚洲精品国产一区二区精华液| 午夜福利影视在线免费观看| 中文字幕制服av| 国产精品久久久人人做人人爽| 久久精品人人爽人人爽视色| 制服丝袜香蕉在线| 色精品久久人妻99蜜桃| 久久精品亚洲av国产电影网| 99热国产这里只有精品6| 多毛熟女@视频| 久久精品国产综合久久久| 啦啦啦啦在线视频资源| 在线观看一区二区三区激情| 国产一区二区激情短视频 | 在线 av 中文字幕| 十八禁高潮呻吟视频| 女人久久www免费人成看片| 伊人亚洲综合成人网| 成人国产av品久久久| av在线观看视频网站免费| 国产一区亚洲一区在线观看| 亚洲 欧美一区二区三区| 亚洲av综合色区一区| 1024香蕉在线观看| 免费高清在线观看视频在线观看| 一级毛片电影观看| 九色亚洲精品在线播放| 国产精品久久久av美女十八| 国产成人精品无人区| 久久久久精品国产欧美久久久 | 日韩,欧美,国产一区二区三区| 91国产中文字幕| 黄片播放在线免费| 亚洲精品中文字幕在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 蜜桃国产av成人99| 精品一品国产午夜福利视频| 亚洲欧美一区二区三区黑人| 日韩中文字幕视频在线看片| 精品久久久精品久久久| 波多野结衣av一区二区av| 交换朋友夫妻互换小说| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产最新在线播放| 国产深夜福利视频在线观看| 精品国产一区二区三区久久久樱花| 久久久久精品国产欧美久久久 | 欧美老熟妇乱子伦牲交| 男的添女的下面高潮视频| 可以免费在线观看a视频的电影网站 | 亚洲自偷自拍图片 自拍| 伊人久久大香线蕉亚洲五| 亚洲,欧美,日韩| 国产极品天堂在线| 又粗又硬又长又爽又黄的视频| 国产免费一区二区三区四区乱码| 国产精品久久久久久久久免| 亚洲成人国产一区在线观看 | 亚洲中文av在线| 又大又黄又爽视频免费| 青青草视频在线视频观看| 亚洲精品第二区| 两个人免费观看高清视频| 男女边摸边吃奶| 免费av中文字幕在线| 99久国产av精品国产电影| 亚洲国产精品国产精品| 国产成人精品福利久久| 日本午夜av视频| 免费观看性生交大片5| 99热全是精品| 国产淫语在线视频| 亚洲第一区二区三区不卡| 最新在线观看一区二区三区 | 国产熟女午夜一区二区三区| 制服人妻中文乱码| 久久久久国产精品人妻一区二区| 久热这里只有精品99| 成人毛片60女人毛片免费| 亚洲国产欧美在线一区| 亚洲欧美一区二区三区久久| 日韩制服丝袜自拍偷拍| 日本黄色日本黄色录像| 在线观看免费日韩欧美大片| 中国国产av一级| 欧美日韩亚洲高清精品| 久久鲁丝午夜福利片| 哪个播放器可以免费观看大片| 久久综合国产亚洲精品| 一区二区三区激情视频| 高清视频免费观看一区二区| 少妇人妻 视频| 欧美日韩精品网址| 巨乳人妻的诱惑在线观看| 99国产综合亚洲精品| 少妇人妻久久综合中文| 少妇猛男粗大的猛烈进出视频| 久久人人97超碰香蕉20202| 性高湖久久久久久久久免费观看| 亚洲欧美成人综合另类久久久| 午夜日韩欧美国产| 亚洲少妇的诱惑av| 欧美日韩一区二区视频在线观看视频在线| 精品一区二区免费观看| 99久久99久久久精品蜜桃| 国产野战对白在线观看| 亚洲欧美一区二区三区黑人| 在线观看三级黄色| 亚洲精品日本国产第一区| 久久精品熟女亚洲av麻豆精品| 国产精品久久久久久人妻精品电影 | 亚洲成人av在线免费| 女人精品久久久久毛片| 久久精品亚洲熟妇少妇任你| 国产淫语在线视频| 波多野结衣一区麻豆| 国产成人免费无遮挡视频| 国产xxxxx性猛交| 老鸭窝网址在线观看| 一级毛片电影观看| 一区二区三区激情视频| 亚洲精品美女久久av网站| 国产精品亚洲av一区麻豆 | 色94色欧美一区二区| 十分钟在线观看高清视频www| 欧美 亚洲 国产 日韩一| 成人午夜精彩视频在线观看| 亚洲国产av新网站| 97人妻天天添夜夜摸| 亚洲人成77777在线视频| 黄色怎么调成土黄色| 人妻 亚洲 视频| av网站在线播放免费| 熟妇人妻不卡中文字幕| 亚洲美女黄色视频免费看| a 毛片基地| 纵有疾风起免费观看全集完整版| 又黄又粗又硬又大视频| 国产成人精品福利久久| 日本猛色少妇xxxxx猛交久久| av线在线观看网站| 亚洲熟女精品中文字幕| 男人爽女人下面视频在线观看| 女性生殖器流出的白浆| 伦理电影免费视频| 午夜福利视频在线观看免费| 亚洲精品久久久久久婷婷小说| 亚洲 欧美一区二区三区| 秋霞伦理黄片| 日韩大片免费观看网站| 如何舔出高潮| 男女边摸边吃奶| 在线 av 中文字幕| 午夜福利网站1000一区二区三区| 国产 一区精品| 国产成人av激情在线播放| 亚洲欧美成人精品一区二区| 美女主播在线视频| 嫩草影院入口| 久久亚洲国产成人精品v| 国产极品粉嫩免费观看在线| 国产精品久久久久成人av| 精品国产一区二区三区四区第35| 亚洲精品久久久久久婷婷小说| 丁香六月欧美| 欧美97在线视频| 最黄视频免费看| 五月天丁香电影| 欧美日本中文国产一区发布| 啦啦啦在线观看免费高清www| 国产在视频线精品| 在线亚洲精品国产二区图片欧美| 最近中文字幕2019免费版| 别揉我奶头~嗯~啊~动态视频 | www.自偷自拍.com| 久久精品国产亚洲av高清一级| 多毛熟女@视频| 美女视频免费永久观看网站| 久久99一区二区三区| 黑人欧美特级aaaaaa片| 国产日韩欧美在线精品| 在线观看免费日韩欧美大片| 91精品伊人久久大香线蕉| 亚洲国产看品久久| 国产熟女午夜一区二区三区| 欧美 亚洲 国产 日韩一| 久久精品国产亚洲av涩爱| 亚洲精品乱久久久久久| 亚洲精品在线美女| 欧美xxⅹ黑人| 国产99久久九九免费精品| 日韩视频在线欧美| 哪个播放器可以免费观看大片| 在现免费观看毛片| 国产一区二区三区综合在线观看| 亚洲国产欧美在线一区| 热re99久久精品国产66热6| 欧美日韩综合久久久久久| 一边亲一边摸免费视频| 亚洲国产欧美日韩在线播放| 在线看a的网站| av电影中文网址| 国产精品二区激情视频| 大码成人一级视频| 欧美成人精品欧美一级黄| 九草在线视频观看| 亚洲国产中文字幕在线视频| 天天躁夜夜躁狠狠躁躁| 婷婷色麻豆天堂久久| 国产精品熟女久久久久浪| 黄色一级大片看看| 国产成人啪精品午夜网站| 国产黄色视频一区二区在线观看| 性高湖久久久久久久久免费观看| 亚洲欧洲日产国产| 精品亚洲乱码少妇综合久久| 丝袜人妻中文字幕| 国产老妇伦熟女老妇高清| 看十八女毛片水多多多| 搡老乐熟女国产| 少妇精品久久久久久久| 黄片无遮挡物在线观看| 成年人午夜在线观看视频| 欧美激情极品国产一区二区三区| 夫妻午夜视频| 在线观看人妻少妇| 操出白浆在线播放| 99热全是精品| 男女免费视频国产| av电影中文网址| 99久久综合免费| av视频免费观看在线观看| 色婷婷av一区二区三区视频| 精品国产超薄肉色丝袜足j| 国产福利在线免费观看视频| 王馨瑶露胸无遮挡在线观看| 亚洲,欧美,日韩| 多毛熟女@视频| 日本91视频免费播放| 亚洲欧美成人综合另类久久久| 亚洲熟女毛片儿| 在线看a的网站| 亚洲国产欧美网| 黄色一级大片看看| 成人漫画全彩无遮挡| 欧美97在线视频| 99久久精品国产亚洲精品| 国产一级毛片在线| 国产精品成人在线| 亚洲欧美一区二区三区国产| 肉色欧美久久久久久久蜜桃| 丁香六月欧美| 国产毛片在线视频| 国产男人的电影天堂91| 99久久人妻综合| av免费观看日本| 亚洲熟女毛片儿| 男女边摸边吃奶| 国产老妇伦熟女老妇高清| 人体艺术视频欧美日本| 久久青草综合色| kizo精华| √禁漫天堂资源中文www| 日本91视频免费播放| 人人妻人人澡人人看| 热re99久久精品国产66热6| 亚洲精品久久久久久婷婷小说| 一边摸一边抽搐一进一出视频| 国产成人精品在线电影| 最近中文字幕高清免费大全6| 人妻 亚洲 视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲成人一二三区av| 国产精品国产三级专区第一集| 九色亚洲精品在线播放| 亚洲欧美一区二区三区黑人| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久久久免费av| 日日爽夜夜爽网站| 国产在线视频一区二区| 精品第一国产精品| 久久亚洲国产成人精品v| 免费av中文字幕在线| 日韩电影二区| 777米奇影视久久| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一级一片aⅴ在线观看| 日日啪夜夜爽| 色婷婷av一区二区三区视频| 亚洲av在线观看美女高潮| 亚洲欧美成人综合另类久久久| 午夜精品国产一区二区电影| 别揉我奶头~嗯~啊~动态视频 | 日韩大码丰满熟妇| 欧美精品亚洲一区二区| 亚洲精品视频女| 久久久久国产精品人妻一区二区| 1024视频免费在线观看| 精品少妇黑人巨大在线播放| 激情五月婷婷亚洲| 亚洲精品一二三| 亚洲av电影在线观看一区二区三区| 国产一卡二卡三卡精品 | 亚洲欧美一区二区三区国产| 亚洲精品视频女| 麻豆精品久久久久久蜜桃| 国产 一区精品| 国产爽快片一区二区三区| 亚洲欧洲国产日韩| 丁香六月天网| 国产成人免费观看mmmm| 国产精品麻豆人妻色哟哟久久| av又黄又爽大尺度在线免费看| 免费少妇av软件| 国产亚洲欧美精品永久| 欧美变态另类bdsm刘玥| 久久ye,这里只有精品| 国产伦理片在线播放av一区| 啦啦啦中文免费视频观看日本| 午夜福利免费观看在线| 日韩免费高清中文字幕av| 国产女主播在线喷水免费视频网站| 97人妻天天添夜夜摸| 麻豆av在线久日| 性色av一级| 欧美日韩一级在线毛片| 亚洲图色成人| 国产精品亚洲av一区麻豆 | 亚洲免费av在线视频|