• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of miR-27b-3p and Nrf2 in human retinal pigment epithelial cell induced by high-glucose

    2023-10-21 03:17:08QiaoLingLaiTingXieWeiDongZhengYanHuang
    International Journal of Ophthalmology 2023年10期

    Qiao-Ling Lai, Ting Xie, Wei-Dong Zheng, Yan Huang

    1Department of Ophthalmology and Optometry, Fujian Medical University, Fuzhou 350004, Fujian Province, China

    2The First Affiliated Hospital of Fujian Medical University,Fuzhou 350004, Fujian Province, China

    Abstract

    ● KEYWORDS: human retinal pigment epithelial cell;high glucose; pyridoxamine; microRNA-27b-3p; NF-E2-related factor 2; NAD(P)H quinone oxidoreductase 1; heme oxygenase-1

    INTRODUCTION

    R apid diabetic retinopathy (DR) progression leads to dramatic, irreversible vision loss, including recurrent diabetic macular edema and retinal hemorrhage[1], and is a leading cause of retinal dysfunction in the macular area[1-2].Studies have shown that vision loss in DR is associated with macular foveal photoreceptor-retinal pigment epithelial (RPE) cell complex structure destruction[3-4].Moreover, DR leads to glucose, lipid, and protein metabolism disordersin vivo[5]; therefore, DR patients’ serum has higher oxidized advanced glycation end-product (AGE) levels compared with non-DR patients[6].The RPE layer is mainly responsible for photoreceptor metabolism and also forms the outer barrier of the blood retinal barrier[7].Thus, RPE cell play an important role in maintaining photoreceptor-RPE complex and the blood retinal barrier function.

    NF-E2-related factor 2 (Nrf2) is a transcription factor that activates antioxidant genes and detoxifying enzymes including NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1)[8].This pathway has been implicated in DR occurrence and development[9]and is also associated with AGE metabolism[10-12].Under prolonged hyperglycemia,glucose binds to proteins and lipids to produce hard-to-degrade metabolites, such as AGE, that stimulate cells to release oxygen free radicals and exacerbate oxidative damage[6].Pyridoxamine, one form of vitamin B6, suppresses AGE formation[13], upregulates Nrf2, exerts antioxidant effects,and protects retinal photoreceptor cells[14-15].Incidentally, a recent mouse experiment showed that Nrf2 is a direct target of microRNA-27b-3p (miR-27b-3p)[16].Furthermore, studies have shown significant miR-27b-3p upregulation in serum from patients with diabetes, non-proliferative DR, and proliferative DR, and its expression correlates with DR stage severity[17].In addition, miR-27b-3p from urinary extracellular vesicles is increased in type 2 diabetic nephropathy[18].In this study,we set out to determine how high glucose impacts miR-27b-3p, Nrf2, NQO1, and HO-1 in human RPE (hRPE) cell.We verified the regulatory relationship between Nrf2 and miR-27b-3p and evaluated whether pyridoxamine could alleviate high glucose injury through the miR-27b-3p/Nrf2 pathway.

    MATERIALS AND METHODS

    Cell CultureThe hRPE cell line (ARPE-19) was obtained from the Biowing of Shanghai, China and was cultured in standard Dulbecco’s modified Eagle’s medium (Gibco, Grand Island, NY, USA) supplemented with 10% fetal bovine serum(Gibco, Grand Island, NY, USA), 100 units/mL penicillin, and 100 μg/mL streptomycin (Gibco, Rockville, MD, USA) in a humidified 5% CO2incubator at 37℃.

    Cell Counting Kit-8 AnalysisCells were cultured in normal glucose (C), 30 mmol/L glucose (H), or 30 mmol/L glucose with pyridoxamine (2, 4, or 6 μmol/L) for 6d in 96-well plates before incubation with cell counting kit-8(CCK-8) for 2h.Separately, cells were maintained in normal glucose(C), 30 mmol/L glucose (H) for 1, 3, or 6d (H1, H3, H6), or 30 mmol/L glucose with 4 μmol/L pyridoxamine (HP) for 6d and then incubated with CCK-8 (c0039, Beyotime, Shanghai,China) for 2h.After CCK-8 incubation, absorbance at 450 nm was read using a microplate reader (Thermo Multiska, USA).Cellular proliferation rate was calculated by (ODtestgroup-ODblankgroup)/(ODcontrolgroup-ODblankgroup).

    Cell TransfectionLentivirus with a multiplicity of infection of 40 was added to cells in 96 well plates for 1d, followed by addition of 1.0 μg/mL puromycin for 96h.Green fluorescent protein expression was abundant and produced high signal on the fluorescence microscope.Stably infected cell lines were selected for subsequent experiments.Those cells lines were maintained in normal glucose followed by transfection of miR-27b-3p overexpression (OE group) or control lentiviral vectors (NC group, Genechem, Shanghai, China) for 4d or in 30 mmol/L glucose followed by transfection of miR-27b-3p inhibitor (H-in group) or control lentiviral vectors (H-con group, Genechem, Shanghai, China) for 6d.We then performed real-time quantitative polymerase chain reaction (RT-qPCR) to confirm miR-27b-3p mRNA expression levels.

    RT-qPCR AnalysisTotal RNA were extracted using Trizol lysis buffer (Dingguo, Beijing, China) and then converted into cDNA using PrimeScriptTMReagent Kit with gDNA(RR047A, Takara, Japan).RT-qPCR were performed using TB GreenTMPremix Ex TaqTM(RR820A, Takara, Japan) with the ABI 7500 system (Applied Biosystems, Foster City, CA,USA).MicroRNA was converted into cDNA, and RT-qPCR was performed using Bluge-LoopTMmiRNA RT-qPCR Starter Kit (c110211-2, ruibo, Guangdong, China).Data analysis was conducted with SDS system software (7500 system,Applied Biosystems), and β-actin (Sangon, Shanghai, China)or U6 (ruibo, Guangdong, China) endogenous control levels were used to normalize miR-27b-3p (Ruibo, Guangdong,China), Nrf2, NQO1, and HO-1 (Sangon, Shanghai, China)expression levels.All reactions were performed in triplicate.The results are presented as 2-ΔΔCtmeans±standard deviation(SD).The following primer sequences were used: miR-27b-3p forward 5’-GCGCGTTCACAGTGGCTAAG-3’and reverse 5’-AGTGCAGGGTCCGAGGTATT-3’; Nrf2 forward 5’-ATCAACTACCCGTTCGAGAAG-3’ and reverse 5’-ACTTGGTCATGTCGATGTCATA-3’; NQO1 forward 5’-AGTATCCTGCCGAGTCTGTTCTGG-3’ and reverse 5’-AATATCACAAGGTCTGCGGCTTCC-3’;HO-1 forward 5’-CCTCCCTGTACCACATCTATGT-3’and reverse 5’-GCTCTTCTGGGAAGTAGACAG-3’;β-actin forward 5’-CTCGCCTTTGCCGATCC-3’ and reverse 5’-GAATCCTTCTGACCCATGCC; U6 forward 5’-AGAGAAGATTAGCATGGCCCCTG-3’ and reverse 5’-ATCCAGTGCAGGGTCCGAGG-3’.

    Western Blot AnalysisTo collect either total protein or nuclear protein, cells were lysed in ice-cold RIPA lysis buffer(WB0061, Dingguo, Beijing, China) or nuclear protein extraction kit buffer (Solarbio, Beijing, China), respectively.Protein obtained from each sample was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDSPAGE) in a Bio-Rad miniature slab gel apparatus (WB0201,Dingguo, Beijing, China) and electrophoretically transferred onto polyvinylidene fluoride membranes (Millipore, Billerica,MA, USA).The polyvinylidene fluoride membranes were then incubated with primary antibodies, including anti-Nrf2(ab62352), anti-NQO1 (ab80588), anti-HO-1 (ab13243), antiβ-actin (1:1000, ab1001, Abcam, Cambridge, UK), or antihistone3 (1:1000, H3, 100005-MM01, Yiqiao, Beijing, China),overnight at 4℃, followed by secondary antibody incubation(1:1000, Dingguo, Beijing, China) for 2h at room temperature(RT).Immunoreactive bands were visualized using autoradiography (Bio-Rad, Missisauga, ON, Canada).Protein bands were quantified by densitometry using Image J software.β-actin or H3 protein levels served as internal controls.

    Immunocytofluorescence AnalysishRPE cells were cultured in 6-well plates with glass slide for 6d and then fixed with 4% paraformaldehyde for 15min.After permeabilizing with 1% Triton X-100, cells were blocked with 5% bovine serum albumin (A3912, Sigma, USA), incubated with Nrf2,NQO1, or HO-1 antibodies (1:500) overnight at 4℃, and then incubated with secondary antibody (1:1000, ab150083, Alexa Fluor 647, Abcam, Cambridge, UK) for 2h at RT.Images were taken using a positive fluorescence microscope (BX53, Olympus,Tokyo, Japan), and data were analysed using Image J software.

    Reactive Oxygen Species AnalysishRPE cells were cultured in 12-well plates for 6d.The medium was then removed, and cells were washed 3 times.The 1 mL per well dihydroethidium(PD-MY 003, MCE, NJ, USA) solution was added, and cells were incubated for 30min in a cell culture incubator,then washed 3 times.Images were taken using an inverted fluorescence microscope (IX71, Olympus, Tokyo, Japan) and 6 fields were randomly selected to represent the reactive oxygen species (ROS) fluorescence intensity.Data were analyzed using Image J software.

    Statistical AnalysisAll results were obtained from at least three independent experiments and presented as mean±SD.Comparisons among groups were tested using one-way ANOVA followed by Bonferroni correction and Tamhane’s T2 post-hoc test.All results were analyzed using SPSS 24.0 software (IBM, Amonk, NY, USA) and GraphPad Prism 6.0 software (GraphPad software, La Jolla, CA, USA).P<0.05 was considered statistically significant.

    RESULTS

    High Glucose Affects miR-27b-3p and Nrf2 ExpressionAs incubation time increased, cellular proliferation rate gradually decreased and ROS content increased in high glucose medium(Figure 1A, 1F, and 1H).After high glucose treatment for 1, 3,or 6d (groups H1, H3, and H6, respectively), the relative miR-27b-3p mRNA expression was higher in the H1 group, but was not significantly different than the control (C) group (Figure 1B).We then assessed Nrf2, NQO1, and HO-1 expression by RT-qPCR, immunocytofluorescence (ICF), and Western blot.We found that Nrf2, NQO1, and HO-1 mRNA levels were upregulated in the H1 group compared to the C group.Conversely, these genes were downregulated in the H6 group compared to the H1 group (Figure 1B).We then calculated protein levels by measuring Western blot band intensity.Compared to the C group, Nrf2 total protein and nuclear protein levels were increased in the H1 group; however, Nrf2 was significantly decreased in the H6 group compared to the H1 group (Figure 1C-1E, 1G).Moreover, ICF revealed positive Nrf2, NQO1, and HO-1 staining in hRPE cells, and we could calculate protein expression levels based on fluorescence intensity (Figure 1C, 1D).Notably, NQO1 and HO-1 protein levels declined in the H6 group compared to the H1 group;however, H1 group levels were not statistically different than C group levels (Figure 1D).

    miR-27b-3p LentiviralOverexpression or Inhibition Affects Nrf2 LevelsAfter lentiviral miR-27b-3p overexpression (OE group), we found that miR-27b-3p mRNA was significantly increased and Nrf2, NQO1, and HO-1 mRNA levels were reduced compared to the miR-27b-3p control lentiviral (NC group) by RT-qPCR (Figure 2A).In contrast, after miR-27b-3p inhibitor lentiviral transfection (H-in group), we observed strong Nrf2, NQO1, and HO-1 fluorescence in hRPE cells, and Nrf2, NQO1, and HO-1 mRNA and protein were significantly upregulated as measured by RT-qPCR and ICF, respectively(Figure 2B-2D).Additionally, we calculated Nrf2 total protein and nuclear protein expression levels based on Western blot protein band intensity and found that they were upregulated compared to the miR-27b-3p control lentiviral (H-con group,Figure 2E, 2F).

    Pyridoxamine Protects hRPE Cells from High Glucose Exposure EffectsWe applied pyridoxamine to hRPE cultures after high glucose exposure and then analyzed proliferation rates and ROS levels using CCK-8 and dihydroethidium,respectively.We found that hRPE proliferation was greatest after applying 4 μmol/L pyridoxamine compared to 2 or 6 μmol/L pyridoxamine (Figure 3A).Compared to the H group, the proliferation rate was higher and ROS content was significantly lower after 4 μmol/L pyridoxamine application(Figure 3B-3D).Furthermore, we observed strong Nrf2,NQO1, and HO-1 fluorescence and Nrf2 protein band intensity in hRPE cells by ICF and Western blot, respectively (Figure 3F, 3I).We found significant Nrf2, NQO1, and HO-1 mRNA and protein upregulation, including Nrf2 nuclear protein levels in the HP group compared to the H group (Figure 3G, 3H).In contrast, miR-27b-3p mRNA was dramatically downregulated(Figure 3E).

    DISCUSSION

    Metabolite accumulation and inflammaory factor release are associated with DR progression and likely trigger structural and functional destruction of all retinal layers[5].Our work here demonstrated that continuous high glucose exposure gradually increased ROS levels in hRPE cells, which then inhibited normal cellular function and proliferative activity.ROS are a main oxygen radical component and can cause oxidative stress damage[19-20].Nrf2 is a strong antioxidant factorin vivothat can activate related antioxidant target genes,such as HO-1, NQO1, and glutamate-cysteine ligase catalytic subunit, and scavenge oxygen radicals[8,21].Although we found that Nrf2 expression was transiently upregulated after 1d of high glucose exposure, its function in activating downstream genes NQO1 and HO-1 was partially repressed.With longer high glucose exposure, we observed weaker Nrf2 expression.Studies have shown that Keap1 binds and inactivates Nrf2 in the cytoplasm; Nrf2 dissociates from Keap1 immediately after internal and external stimulation, translocates to the nucleus,and activates downstream target genes[8].Because Nrf2 is mainly active in the cell nucleus[22], we evaluated both total and nuclear Nrf2 protein levels.Our results indicated that high glucose attenuates nuclear Nrf2 levels.Accordingly, HO-1 and NQO1 activation were also decreased.Previous studies have demonstrated that HO-1 is one of the main oxygen free radical scavenging enzymes[23], while NQO1 mainly scavenges exogenous metabolites[24].Based on this, we speculate that high glucose promotes ROS deposition by impairing the Nrf2/NQO1/HO-1 axis, resulting in further oxidative stress and ultimately weakening cellular metabolic function.

    Figure 2 Effects of miR-27b-3p overexpression and inhibition on hRPE cells A: Relative miR-27b-3p, Nrf2, NQO1, and HO-1 mRNA levels after miR-27b-3p overexpression lentiviral transfection; B: Relative miR-27b-3p, Nrf2, NQO1, HO-1 mRNA levels after miR-27b-3p inhibitor lentiviral transfection; C: Nrf2, NQO1, and HO-1 detected by ICF after miR-27b-3p inhibitor lentiviral transfection (200×); D: Semi-quantitative Nrf2,NQO1, and HO-1 ICF protein analysis after miR-27b-3p inhibitor lentiviral transfection; E: Nrf2 total protein and nuclear protein bands detected by Western blot after miR-27b-3p inhibitor lentiviral transfection; F: Semi-quantitative Nrf2 total protein and nuclear protein Western blot analysis after miR-27b-3p inhibitor lentiviral transfection.aP<0.05; bP<0.001.hRPE: Human retinal pigment epithelial; miR-27b-3p: MicroRNA-27b-3p; Nrf2: NF-E2-related factor 2; NQO1: NAD(P)H quinone oxidoreductase 1; HO-1: Heme oxygenase-1; ICF: Immunocytofluorescence;DAPI: 4’,6-diamidino-2-phenylindole; C: Normal glucose group; H: 30 mmol/L glucose group; OE: Normal glucose followed by transfection of miR-27b-3p overexpression lentiviral group; NC: Normal glucose followed by transfection of miR-27b-3p control lentiviral group; H-in: 30 mmol/L glucose followed by transfection of miR-27b-3p inhibitor lentiviral group; H-con: 30 mmol/L glucose followed by transfection of miR-27b-3p control lentiviral group.

    The microRNAs have been shown to negatively regulate various downstream target genes[25]and are associated with DR[26].Among them, miR-27b is associated with worse DR outcomes[17-18].In our experiments, we found that high glucose induced abundant miR-27b-3p expression, which was negatively correlated with Nrf2 expression.Furthermore,Nrf2, NQO1, and HO-1 were dramatically suppressed by miR-27b-3p overexpression.These results suggest that Nrf2 is a downstream target of miR-27b-3p.Therefore, we hypothesized that miR-27b-3p inhibition would activate the Nrf2 axis.Indeed, we found that miR-27b-3p inhibition reversed the phenotypes induced by high glucose.This can mainly be attributed to Nrf2 transfer to the nucleus, followed by heterodimerization with small Maf proteins and binding to antioxidant response elements[21].Thus, Nrf2 could enhance antioxidant conduction function, activate NQO2 and HO-1, and possibly reverse the oxidative damage induced by high glucose.Pyridoxamine inhibits AGE[13]and has been shown to activate Nrf2[14].Because 4 μmol/L pyridoxamine conditions resulted in the highest cellular proliferation rate, we chose this concentration for our studies.After pyridoxamine application,hRPE cell were better able to combat high glucose oxidative damage, which was mainly associated with inhibiting miR-27b-3p and activating the Nrf2 axis.As Nrf2 content increased in the nucleus, its conductive function was enhanced.Consequently, downstream NQO1 and HO-1 could function as antioxidants and reduce ROS accumulation in cells.Oxygen radical scavenging is extremely beneficial for protecting hRPE mitochondrial enzyme activity and for repairing normal cellular metabolic function and maintaining cell proliferation[27].We speculate that pyridoxamine’s antioxidant mechanisms under high glucose conditions involve inhibiting miR-27b-3p expression, boosting Nrf2 release to the nucleus,and protecting the Nrf2 signaling pathway.Unfortunately, our current work did not examine whether miR-27b-3p and Nrf2 regulation could extenuate AGE deposition, which we plan to investigate in follow-up experiments.

    In conclusion, our results suggest that Nrf2 is a downstream target of miR-27b-3p in hRPE cells.Injury from high glucose exposure may be associated with miR-27b-3p upregulation,which promoted Nrf2 degradation or disrupted its nuclear transfer, resulting in reduced NOQ1 and HO-1 expression levels.MiR-27b-3p inhibition or pyridoxamine application partially reversed the above phenotypes and alleviated oxidative stress.Accordingly, pyridoxamine may be an miR-27b-3p inhibitor,improving antioxidant effects by regulating miR-27b-3p and Nrf2 and thus protecting hRPE structure and function.Furthermore,miR-27b-3p and Nrf2 could be new therapeutic targets and are worthy of further studies related to novel DR therapy development.

    ACKNOWLEDGEMENTS

    Authors’ contributions:Lai QL completed the studies.Lai QL and Xie T wrote the manuscript.Huang Y revised and polished the manuscript.Huang Y and Zheng WD guided the study.

    Foundations:Supported by National Natural Science Foundation of China (No.2020J01652); the Training Project for Young and Middleaged Core Talents in Health System of Fujian Province (No.2016-ZQN-62).

    Conflicts of Interest: Lai QL,None;Xie T,None;Zheng WD,None;Huang Y,None.

    亚洲天堂av无毛| 欧美激情 高清一区二区三区| 欧美日韩亚洲高清精品| 天堂8中文在线网| 在线av久久热| 在线观看免费日韩欧美大片| 丝袜美腿诱惑在线| 亚洲成av片中文字幕在线观看| 久久狼人影院| 男人添女人高潮全过程视频| 男人舔女人的私密视频| 侵犯人妻中文字幕一二三四区| 一本久久精品| 丰满迷人的少妇在线观看| 免费不卡黄色视频| 99香蕉大伊视频| 久久久久久久久久久久大奶| 美女脱内裤让男人舔精品视频| 久久精品国产亚洲av涩爱| 国产精品久久久人人做人人爽| 天天躁狠狠躁夜夜躁狠狠躁| 18禁观看日本| 久久久久久免费高清国产稀缺| 国产精品一区二区精品视频观看| 91九色精品人成在线观看| 免费在线观看日本一区| www.熟女人妻精品国产| 一边亲一边摸免费视频| 色婷婷av一区二区三区视频| 美女主播在线视频| 十八禁人妻一区二区| 日本a在线网址| 免费高清在线观看日韩| 国产精品av久久久久免费| 日韩熟女老妇一区二区性免费视频| 久久精品aⅴ一区二区三区四区| 新久久久久国产一级毛片| 免费看av在线观看网站| 国产精品99久久99久久久不卡| 97人妻天天添夜夜摸| 99国产精品一区二区三区| 最近手机中文字幕大全| 丁香六月欧美| 高潮久久久久久久久久久不卡| 欧美精品av麻豆av| 国产精品免费大片| 啦啦啦在线观看免费高清www| 少妇人妻 视频| 中文字幕人妻熟女乱码| 日韩伦理黄色片| 久9热在线精品视频| 国产精品偷伦视频观看了| 精品福利永久在线观看| 免费观看人在逋| 人人妻人人澡人人爽人人夜夜| 久久鲁丝午夜福利片| 国产欧美日韩一区二区三 | 大片电影免费在线观看免费| 七月丁香在线播放| 午夜老司机福利片| 如日韩欧美国产精品一区二区三区| 两性夫妻黄色片| 亚洲av成人精品一二三区| 中文欧美无线码| 视频在线观看一区二区三区| 国产福利在线免费观看视频| 欧美日韩亚洲综合一区二区三区_| 久久鲁丝午夜福利片| 亚洲精品美女久久av网站| 性高湖久久久久久久久免费观看| 日韩熟女老妇一区二区性免费视频| 看十八女毛片水多多多| 成人免费观看视频高清| 免费高清在线观看日韩| 午夜福利在线免费观看网站| 90打野战视频偷拍视频| 最近中文字幕2019免费版| 精品国产一区二区三区久久久樱花| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美一区二区三区黑人| 久久久久精品国产欧美久久久 | 性高湖久久久久久久久免费观看| 日韩熟女老妇一区二区性免费视频| 黑丝袜美女国产一区| 久久中文字幕一级| 少妇裸体淫交视频免费看高清 | 欧美黑人精品巨大| 男人添女人高潮全过程视频| av视频免费观看在线观看| 精品一品国产午夜福利视频| 亚洲成av片中文字幕在线观看| 天天添夜夜摸| 交换朋友夫妻互换小说| 亚洲国产精品一区二区三区在线| 男女免费视频国产| 在线看a的网站| 亚洲黑人精品在线| 人成视频在线观看免费观看| 交换朋友夫妻互换小说| 国产精品成人在线| 亚洲av国产av综合av卡| 你懂的网址亚洲精品在线观看| 午夜福利在线免费观看网站| 亚洲欧美精品自产自拍| 亚洲一码二码三码区别大吗| 母亲3免费完整高清在线观看| 日韩av不卡免费在线播放| 久久精品成人免费网站| 久久99精品国语久久久| 麻豆国产av国片精品| 亚洲欧洲国产日韩| 首页视频小说图片口味搜索 | 国产高清视频在线播放一区 | 一边摸一边做爽爽视频免费| 丝袜在线中文字幕| 亚洲国产精品国产精品| 国产一区有黄有色的免费视频| av在线老鸭窝| 国产免费又黄又爽又色| 热99久久久久精品小说推荐| 99re6热这里在线精品视频| 十八禁网站网址无遮挡| 精品久久久久久久毛片微露脸 | 在线亚洲精品国产二区图片欧美| 999精品在线视频| 日本五十路高清| 国产xxxxx性猛交| 欧美老熟妇乱子伦牲交| 国产欧美亚洲国产| 亚洲成色77777| 丝袜美腿诱惑在线| 亚洲黑人精品在线| 亚洲美女黄色视频免费看| 欧美日韩一级在线毛片| 一级毛片 在线播放| av网站在线播放免费| 免费av中文字幕在线| 久久ye,这里只有精品| 热re99久久国产66热| 亚洲欧美清纯卡通| 欧美 日韩 精品 国产| 亚洲伊人色综图| 欧美精品高潮呻吟av久久| 成人午夜精彩视频在线观看| 免费在线观看完整版高清| 十八禁网站网址无遮挡| 国产高清不卡午夜福利| 亚洲国产精品一区二区三区在线| 最新的欧美精品一区二区| 亚洲熟女精品中文字幕| 亚洲av成人精品一二三区| av又黄又爽大尺度在线免费看| 激情五月婷婷亚洲| 久久精品久久精品一区二区三区| 国产在视频线精品| 久久国产精品影院| 中文字幕亚洲精品专区| 少妇精品久久久久久久| 精品视频人人做人人爽| www.av在线官网国产| 美女大奶头黄色视频| 成年人黄色毛片网站| 操出白浆在线播放| 亚洲综合色网址| 精品第一国产精品| 久久 成人 亚洲| 老司机影院成人| 久久久久久免费高清国产稀缺| 亚洲专区中文字幕在线| av在线老鸭窝| 蜜桃在线观看..| 国产精品av久久久久免费| 日韩一本色道免费dvd| 观看av在线不卡| 可以免费在线观看a视频的电影网站| www.精华液| 9色porny在线观看| 国产av国产精品国产| 最近手机中文字幕大全| 99热全是精品| 亚洲av成人不卡在线观看播放网 | 久久精品久久久久久久性| 日韩制服丝袜自拍偷拍| 国产日韩欧美亚洲二区| 久久久精品免费免费高清| 日韩,欧美,国产一区二区三区| 久久人妻福利社区极品人妻图片 | 老司机深夜福利视频在线观看 | 2021少妇久久久久久久久久久| 午夜两性在线视频| 日韩视频在线欧美| 人妻一区二区av| 国产熟女欧美一区二区| 男人操女人黄网站| 欧美久久黑人一区二区| 99九九在线精品视频| 手机成人av网站| 久久人人97超碰香蕉20202| 午夜福利乱码中文字幕| 黄色视频不卡| 99国产精品一区二区蜜桃av | 免费女性裸体啪啪无遮挡网站| 免费高清在线观看视频在线观看| 国产成人一区二区三区免费视频网站 | 精品人妻熟女毛片av久久网站| 国产av精品麻豆| 91国产中文字幕| 亚洲综合色网址| 男男h啪啪无遮挡| 一级黄色大片毛片| 极品少妇高潮喷水抽搐| 99国产精品免费福利视频| 国产伦人伦偷精品视频| 午夜av观看不卡| av网站在线播放免费| 男男h啪啪无遮挡| 久久国产精品影院| 精品亚洲成国产av| 欧美黑人欧美精品刺激| 免费女性裸体啪啪无遮挡网站| 69精品国产乱码久久久| 欧美日韩亚洲国产一区二区在线观看 | 久久久精品免费免费高清| 色94色欧美一区二区| 亚洲av国产av综合av卡| 极品人妻少妇av视频| 成人18禁高潮啪啪吃奶动态图| 欧美精品啪啪一区二区三区 | av不卡在线播放| 另类精品久久| 久久国产精品男人的天堂亚洲| 成年人免费黄色播放视频| 久久久久久久久久久久大奶| 国产成人91sexporn| 久久久久久久久免费视频了| 一本大道久久a久久精品| 老司机靠b影院| 国产不卡av网站在线观看| 亚洲九九香蕉| 18禁黄网站禁片午夜丰满| 国产人伦9x9x在线观看| 欧美性长视频在线观看| 999久久久国产精品视频| 1024香蕉在线观看| 天堂中文最新版在线下载| 久久久精品国产亚洲av高清涩受| 久久午夜综合久久蜜桃| 欧美国产精品va在线观看不卡| 亚洲伊人色综图| 男女床上黄色一级片免费看| 又大又爽又粗| 91麻豆av在线| 一本综合久久免费| 纯流量卡能插随身wifi吗| 欧美变态另类bdsm刘玥| 国产av精品麻豆| 亚洲人成电影免费在线| 在线观看国产h片| 男人爽女人下面视频在线观看| 伊人久久大香线蕉亚洲五| 免费在线观看完整版高清| 永久免费av网站大全| 一级毛片 在线播放| 在线观看免费高清a一片| 性色av一级| 久久亚洲精品不卡| 免费高清在线观看日韩| 久9热在线精品视频| 国产精品一区二区免费欧美 | 王馨瑶露胸无遮挡在线观看| 久久久久久免费高清国产稀缺| 久久精品aⅴ一区二区三区四区| 一级毛片黄色毛片免费观看视频| 亚洲熟女精品中文字幕| 久久热在线av| 777久久人妻少妇嫩草av网站| 人人妻,人人澡人人爽秒播 | 久久99精品国语久久久| 中文字幕色久视频| 久久天堂一区二区三区四区| 欧美日本中文国产一区发布| 免费看十八禁软件| 多毛熟女@视频| 老司机亚洲免费影院| 精品亚洲成国产av| 久久国产精品大桥未久av| 亚洲欧洲国产日韩| 啦啦啦中文免费视频观看日本| 精品少妇一区二区三区视频日本电影| 国产精品久久久av美女十八| 国产精品av久久久久免费| 国产麻豆69| 丁香六月欧美| 男人舔女人的私密视频| 亚洲第一青青草原| 久久久亚洲精品成人影院| 777米奇影视久久| 久久精品亚洲熟妇少妇任你| 91成人精品电影| 老司机影院毛片| 黄色片一级片一级黄色片| 免费一级毛片在线播放高清视频 | 99热全是精品| 热99久久久久精品小说推荐| av网站免费在线观看视频| 国产精品免费大片| 老司机在亚洲福利影院| 成年动漫av网址| 你懂的网址亚洲精品在线观看| 欧美日韩福利视频一区二区| 人人妻人人添人人爽欧美一区卜| 91字幕亚洲| 老司机影院毛片| 性少妇av在线| 91九色精品人成在线观看| 99久久人妻综合| 亚洲成色77777| 精品国产一区二区久久| 亚洲精品久久午夜乱码| 国产精品一二三区在线看| 国产又色又爽无遮挡免| 日韩人妻精品一区2区三区| 亚洲成国产人片在线观看| 午夜福利影视在线免费观看| 亚洲少妇的诱惑av| 免费高清在线观看日韩| 性少妇av在线| 又黄又粗又硬又大视频| 午夜福利视频在线观看免费| 天堂中文最新版在线下载| 亚洲欧美一区二区三区国产| 国产黄色免费在线视频| 亚洲 欧美一区二区三区| 一二三四在线观看免费中文在| 久久久久精品人妻al黑| 波多野结衣一区麻豆| 国产日韩一区二区三区精品不卡| 秋霞在线观看毛片| 赤兔流量卡办理| 最新的欧美精品一区二区| 国产精品欧美亚洲77777| 侵犯人妻中文字幕一二三四区| 亚洲人成网站在线观看播放| 国产黄频视频在线观看| 久久人人爽av亚洲精品天堂| 亚洲av综合色区一区| av有码第一页| 成人黄色视频免费在线看| 丁香六月欧美| 亚洲图色成人| 午夜福利在线免费观看网站| 首页视频小说图片口味搜索 | 亚洲成人免费av在线播放| 美女脱内裤让男人舔精品视频| 男女边吃奶边做爰视频| 亚洲精品中文字幕在线视频| av有码第一页| 亚洲伊人久久精品综合| 2021少妇久久久久久久久久久| 久久久精品免费免费高清| 18在线观看网站| 久久影院123| 丝袜在线中文字幕| 国产欧美亚洲国产| 国产成人一区二区三区免费视频网站 | 七月丁香在线播放| 婷婷色综合www| 久久狼人影院| 这个男人来自地球电影免费观看| 青青草视频在线视频观看| 久久久久久久大尺度免费视频| 大香蕉久久网| 最新在线观看一区二区三区 | 午夜免费成人在线视频| 国产女主播在线喷水免费视频网站| 夫妻午夜视频| 另类精品久久| 男女之事视频高清在线观看 | 亚洲中文字幕日韩| 欧美少妇被猛烈插入视频| 天天躁日日躁夜夜躁夜夜| 午夜福利一区二区在线看| 国产成人一区二区三区免费视频网站 | 欧美乱码精品一区二区三区| 国产真人三级小视频在线观看| 亚洲激情五月婷婷啪啪| 久久热在线av| 国产爽快片一区二区三区| 国产av精品麻豆| 大片电影免费在线观看免费| 激情视频va一区二区三区| 欧美激情极品国产一区二区三区| 两人在一起打扑克的视频| a 毛片基地| kizo精华| 精品熟女少妇八av免费久了| 精品国产国语对白av| avwww免费| 日韩av在线免费看完整版不卡| 国产成人av激情在线播放| 乱人伦中国视频| 精品福利永久在线观看| 成人影院久久| 伊人久久大香线蕉亚洲五| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧洲精品一区二区精品久久久| 国产精品久久久久久精品古装| 久久女婷五月综合色啪小说| xxx大片免费视频| 激情视频va一区二区三区| 日韩熟女老妇一区二区性免费视频| 成人国产av品久久久| 深夜精品福利| 亚洲av成人精品一二三区| 久久国产精品影院| 国产在线免费精品| 亚洲国产欧美在线一区| 麻豆乱淫一区二区| 亚洲中文av在线| xxx大片免费视频| 久久久精品区二区三区| 免费高清在线观看日韩| 免费av中文字幕在线| 国产爽快片一区二区三区| 国产精品久久久久久人妻精品电影 | netflix在线观看网站| 久久久精品免费免费高清| 精品国产一区二区久久| 老司机亚洲免费影院| 人妻一区二区av| 久久久久视频综合| 亚洲精品在线美女| 美女脱内裤让男人舔精品视频| 天堂8中文在线网| 日韩电影二区| 18禁黄网站禁片午夜丰满| 久热爱精品视频在线9| 五月开心婷婷网| 欧美国产精品一级二级三级| 伊人久久大香线蕉亚洲五| 午夜福利,免费看| 久9热在线精品视频| 免费日韩欧美在线观看| 黄片小视频在线播放| 桃花免费在线播放| 性色av一级| 黄频高清免费视频| 丰满迷人的少妇在线观看| 精品人妻一区二区三区麻豆| 亚洲精品自拍成人| 丰满人妻熟妇乱又伦精品不卡| 97人妻天天添夜夜摸| 一本一本久久a久久精品综合妖精| 性少妇av在线| 亚洲五月色婷婷综合| 国产精品香港三级国产av潘金莲 | 看免费av毛片| 亚洲五月色婷婷综合| 欧美激情极品国产一区二区三区| 777米奇影视久久| 日韩一区二区三区影片| 亚洲人成77777在线视频| 久久精品久久精品一区二区三区| 18禁国产床啪视频网站| 久久久久国产一级毛片高清牌| 国产在线一区二区三区精| 日本午夜av视频| 免费看av在线观看网站| 国产成人精品久久二区二区91| 久久 成人 亚洲| 精品人妻在线不人妻| 人人妻人人澡人人看| 国产黄色视频一区二区在线观看| 国产av精品麻豆| 欧美日韩视频高清一区二区三区二| 在线观看人妻少妇| 久久精品亚洲av国产电影网| 一区二区三区乱码不卡18| 欧美变态另类bdsm刘玥| 七月丁香在线播放| 亚洲精品在线美女| 亚洲欧美一区二区三区黑人| 色视频在线一区二区三区| 欧美在线黄色| 久久久精品国产亚洲av高清涩受| 国产亚洲av高清不卡| 欧美日韩亚洲综合一区二区三区_| 人人妻人人添人人爽欧美一区卜| 国产真人三级小视频在线观看| 99精品久久久久人妻精品| 久久久久国产精品人妻一区二区| 亚洲成色77777| 久久综合国产亚洲精品| 国产真人三级小视频在线观看| 欧美日韩福利视频一区二区| 亚洲欧美日韩另类电影网站| 丝袜美腿诱惑在线| 我的亚洲天堂| 久热这里只有精品99| 亚洲免费av在线视频| 中文字幕亚洲精品专区| 1024视频免费在线观看| 老司机深夜福利视频在线观看 | 久久亚洲国产成人精品v| 久久国产精品影院| 久久人妻福利社区极品人妻图片 | 精品国产一区二区三区四区第35| 又大又黄又爽视频免费| 国产精品一二三区在线看| 亚洲国产精品一区二区三区在线| 国产1区2区3区精品| 亚洲,欧美精品.| 自拍欧美九色日韩亚洲蝌蚪91| 欧美+亚洲+日韩+国产| 日本色播在线视频| 国产精品一区二区精品视频观看| 精品久久久久久久毛片微露脸 | 免费观看a级毛片全部| 黄网站色视频无遮挡免费观看| 国产免费福利视频在线观看| 亚洲成人手机| 男女床上黄色一级片免费看| 亚洲欧洲日产国产| 欧美av亚洲av综合av国产av| 国产欧美日韩综合在线一区二区| 免费看av在线观看网站| 日韩av在线免费看完整版不卡| 在线 av 中文字幕| 欧美日韩综合久久久久久| 91精品国产国语对白视频| 亚洲av美国av| 中文字幕最新亚洲高清| 国产精品香港三级国产av潘金莲 | 一级a爱视频在线免费观看| 国产成人精品久久二区二区91| 99久久综合免费| 亚洲精品美女久久av网站| 在线观看国产h片| 欧美黑人精品巨大| 爱豆传媒免费全集在线观看| 国产在线一区二区三区精| 精品熟女少妇八av免费久了| 999精品在线视频| 最黄视频免费看| 亚洲中文字幕日韩| 18在线观看网站| 丰满饥渴人妻一区二区三| 日本a在线网址| 欧美国产精品va在线观看不卡| 成在线人永久免费视频| 热re99久久国产66热| 亚洲精品美女久久久久99蜜臀 | 精品一区二区三卡| 欧美黄色淫秽网站| 欧美+亚洲+日韩+国产| 日本午夜av视频| 欧美成人精品欧美一级黄| 日韩大码丰满熟妇| 欧美精品亚洲一区二区| 国产成人精品久久二区二区91| 婷婷色综合www| 国产精品av久久久久免费| 亚洲中文日韩欧美视频| 老汉色av国产亚洲站长工具| 久久综合国产亚洲精品| 久久亚洲国产成人精品v| 亚洲精品国产色婷婷电影| 精品视频人人做人人爽| 又粗又硬又长又爽又黄的视频| 国产一区有黄有色的免费视频| 在线av久久热| av在线老鸭窝| 国产成人欧美在线观看 | 成年av动漫网址| 国产精品一国产av| 丰满饥渴人妻一区二区三| 日本色播在线视频| 18禁观看日本| 国产精品秋霞免费鲁丝片| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产一区二区| 欧美在线黄色| www.精华液| 热99久久久久精品小说推荐| 伦理电影免费视频| 91麻豆精品激情在线观看国产 | 考比视频在线观看| www.精华液| 国产av一区二区精品久久| 激情五月婷婷亚洲| 蜜桃在线观看..| 91老司机精品| 国产成人一区二区在线| 黄色a级毛片大全视频| 久久久久精品人妻al黑| 看免费av毛片| 男女床上黄色一级片免费看| 9色porny在线观看| 国产精品二区激情视频| 黄色怎么调成土黄色| 欧美激情极品国产一区二区三区| 国产av国产精品国产| 国产成人精品在线电影| 久久精品国产综合久久久| 国产av精品麻豆| 欧美 亚洲 国产 日韩一| 高清黄色对白视频在线免费看| 女性被躁到高潮视频| 亚洲黑人精品在线| 9热在线视频观看99| 亚洲国产欧美一区二区综合| 99热全是精品| 亚洲天堂av无毛| 亚洲国产成人一精品久久久| 少妇人妻 视频|