• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characteristics of the pressure profile in the accelerator on the RF negative ion source at ASIPP

    2023-11-06 08:05:08MingshanWuLuxiangXuYanboZhouLizhenLiangandYelongZheng
    納米技術(shù)與精密工程 2023年3期

    Mingshan Wu,Luxiang Xu, Yanbo Zhou,,2 Lizhen Liang,and Yelong Zheng

    AFFILIATIONS 1 School of Fundamental Physics and Mathematical Sciences,Key Laboratory of Gravitational Wave Precision Measurement of Zhejiang Province,Taiji Laboratory for Gravitational Wave Universe,Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310024,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,China

    4State Key Laboratory of Precision Measuring Technology and Instruments,Tianjin University,Tianjin 300072,China

    ABSTRACT Neutral beam injection(NBI)systems based on negative hydrogen ion sources—rather than the positive ion sources that have typically been used to date—will be used in the future magnetically confine nuclear fusion experiments to heat the plasma.The collisions between the fast negative ions and neutral background gas result in a significan number of high-energy positive ions being produced in the acceleration area,and for the high-power long-pulse operation of NBI systems,this acceleration of positive ions back to the ion source creates heat load and material sputtering on the source backplate.This difficult cannot be ignored,with the neutral gas density in the acceleration region having a significan impact on the flu density of the backstreaming positive ions.In the work reported here,the pressure gradient in the acceleration region was estimated using an ionization gauge and a straightforward 1D computation,and it was found that once gas traveled through the acceleration region,the pressure dropped by nearly one order of magnitude,with the largest pressure drop occurring at the plasma grid.The computation also revealed that the pressure drop in the grid gaps was substantially smaller than that in the grid apertures.

    KEYWORDS Pressure gradient,Negative ion source,Aperture conductance,Neutral beam injection

    I.INTRODUCTION

    Auxiliary heating systems are needed to deliver more energy for lengthy pulses in large tokamak devices such as EAST(Experimental and Advanced Superconducting Tokamak)and ITER(International Thermonuclear Experimental Reactor).1,2For plasma heating and current driving,EAST has been equipped with neutral beam injection (NBI) systems based on positive ion sources.However,future massive fusion reactors such as ITER,3,4DEMO,5and CFETR6require high beam energy,and negative ions have a substantially better neutralization efficienc than do positive ions.

    As higher-energy and longer-pulse neutral beams are generated by ion sources,the backplate of the arc chamber and acceleration grids will collect more backstreaming particles,and the production processes and behavior of the backstreaming electrons and positive ions have already been well studied.7–9According to the estimation by Huet al.,the particle flu of the firs category accounts for 13.88% of the total beam current and the power flu of the firs category accounts for~6.5% of the total beam power at EAST-NBI.10Those studies were all based on estimating the pressure gradient in the acceleration region of an RF negative ion source,and herein we describe an ionization-gauge experiment and a specifi computation for estimating the acceleration pressure.

    FIG.1.Image of HUNTER with an RF source.

    As shown in Fig.1,HUNTER (Hefei Utility Negative ions Test Equipment with RF source)has been designed and developed at the Institute of Plasma Physics,Chinese Academy of Sciences(known as ASIPP,from Anhui Institute of Plasma Physics) to explore RF negative ion sources for NBI applications.11,12The negative ion accelerator is a single-stage acceleration system comprising three grids,i.e.,a plasma grid (PG),an extraction grid (EG),and a ground grid (GG),each made of copper and divided into four identical segments.In the firs research phase,only the middle two groups of segments were used for extraction to match the single RF driver.Each segment consisted of 6 × 5 apertures,the aperture spacing was 22 × 20 mm2,and the aperture geometry of each grid is shown in Fig.2.13,14The firs gap (PG-EG) and the second gap(EG-GG)were used for beam extraction and acceleration,respectively,and to suppress the leakage of secondary electrons and steer the negative ion beam,a molybdenum grid [electron suppression grid (ESG)] was attached to the EG at the same electric potential.

    II.A STRAIGHTFORWARD 1D CALCULATION

    A straightforward 1D calculation was used to estimate the pressure gradient in the RF negative ion source accelerator.During the test,only ten channels on the PG participated in the extraction and the rest were closed,and the ESG was not installed in the negative ion source.Considering the symmetry,one of the beam extraction channels was selected to calculate the channel diameter.

    A.Simplification of accelerator structure

    Figure 3 shows a simplifie structural model of the negative ion source accelerator.The surface of the PG facing the arc chamber is taken as thex-axis zero point,and the beam extraction direction is the positive direction of thex-axis.This allows the diameter function of a single beam channel to be described as

    FIG.2.Left:3D diagram of negative ion source.Right:detailed geometries of grid apertures(units:mm).

    However,region I is no longer an independent channel because of the overlapping holes,and the 30 holes are merged into a channel that for calculation convenience is reduced to a cuboid channel with a cross-section of 0.11×0.12 m2and a length of 0.0028 m.The electrode plates are integrated,so regions IV and VII are cuboid channels with a cross-section of 0.253×0.266 m2and lengths of 0.006 and 0.018 m,respectively.Therefore,the modifie function can be described as

    B.Specific calculation

    FIG.3.Simplified structure of negative ion source accelerator.

    Generally,the nature of the flui flo in the channel is assessed using the productof(the average pressure of the gas in the channel)andd(the diameter of the channel):15it is viscous flo ford>0.67 Pa·m,molecular flo ford<0.02 Pa·m,and transition flo for 0.02 Pa·m <pd<0.67 Pa·m.According to the current operating parameters of HUNTER,the operating gas is hydrogen,the arc chamber pressure is 0.5 Pa,the gas flo rate is 0.2 Pa·m3/s,and the vacuum pumping rate is 2 m3/s.Considering that there is no discharge plasma in the chamber and the temperature is room temperature,for convenience we assume a constant temperature of 300 K for the gas and the components.Because the gas pressure does not change much in region I,we assume an average gas pressure of 0.5 Pa.Therefore,the product ofanddcan be expressed asd≈pmd=0.5×0.11=0.55 Pa·m ∈(0.02,0.67) Pa·m,and so the flo in region I is transition flow

    The molecular mean free path is

    whereT(K)is the temperature,p(Pa)is the gas pressure,andσ(m)is the molecular diameter.TakingT=300 K,p≈pm=0.5 Pa,andσ=2.75×10-10m,we obtain≈0.024 650 6 m.

    The transition flo conductance of the cuboid channel can be expressed as

    whereUn(m3/s)is the viscous flo conductivity of the cuboid channel,Kjis the shape coefficien of the cuboid channel for transition flo (see Fig.4),15Uf(m3/s) is the molecular flo conductance of the cuboid channel,anda(m)is the length of the short side of the cross section.TakingKj≈1.04 anda=0.11 m,the conductance of region I can be simplifie as

    The viscous flo conductance of the cuboid channel can be expressed as

    whereaandb(m)are the side lengths of the cross section,η(Pa·s)is the viscosity coefficientL(m) is the channel length,(Pa) is the average gas pressure in the channel,andψis the shape coeffi cient of the cuboid channel for viscous flow which is related to the side lengths of the cross section as shown in Fig.5;15here,we takeψ=0.38.

    Considering the influenc of temperature on the viscosity coefficient the latter can be expressed as

    whereM(kg/mol)is the gas molar mass andC(K)is the Sutherland constant,which for hydrogen isC=76 K.Therefore,the viscosity coefficien isη≈7.031 61×10-6Pa s at 300 K.

    Substituting the various parameters into Eq.(3),we obtain

    TABLE I.Shape coefficient Kj of cuboid channel for molecular flow.

    FIG.4.Shape coefficient Kj of cuboid channel for transition flow.

    FIG.5.Shape coefficient ψ of cuboid channel for viscous flow.

    and the molecular flo conductance of the cuboid channel can be expressed as

    whereKjis the shape coefficien of the cuboid channel for molecular flo (see Table I);15here,we takeKj=1.11.Substituting the various parameters into Eq.(6),we obtain

    Substituting Eqs.(5)and(7)into Eq.(2),we obtain

    and from the definitio of conductance,we have

    whereQ(Pa·m3/s) is the intake air volume.Considering that each grid is composed of two segments,there are two beam extraction channels in region I.UsingQ=0.2 Pa·m3/s andP0=p(x)∣x=0=0.5 Pa and substituting Eq.(8)into Eq.(9),we obtain

    By applying the same method,the gas pressure in the acceleration region can be expressed as

    and substituting the various parameters into Eq.(13),we obtain the pressure at special positions as follows:

    With a vacuum pumping rate of 2 m3/s and a gas flo rate of 0.2 Pa·m3/s,the ultimate gas pressure is 0.1 Pa,and the calculation shows thatP8is larger than 0.1 Pa,which meets the actual operating conditions.From the above calculation,the gas pressure profil in the accelerator is obtained as shown in Fig.6,and we fin that the main pressure-decreasing trend is in the aperture rather than the gird gaps,with the largest pressure drop occurring at the extraction grid.

    As shown in Fig.7,Schieskoet al.calculated the pressure profil in a negative ion source accelerator to estimate the flu density of the backstreaming positive ions.9The difference was that their calculation was for a source pressure of 0.4 Pa,which is close to that required in ITER;their profil for MANITU (Multi Ampere Negative Ion Test Unit)and our profil for HUNTER were both calculated from the source pressure and the conductance of the grid apertures.Schieskoet al.also tested using their computation for the ITER NBI extraction system,and the pressure profil that was produced agreed to within 20%with a thorough Monte Carlo model.9Krylov and Hemsworth used simple models that could be verifie by comparison with“classical”cases in which the Knudsen formula for gas conductance is applicable,and then they used a Monte Carlo model for the complex geometry of the beam source,demonstrating agreement to within 5%.16Straightforward 1D computation is used frequently in the industry,and the acceptable difference between the calculated results and the real values offers help in designing ion source accelerators.

    III.EXPERIMENT RESULTS

    The experiments were performed at HUNTER,and with no plasma present,they were operated solely with gas input.A slim pipe containing a vacuum gauge was extended to the accelerator’s assigned location through the reserved flang on the back plate of the arc chamber;this pipe had a length and inner diameter of~1 and 0.01 m,respectively,and because it had very low gas flo conductance,a sufficientl long gas ingress time was required to ensure that the pressure recorded by the vacuum gauge accurately reflecte the local environment.Two campaigns were conducted,one with single turbopump operation and the other with double turbopump operation,and for each campaign the air intake was set at 50–130 Pa·L/s for different source pressures.

    FIG.6.Gas pressure profile in negative ion source accelerator.

    FIG.7.Pressure and electrostatic potential in accelerator of NBI testbed MANITU.

    The pressure profil with single turbopump operation is shown in Fig.8.In this case,the pressure decreased exponentially at each gas flo rate;it decreased rapidly in the firs grid aperture,and the largest pressure drop occurred at the plasma grid,which differs from the computational prediction.On the whole in the experiment,the gas pressure decreased by an order of magnitude after passing through the accelerator and did not decrease after the GG.By contrast,the calculation predicts significantl lower pressure drops in the grid gaps than those in the grid apertures.

    The pressure profil with double turbopump operation is shown in Fig.9,and these pressure characteristics are similar to those with single turbopump operation.Increasing the pumping speed led to less-accurate results,and the pressure after the second gap differed less with variation in the gas flo rate.Under each gas flo rate,the pressure at the arc chamber was less than that at the beginning of the PG,and the cause of this phenomenon is still being analyzed.

    FIG.8.Pressure profile with single turbopump operation.

    FIG.9.Pressure profile with double turbopump operation.

    FIG.10.Pressure profiles with gas flow rate of 90 Pa·L/s.

    In Fig.10,comparing the pressures at the same gas flo rate and different pumping speeds shows that the pressure difference in the firs gap was less than that in the second gap.At every position in the accelerator,the pressure was twice as high under double turbopump operation as it was under single turbopump operation.

    IV.CONCLUSIONS

    In this study,a straightforward 1D calculation was used to predict the pressure gradient in a high-power negative ion source accelerator,and after two gaps,it was found that the pressure was reduced by almost half.However,in experiments,the pressure was observed to decrease more rapidly with near-exponential decrease,and it was logical for the pressure gradient to be influence signifi cantly by the pumping speed.In the calculation,the main pressure decreases were in the apertures rather than in the gird gaps as observed experimentally;the pressure decreased linearly because the pumping speed was neglected,whereas the experimental results indicated that it decreased exponentially.Future work will include simulations involving the gas flo status.

    ACKNOWLEDGMENTS

    This work was supported by the National Key Research and Development Program of China(Grant No.2021YFC2202700).

    AUTHOR DECLARATIONS

    Conflict of Interest

    The authors have no conflict to disclose.

    DATA AVAILABILITY

    The data that support the finding of this study are available from the corresponding author upon reasonable request.

    国产精品亚洲美女久久久| 国产精品,欧美在线| 日韩欧美在线二视频| 午夜福利在线观看吧| 成年女人看的毛片在线观看| 99精品在免费线老司机午夜| 亚洲美女黄片视频| 女生性感内裤真人,穿戴方法视频| 久久国产乱子伦精品免费另类| 国产乱人视频| av在线蜜桃| 久久久久久人人人人人| 精品一区二区三区视频在线观看免费| 每晚都被弄得嗷嗷叫到高潮| 身体一侧抽搐| 国产黄片美女视频| 女警被强在线播放| 男插女下体视频免费在线播放| 天天躁日日操中文字幕| 亚洲av美国av| 午夜激情欧美在线| 叶爱在线成人免费视频播放| avwww免费| 精品福利观看| 淫妇啪啪啪对白视频| 免费在线观看亚洲国产| 亚洲黑人精品在线| 1024香蕉在线观看| 成人av一区二区三区在线看| 亚洲无线观看免费| 天堂影院成人在线观看| 国产美女午夜福利| 久久天躁狠狠躁夜夜2o2o| 天天躁日日操中文字幕| 亚洲人成电影免费在线| 天天躁日日操中文字幕| av福利片在线观看| 中文字幕av在线有码专区| 国产成人啪精品午夜网站| 国产麻豆成人av免费视频| 国产精品免费一区二区三区在线| 免费无遮挡裸体视频| 午夜免费观看网址| 亚洲精品乱码久久久v下载方式 | 国产成人影院久久av| 最近视频中文字幕2019在线8| 国产探花在线观看一区二区| 在线免费观看的www视频| 久久热在线av| 九九热线精品视视频播放| 精品久久久久久久人妻蜜臀av| 国产精品自产拍在线观看55亚洲| 国产精品乱码一区二三区的特点| 亚洲成av人片免费观看| 国产亚洲欧美在线一区二区| 一a级毛片在线观看| 999精品在线视频| 久久久久久久久中文| www国产在线视频色| 俺也久久电影网| 哪里可以看免费的av片| 午夜影院日韩av| 国产视频一区二区在线看| 欧美日韩精品网址| 亚洲av片天天在线观看| 岛国视频午夜一区免费看| 99国产精品一区二区蜜桃av| 精品一区二区三区视频在线 | 长腿黑丝高跟| а√天堂www在线а√下载| 一个人免费在线观看的高清视频| 亚洲五月婷婷丁香| aaaaa片日本免费| 国产单亲对白刺激| 色av中文字幕| 欧美最黄视频在线播放免费| 日韩国内少妇激情av| 国产精品一区二区精品视频观看| 少妇熟女aⅴ在线视频| 日韩欧美国产一区二区入口| 一a级毛片在线观看| 九九久久精品国产亚洲av麻豆 | 最近最新中文字幕大全免费视频| 亚洲精品久久国产高清桃花| 午夜福利在线观看吧| tocl精华| 欧美另类亚洲清纯唯美| 国产在线精品亚洲第一网站| 日韩大尺度精品在线看网址| 精品久久久久久成人av| 久久伊人香网站| 少妇的逼水好多| 国产精品电影一区二区三区| 成人国产综合亚洲| 黄色成人免费大全| 99久久久亚洲精品蜜臀av| 午夜福利在线在线| 欧美一区二区精品小视频在线| 国产真实乱freesex| 不卡一级毛片| 亚洲电影在线观看av| 激情在线观看视频在线高清| 欧美在线一区亚洲| 女生性感内裤真人,穿戴方法视频| 狠狠狠狠99中文字幕| 国产高清激情床上av| 又紧又爽又黄一区二区| 久久国产精品影院| 欧美日韩亚洲国产一区二区在线观看| 91av网一区二区| 国产人伦9x9x在线观看| 夜夜夜夜夜久久久久| 久久久国产成人精品二区| 99在线视频只有这里精品首页| 岛国在线免费视频观看| 成年女人永久免费观看视频| 亚洲美女视频黄频| 亚洲激情在线av| 亚洲国产精品999在线| 男人舔奶头视频| 久久香蕉精品热| 欧美激情久久久久久爽电影| ponron亚洲| 啦啦啦免费观看视频1| 88av欧美| 日韩av在线大香蕉| 美女cb高潮喷水在线观看 | 亚洲自偷自拍图片 自拍| 三级国产精品欧美在线观看 | 美女 人体艺术 gogo| 色综合欧美亚洲国产小说| 欧美一级a爱片免费观看看| 国产亚洲精品一区二区www| 小说图片视频综合网站| 精品人妻1区二区| 久久亚洲精品不卡| 亚洲国产欧美人成| 男女之事视频高清在线观看| 免费看十八禁软件| 国产淫片久久久久久久久 | 国产成人av激情在线播放| 久久久久久久久中文| 一级毛片精品| 亚洲av电影在线进入| 成在线人永久免费视频| 欧美zozozo另类| 1024手机看黄色片| 性欧美人与动物交配| 免费在线观看日本一区| 又黄又粗又硬又大视频| 精品国产亚洲在线| 亚洲,欧美精品.| a级毛片在线看网站| 91麻豆精品激情在线观看国产| 免费在线观看视频国产中文字幕亚洲| 欧美高清成人免费视频www| 全区人妻精品视频| 国产伦一二天堂av在线观看| 欧美色欧美亚洲另类二区| 最近最新中文字幕大全电影3| 搞女人的毛片| 成年女人看的毛片在线观看| 熟妇人妻久久中文字幕3abv| 啦啦啦观看免费观看视频高清| 精品无人区乱码1区二区| 毛片女人毛片| 国产精品久久视频播放| 精品国产乱码久久久久久男人| 在线视频色国产色| 欧美黑人巨大hd| 美女高潮的动态| 欧美成人一区二区免费高清观看 | 国产精品av久久久久免费| 丰满人妻一区二区三区视频av | 日本一本二区三区精品| 精品久久久久久久人妻蜜臀av| 精品电影一区二区在线| АⅤ资源中文在线天堂| 亚洲狠狠婷婷综合久久图片| 男人舔女人下体高潮全视频| 精品免费久久久久久久清纯| 美女cb高潮喷水在线观看 | 一二三四在线观看免费中文在| 国产伦一二天堂av在线观看| 成人av一区二区三区在线看| 欧美黑人欧美精品刺激| 国产精品自产拍在线观看55亚洲| 三级毛片av免费| 国产成人精品久久二区二区免费| 午夜视频精品福利| 久久中文看片网| 亚洲av免费在线观看| 日本精品一区二区三区蜜桃| 天堂动漫精品| 哪里可以看免费的av片| 九色成人免费人妻av| 国产午夜精品久久久久久| 久久久水蜜桃国产精品网| 99在线人妻在线中文字幕| 国产黄a三级三级三级人| 九色成人免费人妻av| 国产一区二区激情短视频| 琪琪午夜伦伦电影理论片6080| 国产三级黄色录像| 成人特级av手机在线观看| 精品久久久久久久毛片微露脸| 听说在线观看完整版免费高清| 免费大片18禁| 最近最新中文字幕大全免费视频| 99国产精品一区二区蜜桃av| 国产成人精品无人区| a级毛片在线看网站| 最近在线观看免费完整版| 欧美日韩福利视频一区二区| 无人区码免费观看不卡| 亚洲人成伊人成综合网2020| 夜夜夜夜夜久久久久| 99久国产av精品| 色尼玛亚洲综合影院| 国产aⅴ精品一区二区三区波| 757午夜福利合集在线观看| 亚洲美女黄片视频| 日韩 欧美 亚洲 中文字幕| 国产不卡一卡二| 午夜免费观看网址| 男女午夜视频在线观看| 亚洲成人久久性| 黄色 视频免费看| 少妇熟女aⅴ在线视频| 国产成人精品久久二区二区免费| 亚洲第一欧美日韩一区二区三区| 欧美3d第一页| 99热这里只有精品一区 | 不卡av一区二区三区| 手机成人av网站| 不卡一级毛片| 日韩欧美国产一区二区入口| 精品久久久久久,| avwww免费| 久久久久久久久久黄片| 国产一区二区在线av高清观看| 国产精品精品国产色婷婷| 欧美zozozo另类| 一本久久中文字幕| 国产美女午夜福利| 国产单亲对白刺激| www.熟女人妻精品国产| 淫妇啪啪啪对白视频| 国产亚洲精品综合一区在线观看| 特级一级黄色大片| 婷婷精品国产亚洲av| 国产一级毛片七仙女欲春2| 波多野结衣高清无吗| 欧美在线黄色| 久久中文看片网| 欧美日韩中文字幕国产精品一区二区三区| 99国产综合亚洲精品| 男女视频在线观看网站免费| 国产欧美日韩一区二区精品| 国产真实乱freesex| 欧美3d第一页| 亚洲欧洲精品一区二区精品久久久| 久久久久久久久免费视频了| 少妇的逼水好多| 激情在线观看视频在线高清| 精品国产亚洲在线| 草草在线视频免费看| 丰满人妻一区二区三区视频av | 亚洲成人免费电影在线观看| 大型黄色视频在线免费观看| 午夜免费成人在线视频| 最新中文字幕久久久久 | 欧美黑人巨大hd| 在线观看日韩欧美| 特大巨黑吊av在线直播| 国产精品一区二区免费欧美| 亚洲av片天天在线观看| 欧美日韩精品网址| 亚洲成人久久性| 97人妻精品一区二区三区麻豆| 岛国视频午夜一区免费看| 视频区欧美日本亚洲| 91久久精品国产一区二区成人 | avwww免费| 麻豆国产97在线/欧美| 18禁美女被吸乳视频| 免费观看的影片在线观看| 免费在线观看亚洲国产| 色尼玛亚洲综合影院| 中文字幕av在线有码专区| 国产乱人伦免费视频| 精品电影一区二区在线| 少妇丰满av| 亚洲精品粉嫩美女一区| 欧美激情在线99| 在线观看免费午夜福利视频| 成人亚洲精品av一区二区| 一级毛片女人18水好多| 色老头精品视频在线观看| 1000部很黄的大片| 日韩 欧美 亚洲 中文字幕| 亚洲av成人av| 欧美激情在线99| 一进一出抽搐动态| 亚洲avbb在线观看| 可以在线观看毛片的网站| 老熟妇乱子伦视频在线观看| 亚洲一区二区三区色噜噜| www.自偷自拍.com| 国产爱豆传媒在线观看| 国产免费av片在线观看野外av| 久久久精品欧美日韩精品| 18美女黄网站色大片免费观看| 亚洲欧美激情综合另类| 国产在线精品亚洲第一网站| 亚洲最大成人中文| 好男人电影高清在线观看| 国产伦精品一区二区三区视频9 | 老汉色∧v一级毛片| 最新中文字幕久久久久 | 久久九九热精品免费| 中出人妻视频一区二区| 日日夜夜操网爽| 黑人巨大精品欧美一区二区mp4| 亚洲自拍偷在线| 长腿黑丝高跟| 嫩草影院入口| 欧美丝袜亚洲另类 | 美女高潮的动态| 啦啦啦韩国在线观看视频| 网址你懂的国产日韩在线| 女人高潮潮喷娇喘18禁视频| 亚洲av免费在线观看| 亚洲黑人精品在线| 日本撒尿小便嘘嘘汇集6| 脱女人内裤的视频| 女同久久另类99精品国产91| 美女大奶头视频| 亚洲av电影在线进入| 精品欧美国产一区二区三| 国产精品 欧美亚洲| 亚洲自偷自拍图片 自拍| 伊人久久大香线蕉亚洲五| 美女高潮喷水抽搐中文字幕| 久久亚洲真实| 首页视频小说图片口味搜索| 曰老女人黄片| 国产黄a三级三级三级人| 欧美中文日本在线观看视频| 久久亚洲真实| 国产成人一区二区三区免费视频网站| 老熟妇乱子伦视频在线观看| АⅤ资源中文在线天堂| 亚洲五月婷婷丁香| 国产黄片美女视频| 极品教师在线免费播放| 91老司机精品| 国产不卡一卡二| 嫁个100分男人电影在线观看| 91老司机精品| 亚洲美女视频黄频| 三级毛片av免费| 成年版毛片免费区| 亚洲av日韩精品久久久久久密| 美女扒开内裤让男人捅视频| 国产精品综合久久久久久久免费| 国产成人精品无人区| 国产精品野战在线观看| 精品国产三级普通话版| 黄色片一级片一级黄色片| 国语自产精品视频在线第100页| 国产精品日韩av在线免费观看| 国产成人啪精品午夜网站| 国产乱人视频| 欧美成人一区二区免费高清观看 | 国产精品久久久人人做人人爽| 亚洲人成伊人成综合网2020| 麻豆成人av在线观看| 亚洲性夜色夜夜综合| 国产人伦9x9x在线观看| 亚洲真实伦在线观看| 成人无遮挡网站| 在线国产一区二区在线| 久久久成人免费电影| x7x7x7水蜜桃| 午夜两性在线视频| 精品国产乱码久久久久久男人| 国产高清三级在线| 少妇人妻一区二区三区视频| 99精品久久久久人妻精品| 一级黄色大片毛片| 淫秽高清视频在线观看| 一本精品99久久精品77| 精品久久久久久,| 麻豆成人午夜福利视频| 国产精品99久久99久久久不卡| or卡值多少钱| 淫妇啪啪啪对白视频| 国产精品久久久人人做人人爽| 国产69精品久久久久777片 | 成人无遮挡网站| 国产伦一二天堂av在线观看| 一二三四社区在线视频社区8| 亚洲色图 男人天堂 中文字幕| 欧美成人性av电影在线观看| 天堂动漫精品| 两人在一起打扑克的视频| 久久精品国产综合久久久| 三级国产精品欧美在线观看 | 黄片大片在线免费观看| 欧美极品一区二区三区四区| 757午夜福利合集在线观看| 此物有八面人人有两片| 五月玫瑰六月丁香| 最近最新免费中文字幕在线| 首页视频小说图片口味搜索| 精品一区二区三区av网在线观看| 免费无遮挡裸体视频| 97人妻精品一区二区三区麻豆| 欧美一区二区国产精品久久精品| 午夜福利视频1000在线观看| 国产伦在线观看视频一区| 国产欧美日韩精品亚洲av| 久久久国产成人免费| 午夜福利视频1000在线观看| 国产成人精品久久二区二区免费| 国产私拍福利视频在线观看| 99在线人妻在线中文字幕| 久久久久久国产a免费观看| 午夜激情福利司机影院| 无限看片的www在线观看| 一a级毛片在线观看| 免费看十八禁软件| 亚洲av成人精品一区久久| 一进一出抽搐gif免费好疼| 嫩草影院精品99| 成熟少妇高潮喷水视频| 在线观看免费视频日本深夜| 波多野结衣高清作品| 非洲黑人性xxxx精品又粗又长| 香蕉久久夜色| 巨乳人妻的诱惑在线观看| 久久亚洲真实| 精品一区二区三区av网在线观看| 国产高清视频在线播放一区| 最近视频中文字幕2019在线8| 麻豆一二三区av精品| 真人做人爱边吃奶动态| 久久久久久九九精品二区国产| 舔av片在线| 99热这里只有精品一区 | 久久精品91蜜桃| 欧美性猛交黑人性爽| 亚洲欧美精品综合久久99| 亚洲人成网站在线播放欧美日韩| 九色成人免费人妻av| 国产97色在线日韩免费| 网址你懂的国产日韩在线| 深夜精品福利| 黄色片一级片一级黄色片| www日本在线高清视频| 黄片小视频在线播放| 午夜激情福利司机影院| 又黄又爽又免费观看的视频| 美女黄网站色视频| 狂野欧美白嫩少妇大欣赏| 亚洲最大成人中文| 97超视频在线观看视频| 精品一区二区三区四区五区乱码| 国产精品国产高清国产av| 欧美黑人欧美精品刺激| 91麻豆av在线| 成年女人看的毛片在线观看| 男女之事视频高清在线观看| 国产熟女xx| 久久天堂一区二区三区四区| 亚洲成人久久爱视频| 欧美激情久久久久久爽电影| 国产高清视频在线观看网站| 桃色一区二区三区在线观看| 一个人看的www免费观看视频| 床上黄色一级片| 91麻豆av在线| av在线蜜桃| 中文字幕熟女人妻在线| 亚洲第一电影网av| www.自偷自拍.com| 亚洲国产欧美一区二区综合| 一级毛片精品| 久久精品夜夜夜夜夜久久蜜豆| 久9热在线精品视频| 国产精品乱码一区二三区的特点| 美女高潮喷水抽搐中文字幕| 桃色一区二区三区在线观看| 国产亚洲av高清不卡| 一个人免费在线观看的高清视频| 亚洲国产精品久久男人天堂| 男人舔女人的私密视频| 男女视频在线观看网站免费| 看片在线看免费视频| 一区福利在线观看| 可以在线观看的亚洲视频| 亚洲av五月六月丁香网| 一个人免费在线观看的高清视频| 亚洲天堂国产精品一区在线| 国产三级在线视频| 亚洲av成人av| 欧美高清成人免费视频www| 九九在线视频观看精品| 国产精品综合久久久久久久免费| 男插女下体视频免费在线播放| 亚洲午夜精品一区,二区,三区| 观看美女的网站| 少妇裸体淫交视频免费看高清| 99久国产av精品| 欧美一区二区精品小视频在线| 成人午夜高清在线视频| 窝窝影院91人妻| 色综合亚洲欧美另类图片| 亚洲人成伊人成综合网2020| 国产精品久久久久久久电影 | 9191精品国产免费久久| 神马国产精品三级电影在线观看| 久久久久久久午夜电影| 一进一出抽搐动态| 中文字幕久久专区| 老熟妇仑乱视频hdxx| 长腿黑丝高跟| 女警被强在线播放| 国产亚洲精品综合一区在线观看| 日韩欧美 国产精品| 19禁男女啪啪无遮挡网站| 在线观看日韩欧美| 成人精品一区二区免费| 久久精品人妻少妇| or卡值多少钱| 亚洲av电影不卡..在线观看| 亚洲人成网站在线播放欧美日韩| 国产91精品成人一区二区三区| 欧美黑人巨大hd| 中文在线观看免费www的网站| 免费无遮挡裸体视频| 精品国产美女av久久久久小说| 国产精品久久视频播放| 一本精品99久久精品77| 国产精品久久久久久久电影 | 国产免费男女视频| 国产又色又爽无遮挡免费看| 99国产精品一区二区蜜桃av| 亚洲av电影不卡..在线观看| 一个人看的www免费观看视频| 国产蜜桃级精品一区二区三区| 国模一区二区三区四区视频 | 国产精品,欧美在线| av片东京热男人的天堂| 一进一出抽搐gif免费好疼| 日韩av在线大香蕉| 国产精品99久久久久久久久| 99热只有精品国产| 成熟少妇高潮喷水视频| 亚洲乱码一区二区免费版| 亚洲成人久久爱视频| 国产极品精品免费视频能看的| 亚洲五月天丁香| 又黄又爽又免费观看的视频| 欧美性猛交╳xxx乱大交人| 成人一区二区视频在线观看| 免费电影在线观看免费观看| 亚洲av电影不卡..在线观看| 亚洲美女黄片视频| 一进一出抽搐动态| 国产高清视频在线播放一区| 久久性视频一级片| 变态另类成人亚洲欧美熟女| 99国产精品一区二区蜜桃av| 亚洲专区字幕在线| or卡值多少钱| 波多野结衣巨乳人妻| 免费高清视频大片| 国产高清videossex| 一区福利在线观看| 亚洲欧美精品综合久久99| 亚洲乱码一区二区免费版| 免费在线观看亚洲国产| 日本免费一区二区三区高清不卡| 一边摸一边抽搐一进一小说| 欧美激情久久久久久爽电影| 一夜夜www| 免费看光身美女| 一个人免费在线观看电影 | 国产精品一区二区三区四区久久| 国产高清videossex| 婷婷六月久久综合丁香| 欧美极品一区二区三区四区| 巨乳人妻的诱惑在线观看| 狂野欧美激情性xxxx| 无遮挡黄片免费观看| 国产视频内射| av中文乱码字幕在线| xxxwww97欧美| 亚洲国产日韩欧美精品在线观看 | 男人和女人高潮做爰伦理| 又粗又爽又猛毛片免费看| 给我免费播放毛片高清在线观看| 亚洲精品乱码久久久v下载方式 | 两性午夜刺激爽爽歪歪视频在线观看| 十八禁网站免费在线| 亚洲中文日韩欧美视频| 一个人免费在线观看电影 | 日本a在线网址| 在线观看免费视频日本深夜| 1024手机看黄色片| 日本免费一区二区三区高清不卡| 91麻豆av在线| 国产私拍福利视频在线观看|