• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fast period estimation of X-ray pulsar signals using an improved fast folding algorithm

    2023-11-10 02:16:14MinzhngSONGYidiWANGWeiZHENGLinshengLIYusongWANGXioweiHUYulongWU
    CHINESE JOURNAL OF AERONAUTICS 2023年10期

    Minzhng SONG, Yidi WANG, Wei ZHENG, Linsheng LI,Yusong WANG, Xiowei HU, Yulong WU

    a College of Aerospace Sciences and Engineering, National University of Defense Technology, Changsha 410073, China

    b Unit 71770 of PLA, Taian 271000, China

    c Beijing Institute of Control Engineering, Beijing 100076, China

    KEYWORDS

    Abstract An accurate period is important to recover the pulse profile from a recorded photon event series of an X-ray pulsar and to estimate the pulse time of arrival, which is the measurement of X-ray pulsar navigation.Epoch folding is a classical period estimation method in the time domain; however, its computational complexity grows as the number of trail periods increases.In order to reduce the computational complexity, this paper improves the fast folding algorithm through segment correlation and amplitude accumulation,which is based on the post-order traversal of a binary tree.Compared with epoch folding,the improved fast folding algorithm can achieve a similar accuracy at the cost of a lower computational burden.Compared with the original fast folding algorithm,the improved algorithm can be applied to detectors with a much smaller effective area.The performance of the method is investigated by simulation data and observation data from the Neutron star Interior Composition Explorer (NICER).

    1.Introduction

    A pulsar, a rapid spinning neutron star, radiates particle beams outward from its two magnetic poles.When a beam sweeps over a spacecraft, the spacecraft receives a pulsed signal.1Pulsars can be employed as natural beacons to help a spacecraft determine its position and velocity in space.2Moreover, a high-precision time scale, pulsar timescale, can be constructed by pulsar timing.3

    The key techniques of pulsar navigation are spin period estimation and pulse profile recovery.Currently,epoch folding is commonly employed to estimate the spin period of an X-ray pulsar.4Under epoch folding, data is firstly folded modulo a trial period and then binned, and Pearson’s χ2is used to test the recovered profile.5–6Nevertheless, the computational cost of epoch folding grows as the number of trial periods increases.7

    For a radio pulsar signal,in order to accelerate epoch folding,the Fast Folding Algorithm(FFA),which works based on the light curve of the radio signal, was originally designed by Stealin.8This algorithm operates in the time domain and is particularly effective at finding long-period radio pulsars.9Lovelace et al.implemented the algorithm on radio data from the Arecibo, leading to the discovery of pulsar PSR B2016+28.10In 2004,this algorithm was successful at finding a pulsar with a period of 7.7 s.11Kondratiev et al.used the FFA to search for pulsed radio emission.12Scholz et al.attempted to find an underlying periodicity on the Arecibo and Green Bank Telescope (GBT) observations using the FFA.13Parent et al.’s work demonstrated that the FFA exceeded the performance of the Fast Fourier Transform(FFT)in the white-noise regime in the case of long-period pulsars.14Morello et al.developed an FFA pipeline to process radio observations.15

    Although the FFA has been successfully applied to the radio pulsar astronomy, it cannot be directly applied to an X-ray pulsar, because the X-ray signal of a pulsar can only be recorded as a form of photon instead of a continuous signal.16In a study by Zhang et al., through photon counting,a photon event series was converted to a pulse intensity matrix which could be processed by the FFA.17However,this method is only applicable to cases where a high photon count rate is available.For detection of an X-ray pulsar, a high photon count rate can be achieved by employing an X-ray detector with a large effective area.However, the detection efficiency of an X-ray detector is always below 50%,18and it is impractical for an X-ray detector to have an area of about 1 m2.Thus,the pulse intensity matrix constructed by using Zhang’s method will be extremely sparse,17and it is difficult to estimate the period of an X-ray pulsar by using an individual output matrix (see Section 3).In this paper, we find a way to mix the output matrices of different data segments together to obtain an accumulated output matrix that can be used to estimate the spin period of an X-ray pulsar.

    The organization of this paper proceeds as follows: Section 2 describes the principle of the FFA;Section 3 introduces the post-order traversal of a binary tree into the FFA and proposes an improved FFA useful to estimate the spin period of an X-ray pulsar;Section 4 verifies the performance of the proposed method by simulation data and real data from the Neutron star Interior Composition Explorer (NICER) mission.

    2.Brief review of FFA

    In the example shown in Fig.1, we generated an evenlysampled artificial periodic pulsed signal containing N=8 cycles with m=8 phase bins in each cycle, an initial phase of φ=2 bins and a pulse period P (8tbin

    Considering the range of a folding period([mtbin,(m+1)tbin]), for each subset, in fact, the pair can be integrated with the trial period of mtbinor (m+1)tbin.For example, the folding transforms of the first two rows are

    In the 1st output matrix,each subset contains 4 rows.After the folding transform of the first subset (see the first blocks highlighted in orange in the second panel from the left), we can obtain the first 4 matrix rows of the 2nd output matrix(see the upper half highlighted in red in the third panel from the left),as shown in Eq.(3).Each matrix row now represents an integrated profile with the folding periods of mtbin,(m+1/3)tbin,(m+2/3)tbin, and (m+1)tbin, respectively.

    Fig.1 An example of FFA.

    More generally, for each subset (highlighted in orange) of the ithoutput matrix,the kthrow of the lower half(highlighted in blue)needs to be cyclically shifted to the left by k phase bins and k+1 phase bins, respectively.Then, add them to the kthrow of the upper half (highlighted in red) respectively as the 2kthand (2k+1)throws of the corresponding block of the(i+1)thoutput matrix.

    It should be noted that, for the FFA, in order to avoid aliasing in calculation, N satisfies the following equation17:

    After fast folding, each row of the final output matrix represents a cumulative profile, and the folding period of the kthrow is

    In the example shown in Fig.1,the pulses drift in phase by S=4 bins over the total observation time.In the output matrix, a visible peak denotes a candidate periodic signal,and the row and column indices of the peak correspond to its period and initial phase,respectively.The peak’s row index is equal to S+1,indicating that the period of the pulsed signal is [m+S/(N-1)]tbin.

    3.Improved FFA

    3.1.A binary tree-based FFA

    The original FFA is stored and calculated in the unit of data block, which leads to a high CPU cache burden and a lack of flexibility when the calculation scale is large.If we are only interested in the profiles integrated by some certain folding periods, in addition to outputting the required information(i.e., the corresponding rows of the final output matrix), the original FFA also performs many useless calculations.For the example shown in Fig.2,supposing that we want to obtain the 5th row of the output matrix, then in the 3rd output matrix, only the 3rd row of the upper half and the 3rd row of the lower half are needed, and so on until we trace back to each row of the pulse intensity matrix.The tracing path of the above process is shown as the red lines in Fig.2.This is a typical recursive process, and all traversed nodes form a full binary tree.The cumulative profile (i.e., the 5th row of the output matrix) can be obtained through the post-order traversal of a binary tree.Thus, a node data structure is defined,which contains four attributes:profile is an array with m elements that stores the corresponding pulse profile; offset represents the number of phase bins that the profile of the right child node left circularly shifted when calculating the profile of this node;left is the left child node;right is the right child node.

    The process of integrating the cumulative profile of the root node can be divided into three steps:

    Step 1.Initialize the binary tree.It includes specifying the connection relationship of nodes according to the properties of the full binary tree and assigning the profile of each leaf node to the corresponding row of the pulse intensity matrix.The detailed process is shown as the pseudo code in Algorithm 1.

    Algorithm 1.Initialize binary tree.

    Initialize binary tree:InitFFAtree Input:N: Number of rows of the pulse intensity matrix;P0: The initial trial value of the spin period;TOAs: Times of arrival;Bins: Total number of phase bins Output:FFAnodes: Node set of the binary tree 1.FFAnodes ←new Node[2N-1]2.for i=0,1,???,2N-2 do if i

    Step 2.Calculate the offset of each non-leaf node.For a trial period, there is a corresponding binary tree to integrate the cumulative profile.Binary trees of different trial periods have the same leaf nodes, and only the offset attributes of the non-leaf nodes are different.Therefore, when integrating the cumulative profile of a different trial period, it is not necessary to build a new binary tree,but to re-assign the offset of each non-leaf node.As shown in the pseudo code below, a breadth-first traversal of the binary tree is performed to calculate the offset of each non-leaf node (see Algorithm 2).

    Algorithm 2.Calculate offset attribute of each non-leaf node.

    Calculate offset attribute of each node: CalculateOffset Input:k: Row index of the pulse profile to be output;FFAnodes: Node set of the binary tree Output:root: Root node of the binary tree 1.N ← FFAnodes.Length+1) / 2 2.depth ←1 3.for i=0,1,...,N-2 do if k % 2=0 FFAnodes[i].offset ←k/2 else FFAnodes[i].offset ←(k+1)/2 end if if i+2=2depth k ←k/2 depth ←depth+1 end if end for 4.return FFAnodes[0](

    Step 3.Calculate the profile of the root node.By a postorder traversal, the profile of each leaf node is integrated to the profile of the root node (see Algorithm 3).

    Algorithm 3.Calculate pulse profile of target node.

    Calculate the pulse profile of the target node: getProfile Input:root: Target node Output:root profile: Pulse profile of the target node if root.left=null return root.profile else leftchild profile ←getProfile(root.left)rightchild profile ←getProfile(root.right)return leftchild profile,root.offset)end if profile + recircle(rightchild

    By introducing the post-order traversal of the binary tree into the FFA, the data is no longer stored and calculated in blocks.Meanwhile, the algorithm can output cumulative profiles according to requirements, which reduces redundant calculations and makes the algorithm be able to be combined with an optimization algorithm to improve the calculation efficiency.

    3.2.FFA for a photon event series

    X-ray pulsars are very faint, so a spacecraft can only record a series of X-ray photon events rather than a continuous pulsed signal.16Thus, as a preliminary step, the photon event series needs to be converted into a pulse intensity matrix.This procedure is performed as follows: select photon events within a time interval[t0,t0+NP0], where t0and P0represent the start time and the initial trial value of the spin period, respectively,and N is a power of 2.Then,each P0is further divided into m equal-length phase bins.Then, with the number of photon events in each phase bin being counted,we obtain an intensity sequence with a length ofNm.Finally,the intensity sequence is reshaped into a pulse intensity matrix with N rows and m columns.

    Since the photon flux of an X-ray pulsar is a constant,for the same type of detector, the average photon count rate is determined by the effective area of the detector.For the NICER, the source pulsed rate and the total non-pulsed rate of the Crab pulsar are 660 counts/s and 13860.2 counts/s,respectively.19Photon events are recorded by 56 concentrator-detector pairs, and each pair has a collection area of about 30 cm2.In order to analyze the performance of the FFA in the case of a small collection area, we select the observation data of 5 concentrator-detector pairs.The data is converted into a pulse intensity matrix following the steps above and then processed by the FFA(m=N=256), and Pearson’s χ2is used to test the cumulative profiles in the FFA output matrix.Results show that the curve of the χ2value with the folding period doesn’t have an obvious peak (see Fig.3), meaning that the spin period cannot be accurately estimated by the FFA in the case of a small effective area.

    The underlying cause leading to the failure of the FFA is that the integration time of the FFA is limited, over which there are not enough photons to integrate a cumulative profile with an acceptable Signal-to-Noise Ratio (SNR).Since the spin period cannot be accurately estimated by any individual output matrix, we contrive to prolong the integration time by mixing the output matrices of different data segments together.

    The phases of the FFA output matrix are referred to as the start times of the corresponding data segments.The start times of data segments are different from each other, so the FFA output matrices cannot be added directly.For example, there is a photon event seriesTOAs.Taking P0as the folding period,TOAs is epoch folded by start time t0and t1=t0+0.25P0,respectively.As shown in Fig.4, the red curve is circularly shifted to the right for 0.25 cycle, and it will coincide with the blue curve, indicating that the start time can be adjusted from t1to t0only by circularly shifting the pulse profile to the right for (t1-t0)/P0cycle.

    Let tibe the start time of the ithdata segment.The kthrow of the ithFFA output matrix, whose folding period is Pk={ 1 + (k-1)/[m(N-1)]} P0, needs to cyclically shift to the right by m{[(ti-t0)/Pk]%1} phase bins.We call this process phase calibration.The FFA output matrices after phase calibration can be added together to obtain an accumulated output matrix that can be used to estimate the pulse period of the X-ray pulsar.As shown in Fig.5, for the accumulated output matrix of the NICER’s observation data,the curve of the χ2value with the folding period has an obvious and narrow peak, indicating that the spin period can be accurately estimated by this method.

    4.Performance analysis and discussion

    In this section,we employ Monte Carlo simulations20and real data from the NICER to investigate the proposed algorithm.

    Fig.3 Processing results of NICER’s observation data by FFA.

    Fig.4 Phase shift of cumulative profile caused by different start times.

    4.1.Simulation data

    In order to compare the performance of the improved FFA with those of traditional methods, assume that the flux of the Crab pulsar is 1.54 counts?cm-2?s-1and the non-pulsed rate is 10 times of the source pulsed rate21,set the effective area to be different values, and then perform Monte Carlo simulations respectively.For each simulation data, the improved FFA (m=N=512, and the number of mixed matrices is 5),epoch folding, and the original FFA (m=N=512) are used to estimate the period and the initial phase22,respectively.Note that the magnitude of the estimation error of the initial phase φ0, is calculated modulo one cycle, i.e.,

    where ^φ0is an estimate of the initial phase.

    Fig.5 Processing results of NICER’s observation data through segment correlation and amplitude accumulation.

    In Fig.6,the Root Mean Square(RMS)of the initial-phase estimation errors for different methods is plotted.It shows that as the effective area of the detector increases,for the three different methods, the variance of estimation error demonstrates a decreasing trend.The curve with square markers is in strong agreement with the curve with circular markers, implying that the improved FFA can achieve a similar accuracy compared with that of epoch folding.However, for the original FFA,the initial phase can be accurately estimated only when the effective area is large.

    Fig.7 Computational costs of improved FFA, epoch folding,and original FFA.

    Fig.6 RMS errors of improved FFA, epoch folding, and original FFA.

    As Fig.7 shows, with an increase of the effective area, the computation cost of the epoch folding method rises rapidly,while the computational cost of the improved FFA is not affected by the effective area of the detector.This is because,under epoch folding,all the photon phases need to be recalculated when the folding period changes.To complete a search of N trial periods, the improved FFA only demands to calculate the photon phases for the initial folding period P0to generate q pulse intensity matrices, q(Nlog2N-N+1) cyclic shifts, and qmN(log2N+1) additions.However, under epoch folding,about qN2P0f multiplication and modulus operations are required, where f is the average photon count rate.Since the original FFA is only effective when the effective area is large,the speeds of the improved FFA and the original FFA are compared when the effective area is larger than 700 cm2.It can be seen that both of them are much faster than epoch folding, but the improved algorithm has a slight advantage.

    Fig.8 Performance analysis of improved FFA at different SNR conditions.

    Fig.9 Comparison between results of improved FFA and ephemeris published by Jodrell Bank observatory.

    In order to verify the performance of the algorithm at low-SNR conditions, the source pulsed rate is set as 50 counts/s,and different SNR cases are constructed by changing the total non-pulsed rate,generating 1000 s simulation data to estimate the period of each simulation data by the improved FFA.As shown in Fig.8, the improved FFA maintains high performance at low-SNR conditions.

    4.2.Real data

    The effectiveness of the proposed algorithm is further investigated by the observation data of the Crab pulsar from the NICER.The NICER has an extremely high time resolution and has accumulated up to 4 years of observation data since its launch.The improved FFA (m=N=1024, and the number of mixed matrices is 5) is used to estimate the spin frequency of each data segment.Then, a quadratic polynomial function is used to fit the function of estimated spin frequency and time.As shown in Fig.9,results of the improved FFA are in strong agreement with the ephemeris published by the Jodrell Bank observatory.Since the Crab is a young pulsar with unstable rotation, glitches often occur.According to the report, a large glitch occurred at MJD 58064.555.From the results, we can see that the fitting residuals near MJD 58065 increase suddenly.

    5.Conclusions

    In this work,we conduct a systematic study on the application of the FFA on the spin period estimation of an X-ray pulsar,and propose an improved algorithm which can be applied to detectors with a much smaller effective area.Simulation results indicate that the improved FFA has a lower computational cost and maintains a high performance at low-SNR conditions.In order to further elevate the computational efficiency of the algorithm, we introduce the post-order traversal of a binary tree into the FFA.In this variant algorithm, data is no longer stored and operated in blocks, and cumulative profiles can be integrated according to requirements, which reduces redundant calculations and gains more flexibility for the algorithm.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China (No.61703413).

    99热国产这里只有精品6| 精品国产一区二区久久| 亚洲免费av在线视频| 午夜免费鲁丝| 少妇粗大呻吟视频| 视频区欧美日本亚洲| 麻豆av在线久日| 中文字幕色久视频| 欧美激情久久久久久爽电影 | 91字幕亚洲| 国产伦理片在线播放av一区| 青草久久国产| 久久午夜综合久久蜜桃| 狂野欧美激情性bbbbbb| 国产真人三级小视频在线观看| 黑丝袜美女国产一区| 美女主播在线视频| 美女福利国产在线| 纯流量卡能插随身wifi吗| 欧美激情 高清一区二区三区| 亚洲九九香蕉| 老司机午夜十八禁免费视频| 亚洲av片天天在线观看| 国产精品影院久久| 国产精品自产拍在线观看55亚洲 | 啪啪无遮挡十八禁网站| √禁漫天堂资源中文www| 不卡av一区二区三区| 日韩欧美国产一区二区入口| 国产亚洲欧美在线一区二区| 老司机午夜十八禁免费视频| 老司机深夜福利视频在线观看 | 国产片内射在线| 老熟妇乱子伦视频在线观看 | 99久久国产精品久久久| av在线播放精品| 啦啦啦啦在线视频资源| 十八禁网站免费在线| 又大又爽又粗| 欧美久久黑人一区二区| 热re99久久精品国产66热6| 久久天堂一区二区三区四区| 日本av免费视频播放| 成人影院久久| 国产无遮挡羞羞视频在线观看| a级片在线免费高清观看视频| 亚洲精品自拍成人| 青青草视频在线视频观看| 亚洲熟女毛片儿| 国产不卡av网站在线观看| 少妇裸体淫交视频免费看高清 | 午夜两性在线视频| 亚洲伊人色综图| 国产精品二区激情视频| 中国美女看黄片| 18禁裸乳无遮挡动漫免费视频| 各种免费的搞黄视频| 免费一级毛片在线播放高清视频 | 夜夜骑夜夜射夜夜干| 黄色a级毛片大全视频| 国产精品久久久久久人妻精品电影 | 亚洲黑人精品在线| 亚洲av美国av| 午夜福利,免费看| 深夜精品福利| 亚洲精品美女久久久久99蜜臀| 国产在线视频一区二区| 女人久久www免费人成看片| 90打野战视频偷拍视频| 黑丝袜美女国产一区| 99国产精品一区二区蜜桃av | 丝瓜视频免费看黄片| 欧美黑人精品巨大| 91成年电影在线观看| 欧美精品人与动牲交sv欧美| 国产麻豆69| kizo精华| 巨乳人妻的诱惑在线观看| 亚洲精品粉嫩美女一区| 亚洲精品日韩在线中文字幕| 久久这里只有精品19| 成人18禁高潮啪啪吃奶动态图| 窝窝影院91人妻| 欧美黄色淫秽网站| 伦理电影免费视频| 亚洲av成人一区二区三| 欧美乱码精品一区二区三区| 欧美日韩一级在线毛片| 中文字幕人妻熟女乱码| 黄频高清免费视频| 午夜福利在线免费观看网站| 91成年电影在线观看| 日韩视频一区二区在线观看| 久久中文字幕一级| 最近最新中文字幕大全免费视频| 久久天躁狠狠躁夜夜2o2o| 久久性视频一级片| 两人在一起打扑克的视频| 淫妇啪啪啪对白视频 | 欧美精品啪啪一区二区三区 | 国产精品熟女久久久久浪| 日本av手机在线免费观看| 亚洲欧洲日产国产| 免费av中文字幕在线| 欧美国产精品一级二级三级| 黄色毛片三级朝国网站| 丝袜脚勾引网站| 纯流量卡能插随身wifi吗| 热99久久久久精品小说推荐| 国产精品自产拍在线观看55亚洲 | 大片电影免费在线观看免费| 99热国产这里只有精品6| 欧美日韩一级在线毛片| 女警被强在线播放| 国产成人免费观看mmmm| 91麻豆av在线| 脱女人内裤的视频| 9热在线视频观看99| 国产欧美日韩一区二区三区在线| 亚洲第一av免费看| 久久精品人人爽人人爽视色| 一区二区三区精品91| 久久久国产成人免费| 久久九九热精品免费| 一区二区三区精品91| 在线观看免费日韩欧美大片| 18禁黄网站禁片午夜丰满| 国产亚洲欧美精品永久| 看免费av毛片| 国产精品99久久99久久久不卡| 亚洲国产成人一精品久久久| 80岁老熟妇乱子伦牲交| 俄罗斯特黄特色一大片| 久9热在线精品视频| 亚洲综合色网址| 久久久久视频综合| 伊人亚洲综合成人网| 国产精品久久久久久人妻精品电影 | 手机成人av网站| 国产精品久久久久久精品电影小说| 亚洲国产欧美日韩在线播放| 成年动漫av网址| 亚洲av日韩精品久久久久久密| 免费人妻精品一区二区三区视频| 黄色片一级片一级黄色片| 久久影院123| 国产免费视频播放在线视频| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品一区二区在线观看99| 狠狠狠狠99中文字幕| 国产极品粉嫩免费观看在线| 高清在线国产一区| 啦啦啦在线免费观看视频4| 久久热在线av| 黑人操中国人逼视频| 免费日韩欧美在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 人人妻人人添人人爽欧美一区卜| 在线观看免费高清a一片| 两性午夜刺激爽爽歪歪视频在线观看 | 极品人妻少妇av视频| 国产高清国产精品国产三级| 黑人操中国人逼视频| 欧美亚洲日本最大视频资源| 久久中文看片网| 精品福利永久在线观看| 国产麻豆69| 久久久久精品国产欧美久久久 | 曰老女人黄片| 免费日韩欧美在线观看| 国产亚洲一区二区精品| 亚洲三区欧美一区| 纯流量卡能插随身wifi吗| 精品亚洲成a人片在线观看| 老熟妇乱子伦视频在线观看 | 欧美老熟妇乱子伦牲交| 日韩精品免费视频一区二区三区| 在线天堂中文资源库| 国产男女超爽视频在线观看| 高清黄色对白视频在线免费看| 一区二区av电影网| av在线播放精品| 久久久久久人人人人人| 久久精品aⅴ一区二区三区四区| 久久女婷五月综合色啪小说| 免费高清在线观看视频在线观看| 狂野欧美激情性xxxx| 99九九在线精品视频| 国产亚洲一区二区精品| 亚洲第一av免费看| av视频免费观看在线观看| 久久国产精品大桥未久av| 中文精品一卡2卡3卡4更新| 亚洲中文字幕日韩| 欧美日韩亚洲综合一区二区三区_| 91麻豆av在线| 另类精品久久| 性色av乱码一区二区三区2| 女人精品久久久久毛片| 老司机午夜福利在线观看视频 | 色94色欧美一区二区| 亚洲成av片中文字幕在线观看| 亚洲中文av在线| a级毛片在线看网站| 午夜老司机福利片| 一级片'在线观看视频| 99国产精品99久久久久| 丝袜在线中文字幕| 久久精品熟女亚洲av麻豆精品| 午夜福利,免费看| 亚洲精品中文字幕一二三四区 | 麻豆国产av国片精品| 法律面前人人平等表现在哪些方面 | 久久久久久免费高清国产稀缺| 日韩欧美一区视频在线观看| 国产男女超爽视频在线观看| 男女之事视频高清在线观看| 黄片大片在线免费观看| 十分钟在线观看高清视频www| 伦理电影免费视频| 免费日韩欧美在线观看| 超碰97精品在线观看| 美女中出高潮动态图| 99精国产麻豆久久婷婷| 日本一区二区免费在线视频| 国产99久久九九免费精品| 亚洲欧美激情在线| 国产91精品成人一区二区三区 | 19禁男女啪啪无遮挡网站| 99国产精品免费福利视频| 天天操日日干夜夜撸| tocl精华| 成人三级做爰电影| 午夜91福利影院| 国产一级毛片在线| 国产日韩欧美在线精品| 国产精品自产拍在线观看55亚洲 | 久久国产精品男人的天堂亚洲| 中文字幕人妻丝袜制服| 亚洲熟女精品中文字幕| 欧美另类一区| 多毛熟女@视频| 国产免费视频播放在线视频| 国产精品免费视频内射| www日本在线高清视频| 国产视频一区二区在线看| 国产亚洲av片在线观看秒播厂| 青春草视频在线免费观看| 在线精品无人区一区二区三| 美女大奶头黄色视频| 99香蕉大伊视频| 丝袜美足系列| 亚洲第一青青草原| 免费在线观看黄色视频的| 国精品久久久久久国模美| 黄网站色视频无遮挡免费观看| 涩涩av久久男人的天堂| 另类亚洲欧美激情| 五月开心婷婷网| 一级片免费观看大全| 18禁裸乳无遮挡动漫免费视频| 久久99热这里只频精品6学生| 少妇 在线观看| 欧美变态另类bdsm刘玥| 电影成人av| 高清在线国产一区| 日韩中文字幕欧美一区二区| 老汉色av国产亚洲站长工具| 中文字幕人妻熟女乱码| 天堂8中文在线网| 一级a爱视频在线免费观看| 十八禁高潮呻吟视频| 中文字幕人妻丝袜一区二区| 伊人亚洲综合成人网| 色综合欧美亚洲国产小说| 在线观看舔阴道视频| 妹子高潮喷水视频| 男女床上黄色一级片免费看| 亚洲熟女精品中文字幕| 黄色毛片三级朝国网站| 亚洲av成人不卡在线观看播放网 | 久久ye,这里只有精品| 亚洲精品中文字幕在线视频| 欧美激情 高清一区二区三区| 又大又爽又粗| 国产男人的电影天堂91| 免费高清在线观看日韩| 久久天躁狠狠躁夜夜2o2o| 日韩大片免费观看网站| 91大片在线观看| 不卡一级毛片| 亚洲第一青青草原| 欧美精品一区二区大全| 一级片'在线观看视频| 97精品久久久久久久久久精品| 午夜福利,免费看| 中文字幕人妻熟女乱码| 美女福利国产在线| 精品亚洲成国产av| 母亲3免费完整高清在线观看| 18禁裸乳无遮挡动漫免费视频| 国产高清国产精品国产三级| 精品卡一卡二卡四卡免费| 另类精品久久| 久久亚洲精品不卡| 久久免费观看电影| 一级片'在线观看视频| 99国产精品99久久久久| 欧美+亚洲+日韩+国产| 91成年电影在线观看| 国产一区二区在线观看av| 超碰成人久久| 美女午夜性视频免费| 十八禁人妻一区二区| 精品高清国产在线一区| 国产精品久久久av美女十八| 欧美日韩中文字幕国产精品一区二区三区 | 深夜精品福利| 日韩欧美免费精品| 精品欧美一区二区三区在线| 国产精品久久久久久精品电影小说| 他把我摸到了高潮在线观看 | 亚洲美女黄色视频免费看| 精品国产国语对白av| av欧美777| 成人黄色视频免费在线看| 精品少妇内射三级| 精品亚洲成a人片在线观看| 人妻一区二区av| 午夜福利在线观看吧| e午夜精品久久久久久久| 久久 成人 亚洲| 天天躁夜夜躁狠狠躁躁| 国产主播在线观看一区二区| 免费女性裸体啪啪无遮挡网站| 欧美黄色淫秽网站| 国产成人a∨麻豆精品| 不卡一级毛片| 久久中文字幕一级| 亚洲avbb在线观看| 久久人人爽人人片av| 国产在线免费精品| 成年女人毛片免费观看观看9 | 另类亚洲欧美激情| 叶爱在线成人免费视频播放| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久国产精品人妻一区二区| 亚洲精品美女久久av网站| 国产成人免费观看mmmm| 亚洲欧美精品综合一区二区三区| av有码第一页| 美女扒开内裤让男人捅视频| 久久久久久免费高清国产稀缺| 精品少妇黑人巨大在线播放| 久9热在线精品视频| av一本久久久久| av不卡在线播放| 人人妻,人人澡人人爽秒播| 亚洲av日韩精品久久久久久密| 99热网站在线观看| 免费在线观看视频国产中文字幕亚洲 | 一个人免费看片子| 最近最新免费中文字幕在线| 久久久久久久精品精品| 在线观看人妻少妇| 亚洲精品久久久久久婷婷小说| 日韩免费高清中文字幕av| 女人久久www免费人成看片| 精品国产乱子伦一区二区三区 | 一级片'在线观看视频| 老汉色∧v一级毛片| 女人久久www免费人成看片| tocl精华| 国产精品一区二区在线不卡| 超碰成人久久| 乱人伦中国视频| 欧美日韩中文字幕国产精品一区二区三区 | 色视频在线一区二区三区| 精品乱码久久久久久99久播| 美女扒开内裤让男人捅视频| 韩国高清视频一区二区三区| 亚洲精品美女久久久久99蜜臀| 久久久国产成人免费| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩精品网址| 久久国产精品男人的天堂亚洲| 51午夜福利影视在线观看| 精品欧美一区二区三区在线| 亚洲欧美精品综合一区二区三区| 另类亚洲欧美激情| 精品国产乱码久久久久久小说| 国产精品久久久久久精品电影小说| 美女高潮喷水抽搐中文字幕| 搡老熟女国产l中国老女人| 一边摸一边抽搐一进一出视频| av线在线观看网站| 91av网站免费观看| 国产激情久久老熟女| 欧美日韩av久久| 日韩欧美一区视频在线观看| 久久精品成人免费网站| 精品国内亚洲2022精品成人 | 精品人妻熟女毛片av久久网站| xxxhd国产人妻xxx| 19禁男女啪啪无遮挡网站| 中国国产av一级| 国产又爽黄色视频| 欧美日韩一级在线毛片| 国产在视频线精品| 日本欧美视频一区| 男女边摸边吃奶| 一级片'在线观看视频| av不卡在线播放| 欧美在线黄色| 狠狠婷婷综合久久久久久88av| 国产精品亚洲av一区麻豆| 色老头精品视频在线观看| 性高湖久久久久久久久免费观看| 一级毛片女人18水好多| 欧美日本中文国产一区发布| 色视频在线一区二区三区| 一区二区日韩欧美中文字幕| 午夜老司机福利片| 一边摸一边做爽爽视频免费| 国产一卡二卡三卡精品| 亚洲一卡2卡3卡4卡5卡精品中文| 精品少妇久久久久久888优播| 不卡一级毛片| 性高湖久久久久久久久免费观看| 极品人妻少妇av视频| 午夜福利影视在线免费观看| 波多野结衣av一区二区av| 少妇裸体淫交视频免费看高清 | 久久午夜综合久久蜜桃| 999久久久国产精品视频| 亚洲黑人精品在线| 一区二区三区四区激情视频| 亚洲av美国av| √禁漫天堂资源中文www| 美女中出高潮动态图| 亚洲国产中文字幕在线视频| 蜜桃在线观看..| 丰满迷人的少妇在线观看| 男女床上黄色一级片免费看| 欧美久久黑人一区二区| 在线观看免费视频网站a站| av片东京热男人的天堂| 日韩一卡2卡3卡4卡2021年| 手机成人av网站| 叶爱在线成人免费视频播放| 午夜福利视频精品| 高清视频免费观看一区二区| 国产精品欧美亚洲77777| 极品少妇高潮喷水抽搐| 别揉我奶头~嗯~啊~动态视频 | 国产精品自产拍在线观看55亚洲 | 国产在线免费精品| 一级毛片电影观看| 国产精品麻豆人妻色哟哟久久| 国产极品粉嫩免费观看在线| 黄网站色视频无遮挡免费观看| 久久久久久久久久久久大奶| 99国产精品99久久久久| 两个人免费观看高清视频| 亚洲国产欧美在线一区| 两个人免费观看高清视频| 久久午夜综合久久蜜桃| 黄色视频不卡| 国产在视频线精品| av网站免费在线观看视频| 久久人人爽人人片av| 欧美日韩视频精品一区| 好男人电影高清在线观看| 桃花免费在线播放| 一区福利在线观看| 国产精品一区二区免费欧美 | 老司机亚洲免费影院| 亚洲国产欧美一区二区综合| 啦啦啦啦在线视频资源| 国产精品秋霞免费鲁丝片| 丝袜喷水一区| 一级毛片电影观看| 十八禁网站网址无遮挡| 男男h啪啪无遮挡| 俄罗斯特黄特色一大片| 曰老女人黄片| 欧美精品一区二区免费开放| 乱人伦中国视频| 亚洲第一欧美日韩一区二区三区 | 日本精品一区二区三区蜜桃| 丁香六月欧美| 黄频高清免费视频| 亚洲五月色婷婷综合| 国产一区二区三区av在线| 亚洲av成人不卡在线观看播放网 | 亚洲男人天堂网一区| 久久国产亚洲av麻豆专区| 精品国产乱码久久久久久男人| a 毛片基地| 久久九九热精品免费| 精品人妻1区二区| 欧美日韩亚洲国产一区二区在线观看 | 青春草亚洲视频在线观看| 亚洲,欧美精品.| 国产成人免费无遮挡视频| 国产有黄有色有爽视频| 久久人人爽人人片av| 黄色片一级片一级黄色片| 美女午夜性视频免费| 欧美大码av| 国产亚洲欧美在线一区二区| 色婷婷久久久亚洲欧美| 久久精品亚洲av国产电影网| 99国产极品粉嫩在线观看| 色综合欧美亚洲国产小说| 一本一本久久a久久精品综合妖精| 精品国产国语对白av| 纵有疾风起免费观看全集完整版| 婷婷色av中文字幕| 国产区一区二久久| 1024香蕉在线观看| 精品少妇内射三级| 亚洲av欧美aⅴ国产| 不卡一级毛片| 日韩大片免费观看网站| 他把我摸到了高潮在线观看 | 国产精品影院久久| 2018国产大陆天天弄谢| 深夜精品福利| 99九九在线精品视频| 亚洲精品自拍成人| 老熟女久久久| 亚洲综合色网址| 国产欧美日韩精品亚洲av| 超碰成人久久| 亚洲美女黄色视频免费看| 99国产极品粉嫩在线观看| 欧美中文综合在线视频| 成人免费观看视频高清| 日韩 亚洲 欧美在线| 如日韩欧美国产精品一区二区三区| 久久精品国产a三级三级三级| 91麻豆av在线| 国产精品二区激情视频| 亚洲精品国产av成人精品| 国产黄色免费在线视频| 黑人巨大精品欧美一区二区蜜桃| e午夜精品久久久久久久| 日韩欧美一区二区三区在线观看 | 免费人妻精品一区二区三区视频| 涩涩av久久男人的天堂| 成人影院久久| 久久国产精品大桥未久av| 精品少妇一区二区三区视频日本电影| 亚洲国产av影院在线观看| 他把我摸到了高潮在线观看 | av线在线观看网站| 多毛熟女@视频| av有码第一页| 狂野欧美激情性bbbbbb| 三级毛片av免费| 日韩欧美一区视频在线观看| 国产免费视频播放在线视频| av网站免费在线观看视频| 国产高清视频在线播放一区 | 国产免费av片在线观看野外av| 热re99久久国产66热| 纵有疾风起免费观看全集完整版| 每晚都被弄得嗷嗷叫到高潮| 国产精品免费大片| 美女高潮到喷水免费观看| 国产精品久久久久久精品电影小说| 久9热在线精品视频| 久久精品熟女亚洲av麻豆精品| 午夜福利视频精品| 久久精品成人免费网站| 91成人精品电影| 成人18禁高潮啪啪吃奶动态图| 99精国产麻豆久久婷婷| 天堂俺去俺来也www色官网| 国产成人av教育| av视频免费观看在线观看| 美国免费a级毛片| 亚洲熟女精品中文字幕| 午夜免费观看性视频| 亚洲欧美一区二区三区久久| 日本av免费视频播放| 成年动漫av网址| 国产成人a∨麻豆精品| 超色免费av| 国产一区有黄有色的免费视频| 日日爽夜夜爽网站| 亚洲国产欧美一区二区综合| 男女午夜视频在线观看| 亚洲欧美日韩高清在线视频 | 国产精品 欧美亚洲| 俄罗斯特黄特色一大片| 国产一级毛片在线| √禁漫天堂资源中文www| 叶爱在线成人免费视频播放| 亚洲国产欧美日韩在线播放| 一级毛片电影观看| 免费观看人在逋| 天天躁夜夜躁狠狠躁躁| 成人18禁高潮啪啪吃奶动态图| 满18在线观看网站| av线在线观看网站| 黄色a级毛片大全视频| 电影成人av| 午夜福利视频在线观看免费| 国精品久久久久久国模美| 汤姆久久久久久久影院中文字幕| 国产日韩欧美在线精品| 精品少妇内射三级| 欧美成狂野欧美在线观看|