靳衡 劉起輝 孫可可 宋潔 呂琪 張艷
摘要:橫紋肌溶解癥是一種由多種因素引起肌細(xì)胞破裂,細(xì)胞內(nèi)容物釋放入血而造成組織和器官損傷的綜合征。最常見(jiàn)并發(fā)癥為急性腎損傷,其他并發(fā)癥有肝損傷、筋膜室綜合征、電解質(zhì)平衡紊亂以及彌散性血管內(nèi)凝血等。目前常用治療方法是液體復(fù)蘇和堿化尿液,出現(xiàn)急性腎衰竭、高鉀血癥和代謝性酸中毒時(shí),可采取血液透析治療。新的治療方面包括生物制劑和干細(xì)胞治療,但多處于研究階段,最終的臨床療效有待觀察。因此明確橫紋肌溶解癥并發(fā)癥機(jī)制及制定有效治療方案可能是未來(lái)亟待解決的問(wèn)題。就橫紋肌溶解癥相關(guān)常見(jiàn)并發(fā)癥及治療進(jìn)展進(jìn)行綜述。
關(guān)鍵詞:橫紋肌溶解;急性腎損傷;擠壓綜合征;彌散性血管內(nèi)凝血;肌紅蛋白
中圖分類號(hào):R685.5文獻(xiàn)標(biāo)志碼:ADOI:10.11958/20221284
Advances in complications and management of rhabdomyolysis
JIN Heng LIU Qihui SUN Keke SONG Jie LYU Qi ZHANG Yan
1 Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China; 2? Department of Nephrology, Characteristic Medical Center of the Chinese Peoples Armed Police Forces; 3 Institute of
Disaster and Emergency Medicine, Tianjin University
Corresponding Author E-mail: yan-zhang@tmu.edu.cn
Abstract: Rhabdomyolysis is a syndrome, in which muscle cell rupture and its contents are released into blood by a variety of factors, causing tissue and organ damage. The most common complication is acute kidney injury, and other complications include liver injury, compartment syndrome, electrolyte imbalance and disseminated intravascular coagulation. Currently, the general treatments are fluid resuscitation and alkalization of urine. Hemodialysis can be used in the presence of acute renal failure, hyperkalemia and metabolic acidosis. New therapeutic strategies include biological agents and stem cell therapy, but most of them are based on the basic research, and the final clinical efficacy remains to be seen. Therefore, clarifying the pathogenesis of its complications and formulating effective treatment plans may be urgent problems to be solved in the future. This article reviews the latest advances in complications and treatment strategies of rhabdomyolysis.
Key words: rhabdomyolysis; acute kidney injury; crush syndrome; disseminated intravascular coagulation; myoglobin
橫紋肌溶解癥是指創(chuàng)傷、缺血、藥物、毒物、代謝因素以及感染使得肌膜的穩(wěn)定性和完整性發(fā)生改變,肌細(xì)胞內(nèi)容物短時(shí)間大量釋放入血,造成組織和器官損傷[1]。橫紋肌溶解引起全身并發(fā)癥的主要機(jī)制是肌紅蛋白及其代謝產(chǎn)物的毒性作用。其臨床表現(xiàn)個(gè)體差異較大,包括無(wú)癥狀肌酸激酶(CK)升高、急性腎損傷、心律失常、筋膜室綜合征和彌散性血管內(nèi)凝血等[2-3]。臨床上多以補(bǔ)液、堿化尿液、利尿等對(duì)癥支持治療為主,出現(xiàn)腎功能衰竭時(shí)可予以腎透析治療。隨著基礎(chǔ)和臨床研究的進(jìn)展,研究者對(duì)橫紋肌溶解癥的并發(fā)癥有了新的認(rèn)識(shí),治療方面有了新的方法。本文從以上方面進(jìn)行綜述,為臨床治療和預(yù)防橫紋肌溶解癥提供參考。
1 并發(fā)癥
1.1 急性腎損傷 7%~10%的橫紋肌溶解患者會(huì)發(fā)生急性腎損傷,而5%~15%的急性腎損傷病例歸因于橫紋肌溶解癥[4]。橫紋肌溶解造成急性腎損傷的確切機(jī)制尚未完全闡明,主要機(jī)制如下:(1)腎血管收縮致腎缺血。局部水腫導(dǎo)致血管內(nèi)有效循環(huán)血容量減少,從而使得腎素-血管緊張素-醛固酮系統(tǒng)激活,同時(shí)也會(huì)造成交感神經(jīng)興奮性增強(qiáng),以及精氨酸加壓素在內(nèi)的眾多體液調(diào)節(jié)因子增多[5]。此外,損傷的肌肉細(xì)胞釋放的肌紅蛋白可以消除一氧化氮的擴(kuò)張血管作用[6]。大量組織因子以及血管內(nèi)皮損傷引發(fā)彌散性血管內(nèi)凝血病的級(jí)聯(lián)反應(yīng),造成腎實(shí)質(zhì)內(nèi)微血栓的形成,進(jìn)一步加重腎缺血[7]。(2)遠(yuǎn)曲小管中的肌紅蛋白管型形成致腎小管堵塞。肌紅蛋白可自由過(guò)濾,血清肌紅蛋白水平達(dá)到1 000 mg/L時(shí),尿液呈明顯的紅棕色(“茶色”)。腎小管上皮細(xì)胞分泌的Tamm-Horsfall蛋白與肌紅蛋白共同在遠(yuǎn)端腎小管沉積并形成管型,從而造成腎小管堵塞[8]。(3)肌紅蛋白分解產(chǎn)物對(duì)近曲小管上皮細(xì)胞的直接細(xì)胞毒性作用。經(jīng)胞吞作用進(jìn)入腎小管上皮細(xì)胞的肌紅蛋白降解為蛋白質(zhì)、血紅素和游離鐵,游離鐵可促進(jìn)羥基自由基的產(chǎn)生,造成質(zhì)膜過(guò)氧化,加重腎小管上皮細(xì)胞損傷[6]。血紅素可以增強(qiáng)細(xì)胞的氧化應(yīng)激,促進(jìn)炎癥反應(yīng),直接對(duì)腎小管上皮細(xì)胞產(chǎn)生毒性作用。肌紅蛋白還可以誘導(dǎo)腎小管上皮細(xì)胞衰老和凋亡[9-11]。
在橫紋肌溶解癥小鼠的腎臟樣本中觀察到腎小管上皮細(xì)胞的凋亡以及腎組織中CCAAT/增強(qiáng)子結(jié)合蛋白(CHOP)和胱天蛋白酶(Caspase)-12的表達(dá)顯著增加,推測(cè)內(nèi)質(zhì)網(wǎng)應(yīng)激(ERS)也參與了肌紅蛋白誘導(dǎo)的腎細(xì)胞凋亡[12]。同時(shí),腎臟組織內(nèi)也存在補(bǔ)體激活(C3d和C5b-9沉積物)以及被血紅素激活的替代途徑[13]。此外,橫紋肌溶解癥的患者還存在低循環(huán)血容量、代謝性酸中毒以及尿液pH值降低[14],這些都是增強(qiáng)肌紅蛋白腎毒性的調(diào)節(jié)因素。
1.2 肝損傷 橫紋肌溶解癥患者中有25%出現(xiàn)肝損傷[15]。由于肌紅蛋白分解產(chǎn)生大量的血紅素,使得血紅素結(jié)合蛋白能力達(dá)到飽和,導(dǎo)致血漿中血紅素聚集。血紅素既可以作為促氧化劑,也可以作為促炎劑[16]。血紅素致肝損傷的確切機(jī)制尚不清楚,但越來(lái)越多的證據(jù)表明可能存在以下機(jī)制。(1)肝血流量減少:自由基可以造成細(xì)胞膜和細(xì)胞器膜過(guò)氧化,膜脂質(zhì)分解產(chǎn)物催化花生四烯酸代謝反應(yīng),產(chǎn)生血管收縮因子,導(dǎo)致肝血流量減少[17];同時(shí)在橫紋肌溶解癥期間肝臟微血管發(fā)生紊亂,也會(huì)加劇肝血流量的減少[18]。(2)肝非實(shí)質(zhì)細(xì)胞壞死凋亡:腫瘤壞死因子(TNF)和TNF受體1(TNFR1)的結(jié)合以及持續(xù)的活性氧(ROS)產(chǎn)生使得c-Jun氨基末端激酶(JNK)和其受體相互作用造成絲氨酸/蘇氨酸蛋白激酶(RIPK)1和RIPK3激活,從而導(dǎo)致Kupffer細(xì)胞(肝臟非實(shí)質(zhì)細(xì)胞)壞死性凋亡[19]。(3)肝實(shí)質(zhì)細(xì)胞的炎癥性損傷及凋亡:ROS不僅抑制了由核因子-κB(NF-κB)增強(qiáng)轉(zhuǎn)錄因子激活所觸發(fā)的細(xì)胞保護(hù)程序,而且維持了JNK的激活,導(dǎo)致肝臟實(shí)質(zhì)細(xì)胞凋亡[19]。
1.3 彌散性血管內(nèi)凝血 外傷是彌散性血管內(nèi)凝血常見(jiàn)的原因之一[20]。對(duì)于橫紋肌溶解引起的彌散性血管內(nèi)凝血,可能的發(fā)病機(jī)制如下:(1)損傷的血管內(nèi)皮細(xì)胞將組織因子釋放到血液中,從而激活了外源性凝血途徑。(2)血管內(nèi)皮下膠原纖維的暴露可激活凝血因子Ⅻ(FⅫ),啟動(dòng)內(nèi)源性凝血途徑。(3)FⅦa激活FⅨ和FⅩ產(chǎn)生的凝血酶又可反饋激活FⅨ、FⅩ、FⅪ、FⅫ等,擴(kuò)大凝血反應(yīng),促進(jìn)彌散性血管內(nèi)凝血的發(fā)生。同時(shí)由于血管內(nèi)皮細(xì)胞損傷,其抗凝和抑制血小板黏附和聚集的功能也降低[20]。
1.4 筋膜室綜合征 骨折或擠壓傷是筋膜室綜合征的最常見(jiàn)原因[21]。橫紋肌溶解過(guò)程中,局部水腫使得肌筋膜室內(nèi)容物的體積增加,但肌肉筋膜和其他結(jié)締組織缺乏彈性,故內(nèi)容物體積的增加會(huì)導(dǎo)致筋膜室內(nèi)壓力增高,并傳遞到周圍的靜脈,導(dǎo)致靜脈高壓和進(jìn)行性組織缺血[22]。局部缺血會(huì)增加毛細(xì)血管的通透性,從而加重水腫并由此形成一個(gè)惡性循環(huán)[23]。同時(shí)肌組織的小動(dòng)脈灌注也會(huì)受到影響[21]。
2 治療
首先是針對(duì)病因治療,如控制感染、解除肌肉擠壓、停用相關(guān)藥物等。其次是對(duì)相關(guān)并發(fā)癥的治療,如糾正水電解質(zhì)紊亂,酸中毒時(shí)堿化尿液維持酸堿平衡以保證內(nèi)環(huán)境穩(wěn)定,利尿脫水促進(jìn)毒素排泄等。嚴(yán)重腎臟損傷者可給予腎臟替代治療,也有一些化學(xué)藥物和生物制劑可用于臨床,但療效有待進(jìn)一步總結(jié)。
2.1 常規(guī)治療
2.1.1 液體復(fù)蘇 盡管早期(即在管型形成之前)靜脈擴(kuò)容可增加腎臟血流灌注,增加腎小球?yàn)V過(guò)和排尿,但是液體類型的選擇存在差異,目前并無(wú)統(tǒng)一標(biāo)準(zhǔn)。相關(guān)文獻(xiàn)推薦開(kāi)始的液體復(fù)蘇是400 mL/h,治療目標(biāo)是1~3 mL/(kg·h)的尿量[3,23]。但是體液超載也會(huì)增加橫紋肌溶解癥患者急性腎損傷的發(fā)病率[24]。有研究建議使用<5.5 mL/(kg·h)的液體復(fù)蘇來(lái)預(yù)防橫紋肌溶解癥患者的急性腎損傷,并且定期監(jiān)測(cè)體液超載、每小時(shí)尿量和中心靜脈壓[25]。
2.1.2 堿化尿液 堿化尿液的機(jī)制來(lái)自于動(dòng)物研究,堿化尿液能增加肌紅蛋白和尿酸的溶解度,阻礙肌紅蛋白降解以及糾正代謝性酸中毒[26]。但是沒(méi)有明確的臨床證據(jù)表明堿化尿液在預(yù)防急性腎損傷方面比生理鹽水更有效。Brown等[27]發(fā)現(xiàn),在CK大于5 000 U/L的患者中,接受碳酸氫鹽/甘露醇聯(lián)合治療的患者與未接受聯(lián)合治療患者的急性腎損傷、透析率或死亡率沒(méi)有差異。唯一支持使用堿化尿液的數(shù)據(jù)來(lái)自非對(duì)照的病例系列報(bào)道,該研究顯示嚴(yán)重橫紋肌溶解癥患者從堿化尿液中獲益[2]。
2.1.3 利尿 在糾正低血容量后,應(yīng)對(duì)患者進(jìn)行利尿治療,通常靜脈內(nèi)注射甘露醇或袢利尿劑。然而,在一項(xiàng)2 000多例創(chuàng)傷性橫紋肌溶解患者的回顧性研究中顯示,甘露醇并不能預(yù)防急性腎損傷或降低患者死亡率[25]。甘露醇可引起高滲狀態(tài)、容量擴(kuò)張、高滲性低鈉血癥和繼發(fā)性高鉀血癥[28]。
2.1.4 連續(xù)性腎臟替代治療(CRRT) 根據(jù)2022年美國(guó)創(chuàng)傷外科協(xié)會(huì)重癥監(jiān)護(hù)委員會(huì)橫紋肌溶解癥臨床共識(shí)指南,連續(xù)性或間歇性腎臟替代治療在橫紋肌溶解癥中對(duì)預(yù)防急性腎損傷沒(méi)有任何作用。在橫紋肌溶解癥患者中開(kāi)始CRRT治療與血清CK或肌紅蛋白濃度無(wú)關(guān),主要與危及生命的并發(fā)癥有關(guān),例如嚴(yán)重的酸堿平衡紊亂、電解質(zhì)異常和液體超載[3]。
一項(xiàng)對(duì)56例行血液凈化治療的橫紋肌溶解癥患者的回顧性研究發(fā)現(xiàn),連續(xù)血液濾過(guò)聯(lián)合血液灌流與單獨(dú)連續(xù)血液濾過(guò)對(duì)患者肌酶水平的影響無(wú)明顯差異[29]。目前CRRT是否是治療橫紋肌溶解癥患者安全有效的選擇并不明確。雖然有文獻(xiàn)報(bào)道,高截留量和中截留量透析器可用于清除肌紅蛋白,其他體外療法如血漿置換已被證明對(duì)清除肌紅蛋白或患者預(yù)后無(wú)積極影響[30]。但此類治療方法還有待更多的臨床研究證實(shí)。由于目前缺乏足夠的循證醫(yī)學(xué)證據(jù),故缺乏關(guān)于腎臟替代治療模式(過(guò)濾與擴(kuò)散)、過(guò)濾器類型(低截留膜與高截留膜)或高流量與低流量透析的建議[3]。
2.2 藥物治療
2.2.1 烏司他丁 烏司他丁是一種絲氨酸蛋白酶抑制劑,在各種細(xì)胞和動(dòng)物實(shí)驗(yàn)中具有抗炎和細(xì)胞保護(hù)作用。研究發(fā)現(xiàn),早期給予烏司他丁可以減少橫紋肌溶解癥誘導(dǎo)的急性腎損傷以及減輕相關(guān)炎癥反應(yīng)[31]。烏司他丁通過(guò)Toll樣受體4(TLR4)/NF-κB信號(hào)通路抑制肌紅蛋白誘導(dǎo)的細(xì)胞毒性、細(xì)胞內(nèi)ROS過(guò)度生產(chǎn)和細(xì)胞凋亡,改善腎功能[32]。
2.2.2 Pifithrin-α 在急性腎損傷期間,激活的P53促進(jìn)細(xì)胞凋亡。相關(guān)研究表明小鼠腎小管上皮細(xì)胞中p53缺失減少了纖維化產(chǎn)物的分泌,并延緩腎損傷由急性向慢性轉(zhuǎn)變的進(jìn)程[33]。Pifithrin-α是一種特異性P53抑制劑。有研究發(fā)現(xiàn),Pifithrin-α不僅抑制腎臟中的P53磷酸化,還可以作為自由基清除劑,抑制橫紋肌溶解中肌紅蛋白的還原-氧化循環(huán)和脂質(zhì)過(guò)氧化,從而改善腎小管損傷[34]。
2.2.3 別嘌醇 Gois等[35]研究表明,在橫紋肌溶解癥相關(guān)的大鼠模型中,別嘌醇治療可以通過(guò)減少氧化應(yīng)激(全身、腎臟和肌肉),抑制細(xì)胞凋亡,減少炎性細(xì)胞浸潤(rùn)和增加細(xì)胞增殖來(lái)減輕腎功能障礙。
2.2.4 氯化亞錫(SnCl2) 血紅素是一種從肌紅蛋白釋放的促氧化劑,而血紅素降解產(chǎn)物,如一氧化碳和膽綠素都具有抗炎和抗氧化特性[36]。血紅素加氧酶1(HO-1)是血紅素分解代謝中的限速酶。SnCl2是一種腎臟特異性的HO-1誘導(dǎo)劑。Ohtani等[37]發(fā)現(xiàn)在橫紋肌溶解癥的動(dòng)物模型中使用SnCl2顯著提高了HO-1的表達(dá)并改善了腎損傷,因此推測(cè)SnCl2可以保護(hù)橫紋肌溶解癥患者的腎臟免受氧化損傷。
2.2.5 Toll樣受體4抑制劑TAK-242 TLR4/NF-κB信號(hào)通路參與了擠壓傷誘導(dǎo)的急性腎損傷過(guò)程,并促進(jìn)了大量炎性因子的釋放,如IL-6和TNF-α。TAK-242可通過(guò)特異性阻斷細(xì)胞內(nèi)TLR4受體的信號(hào)傳導(dǎo),減弱擠壓傷誘導(dǎo)炎癥反應(yīng),避免腎臟損傷。據(jù)研究報(bào)道,在相關(guān)動(dòng)物模型中使用TAK-242后,肌酐、血尿素氮(BUN)、肌紅蛋白、鉀等腎功能相關(guān)指標(biāo)明顯改善,促炎因子釋放明顯減少[38]。
2.2.6 抗晚期糖基化終末產(chǎn)物受體(RAGE)抗體 RAGE是一種新發(fā)現(xiàn)的體內(nèi)模式識(shí)別受體,可調(diào)節(jié)炎癥反應(yīng)[39]。通過(guò)NF-κB激活RAGE可促進(jìn)某些細(xì)胞因子(如IL-6、血管細(xì)胞黏附分子1)合成,同時(shí)也上調(diào)RAGE表達(dá)[40]。在擠壓傷動(dòng)物模型中,壓力釋放前使用抗RAGE抗體可避免大量炎癥介質(zhì)的產(chǎn)生,從而阻斷了RAGE正反饋導(dǎo)致的惡性循環(huán)[41]。
2.2.7 抗高遷移率族蛋白B1(HMGB1)抗體 壞死細(xì)胞被動(dòng)釋放的HMGB1是一種損傷相關(guān)分子模式(DAMP),可募集白細(xì)胞觸發(fā)炎癥。免疫細(xì)胞主動(dòng)分泌的HMGB1則可作為細(xì)胞因子激活炎癥反應(yīng)[42]。據(jù)研究報(bào)道,損傷肌細(xì)胞釋放的HMGB1可激活腎臟中的JNK,而JNK會(huì)促進(jìn)TNF-α的產(chǎn)生,進(jìn)而增強(qiáng)JNK的產(chǎn)生,導(dǎo)致TNF-α水平飆升,從而造成腎損傷[43]。此外,使用抗HMGB1抗體可以通過(guò)降低炎癥反應(yīng)、減少缺血再灌注損傷以及抑制細(xì)胞凋亡來(lái)避免腎臟損傷,提高患者生存率。
2.3 其他治療
2.3.1 間充質(zhì)干細(xì)胞治療 間充質(zhì)干細(xì)胞可以減輕小鼠橫紋肌溶解引起的腎損傷。間充質(zhì)干細(xì)胞可以促進(jìn)腎臟中保護(hù)性M2巨噬細(xì)胞的積累,增加抗炎IL-10的產(chǎn)生,并降低IL-6和TNF-α的表達(dá)[44]。同時(shí),間充質(zhì)干細(xì)胞可以通過(guò)將巨噬細(xì)胞激活為M2表型來(lái)減輕橫紋肌溶解引起的急性腎損傷,從而促進(jìn)腎小管的修復(fù)。
2.3.2 重組人紅細(xì)胞生成素(rhEPO) rhEPO不僅能夠減少體內(nèi)巨噬細(xì)胞的募集和促進(jìn) M2 巨噬細(xì)胞表型的轉(zhuǎn)化,還可以抑制NF-κB和誘導(dǎo)型一氧化氮合酶(iNOS)的活性,降低橫紋肌溶解后尿素氮、肌酐、谷丙轉(zhuǎn)氨酶、谷草轉(zhuǎn)氨酶水平,緩解橫紋肌溶解癥大鼠模型中的急性腎損傷[45]。
3 小結(jié)
橫紋肌溶解癥早期由于低血容量癥和電解質(zhì)平衡紊亂,從而引起心律失常甚至心跳驟停,蛋白酶的釋放引起肝臟炎癥反應(yīng)。橫紋肌溶解癥的晚期并發(fā)癥主要是急性腎損傷和彌散性血管內(nèi)凝血。因此,對(duì)于橫紋肌溶解癥不同時(shí)期的患者,臨床醫(yī)生需要注意的方面是不同的。早期要注意患者循環(huán)血量以及水電解質(zhì)平衡,晚期關(guān)注患者的腎功能和凝血功能。
參考文獻(xiàn)
[1] ZUTT R,VAN DER KOOI A J,LINTHORST G E,et al. Rhabdomyolysis:review of the literature[J]. Neuromuscul Disord,2014,24(8):651-659. doi:10.1016/j.nmd.2014.05.005.
[2] CABRAL B,EDDING S N,PORTOCARRERO J P,et al. Rhabdomyolysis[J]. Dis Mon,2020,66(8):101015. doi:10.1016/j.disamonth.2020.101015.
[3] KODADEK L,CARMICHAEL Ⅱ S P,SESHADRI A,et al. Rhabdomyolysis:An American Association for the Surgery of Trauma Critical Care Committee Clinical Consensus Document[J]. Trauma Surg Acute Care Open,2022,7(1):e000836. doi:10.1136/tsaco-2021-000836.
[4] DANTAS G,DE ALKMIM MOREIRA NUNES R,CASIMIRO-LOPES G,et al. Analysis of physiological markers and risk factors for the development of rhabdomyolysis in military personnel:A systematic review[J]. Rev Environ Health,2022. doi:10.1515/reveh-2022-0038. [Online ahead of print].
[5] CAI Y,HUANG C,ZHOU M,et al. Role of curcumin in the treatment of acute kidney injury:research challenges and opportunities[J]. Phytomedicine,2022,104:154306. doi:10.1016/j.phymed.2022.154306.
[6] ZHANG J,WANG B,YUAN S,et al. The role of ferroptosis in acute kidney injury[J]. Front Mol Biosci,2022,9:951275. doi:10.3389/fmolb.2022.951275.
[7] CHOU Y T,KAN W C,SHIAO C C. Acute kidney injury and gut dysbiosis:A narrative review focus on pathophysiology and treatment[J]. Int J Mol Sci,2022,23(7):3658. doi:10.3390/ijms23073658.
[8] LIU Y,LI M,TEH L,et al. Emodin-mediated treatment of acute kidney injury[J]. Evid Based Complement Alternat Med,2022,2022:5699615. doi:10.1155/2022/5699615.
[9] JIN H,LIN X,LIU Z,et al. Remote ischemic postconditioning protects against crush-induced acute kidney injury via down-regulation of apoptosis and senescence[J]. Eur J Trauma Emerg Surg,2022,48(6):4585-4593. doi:10.1007/s00068-022-01910-5.
[10] LIN X,JIN H,CHAI Y,et al. Cellular senescence and acute kidney injury[J]. Pediatr Nephrol,2022,37(12):3009-3018. doi:10.1007/s00467-022-05532-2.
[11] BOSS K,KRIBBEN A. Treatment and progression management of acute kidney injury[J]. Dtsch Med Wochenschr,2022,147(5):246-252. doi:10.1055/a-1557-6909.
[12] PLOS ONE Staff. Correction:Penehyclidine hydrochloride pretreatment ameliorates rhabdomyolysis-induced AKI by activating the Nrf2/HO-1 pathway and allevi-ating endoplasmic reticulum stress in rats[J]. PLoS One,2016,11(4):e0154138. doi:10.1371/journal.pone.0154138.
[13] BOUDHABHAY I,POILLERAT V,GRUNENWALD A,et al. Complement activation is a crucial driver of acute kidney injury in rhabdomyolysis[J]. Kidney Int,2021,99(3):581-597. doi:10.1016/j.kint.2020.09.033.
[14] MARD S A,HOSEINYNEJAD K,NEJADDEHBASHI F. Gallic acid improves therapeutic effects of mesenchymal stem cells derived from adipose tissue in acute renal injury following rhabdomyolysis induced by glycerol[J]. Inflammation,2022. doi:10.1007/s10753-022-01691-4. [Online ahead of print].
[15] AKMAL M,MASSRY S G. Reversible hepatic dysfunction associated with rhabdomyolysis[J]. Am J Nephrol,1990,10(1):49-52. doi:10.1159/000168053.
[16] MELILA M,RAJARAM R,GANESHKUMAR A,et al. Assessment of renal and hepatic dysfunction by co-exposure to toxic metals(Cd,Pb)and fluoride in people living nearby an industrial zone[J]. J Trace Elem Med Biol,2022,69:126890. doi:10.1016/j.jtemb.2021.126890.
[17] SHARMA N,GAIKWAD A B. Ameliorative effect of AT2R and ACE2 activation on ischemic renal injury associated cardiac and hepatic dysfunction[J]. Environ Toxicol Pharmacol,2020,80:103501. doi:10.1016/j.etap.2020.103501.
[18] MA X,XU S,LI J,et al. Selenomethionine protected BMECs from inflammatory injury and oxidative damage induced by Klebsiella pneumoniae by inhibiting the NF-κB and activating the Nrf2 signaling pathway[J]. Int Immunopharmacol,2022,110:109027. doi:10.1016/j.intimp.2022.109027.
[19] LARSEN R,GOUVEIA Z,SOARES M P,et al. Heme cytotoxicity and the pathogenesis of immune-mediated inflammatory diseases[J]. Front Pharmacol,2012,3:77. doi:10.3389/fphar.2012.00077.
[20] PAPAGEORGIOU C,JOURDI G,ADJAMBRI E,et al. Disseminated intravascular coagulation:An update on pathogenesis,diagnosis,and therapeutic strategies[J]. Clin Appl Thromb Hemost,2018,24(9_suppl):8S-28S. doi:10.1177/1076029618806424.
[21] BAATARJAV C,KOMADA T,KARASAWA T,et al. dsDNA-induced AIM2 pyroptosis halts aberrant inflammation during rhabdomyolysis-induced acute kidney injury[J]. Cell Death Differ,2022. doi:10.1038/s41418-022-01033-9. [Online ahead of print].
[22] LELONGE Y,GAVID M,VIEVILLE M,et al. Tension pneumoperitoneum and acute abdominal compartment syndrome during panendoscopy[J]. Eur Ann Otorhinolaryngol Head Neck Dis,2022:S1879-7296(22)00067-9. doi:10.1016/j.anorl.2022.06.006.
[23] RITCHIE E D,VOGELS S,VAN DONGEN T,et al. Systematic review of innovative diagnostic tests for chronic exertional compartment syndrome[J]. Int J Sports Med,2022. doi:10.1055/a-1866-5957. [Online ahead of print].
[24] CHEN X,WANG X,HONORE P M,et al. Renal failure in critically ill patients, beware of applying (central venous)pressure on the kidney[J]. Ann Intensive Care,2018,8(1):91. doi:10.1186/s13613-018-0439-x.
[25] KIM H W,KIM S,OHN J H,et al. Role of bicarbonate and volume therapy in the prevention of acute kidney injury in rhabdomyolysis:A retrospective propensity score-matched cohort study[J]. Kidney Res Clin Pract,2022,41(3):310-321. doi:10.23876/j.krcp.21.093.
[26] PEZZI M,GIGLIO A M,SCOZZAFAVA A,et al. Early intensive treatment to prevent kidney failure in post-traumatic rhabdomyolysis:Case report[J]. SAGE Open Med Case Rep,2019,7:2050313X19839529. doi:10.1177/2050313X19839529.
[27] BROWN C V,RHEE P,CHAN L,et al. Preventing renal failure in patients with rhabdomyolysis:do bicarbonate and mannitol make a difference?[J]. J Trauma,2004,56(6):1191-1196. doi:10.1097/01.ta.0000130761.78627.10.
[28] ZHENG T,LIU L,LIU J,et al. Rhabdomyolysis happened after the start of dabigatran etexilate treatment:A case report[J]. J Musculoskelet Neuronal Interact,2022,22(2):296-300.
[29] 陳艾萍,王建文,伍宏. 不同血液凈化模式治療橫紋肌溶解癥的療效比較[J]. 中華衛(wèi)生應(yīng)急電子雜志,2020,6(6):332-336. CHEN A P,WANG J W,WU H. Comparison of different blood purification modes in rhabdomyolysis[J]. Chinese Journal Hygiene Rescue,2020,6(6):332-336. doi:10.3877/cma.j.issn.2095-9133.2020.06.002.
[30] GUPTA A,THORSON P,PENMATSA K R,et al. Rhabdomyolysis:Revisited[J]. Ulster Med J,2021,90(2):61-69.
[31] YANG X Y,SONG J,HOU S K,et al. Ulinastatin ameliorates acute kidney injury induced by crush syndrome inflammation by modulating Th17/Treg cells[J]. Int Immunopharmacol,2020,81:106265. doi:10.1016/j.intimp.2020.106265.
[32] WANG J,XU G,JIN H,et al. Ulinastatin alleviates rhabdomyolysis-induced acute kidney injury by suppressing inflammation and apoptosis via inhibiting TLR4/NF-κB signaling pathway[J]. Inflammation,2022,45(5):2052-2065. doi:10.1007/s10753-022-01675-4.
[33] HIGGINS S P,TANG Y,HIGGINS C E,et al. TGF-β1/p53 signaling in renal fibrogenesis[J]. Cell Signal,2018,43:1-10. doi:10.1016/j.cellsig.2017.11.005.
[34] YUQIANG C,LISHA Z,JIEJUN W,et al. Pifithrin-α ameliorates glycerol induced rhabdomyolysis and acute kidney injury by reducing p53 activation[J]. Ren Fail,2022,44(1):473-481. doi:10.1080/0886022X.2022.2048857.
[35] GOIS P,CANALE D,VOLPINI R A,et al. Allopurinol attenuates rhabdomyolysis-associated acute kidney injury:Renal and muscular protection[J]. Free Radic Biol Med,2016,101:176-189. doi:10.1016/j.freeradbiomed.2016.10.012.
[36] BOLISETTY S,ZARJOU A,AGARWAL A. Heme oxygenase 1 as a therapeutic target in acute kidney injury[J]. Am J Kidney Dis,2017,69(4):531-545. doi:10.1053/j.ajkd.2016.10.037.
[37] OHTANI S,SHIMIZU H,YAMAOKA M,et al. Protective effect of tin chloride on rhabdomyolysis-induced acute kidney injury in rats[J]. PLoS One,2022,17(3):e0265512. doi:10.1371/journal.pone.0265512.
[38] WANG J,CHEN Z,HOU S,et al. TAK-242 attenuates crush injury induced acute kidney injury through inhibiting TLR4/NF-κB signaling pathways in rats[J]. Prehosp Disaster Med,2020,35(6):619-628. doi:10.1017/S1049023X20001132.
[39] CREAGH-BROWN B C,QUINLAN G J,EVANS T W,et al. The RAGE axis in systemic inflammation, acute lung injury and myocardial dysfunction:an important therapeutic target?[J]. Intensive Care Med,2010,36(10):1644-1656. doi:10.1007/s00134-010-1952-z.
[40] GUARNERI F,CUSTURONE P,PAPAIANNI V,et al. Involvement of RAGE and oxidative stress in inflammatory and infectious skin diseases[J]. Antioxidants (Basel),2021,10(1):82. doi:10.3390/antiox10010082.
[41] MATSUMOTO H,MATSUMOTO N,SHIMAZAKI J,et al. Therapeutic effectiveness of anti-rage antibody administration in a rat model of crush injury[J]. Sci Rep,2017,7(1):12255. doi:10.1038/s41598-017-12065-4.
[42] VANPATTEN S,AL-ABED Y. High mobility group box-1(HMGb1):Current wisdom and advancement as a potential drug target[J]. J Med Chem,2018,61(12):5093-5107. doi:10.1021/acs.jmedchem.7b01136.
[43] ZHANG B F,WANG P F,CONG Y X,et al. Anti-high mobility group box-1(HMGB1)antibody attenuates kidney damage following experimental crush injury and the possible role of the tumor necrosis factor-α and c-Jun N-terminal kinase pathway[J]. J Orthop Surg Res,2017,12(1):110. doi:10.1186/s13018-017-0614-z.
[44] DUFFY M M,GRIFFIN M D. Back from the brink:a mesenchymal stem cell infusion rescues kidney function in acute experimental rhabdomyolysis[J]. Stem Cell Res Ther,2014,5(5):109. doi:10.1186/scrt497.
[45] WANG S,ZHANG C,LI J,et al. Erythropoietin protects against rhabdomyolysis-induced acute kidney injury by modulating macrophage polarization[J]. Cell Death Dis,2017,8(4):e2725. doi:10.1038/cddis.2017.104.
(2022-08-16收稿 2022-10-10修回)
(本文編輯 胡小寧)