• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Realizing Cd and Ag codoping in p-type Mg3Sb2 toward high thermoelectric performance

    2023-10-16 03:20:18ShijunXioKunlingPengZizhenZhouHunWngSikngZhengXuLuGungHnGuoyuWngXioyunZhou
    Journal of Magnesium and Alloys 2023年7期

    Shijun Xio ,Kunling Peng ,Zizhen Zhou ,Hun Wng ,Sikng Zheng ,Xu Lu ,Gung Hn,Guoyu Wng,Xioyun Zhou,b,d,*

    aCollege of Physics,Chongqing University,Chongqing 401331,China

    b National Engineering Research Center for Magnesium Alloys,Chongqing University,Chongqing 400044,China

    c Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences,Chongqing 400714,China

    d Analytical and Testing Center,Chongqing University,Chongqing 401331,China

    Abstract Mg3Sb2 has attracted intensive attention as a typical Zintl-type thermoelectric material.Despite the exceptional thermoelectric performance in n-type Mg3Sb2,the dimensionless figure of merit (zT) of p-type Mg3Sb2 remains lower than 1,which is mainly attributed to its inferior electrical properties.Herein,we synergistically optimize the thermoelectric properties of p-type Mg3Sb2 materials via codoping of Cd and Ag,which were synthesized by high-energy ball milling combined with hot pressing.It is found that Cd doping not only increases the carrier mobility of p-type Mg3Sb2,but also diminishes its thermal conductivity (κtot),with Mg2.85Cd0.5Sb2 achieving a low κtot value of~0.67 W m-1 K-1 at room temperature.Further Ag doping elevates the carrier concentration,so that the power factor is optimized over the entire temperature range.Eventually,a peak zT of~0.75 at 773 K and an excellent average zT of~0.41 over 300 -773 K are obtained in Mg2.82Ag0.03Cd0.5Sb2,which are~240% and~490% higher than those of pristine Mg3.4Sb2,respectively.This study provides an effective pathway to synergistically improve the thermoelectric performance of p-type Mg3Sb2 by codoping Cd and Ag,which is beneficial to the future applications of Mg3Sb2-based thermoelectric materials.

    Keywords: Thermoelectric;p-type Mg3Sb2;Cd and Ag codoping;Lattice thermal conductivity;Carrier concentration.

    1.Introduction

    Thermoelectric materials can realize the mutual conversion between heat and electricity,and can be utilized to generate electricity from various heat sources,such as environmental heat and industrial waste heat,providing a green and convenient way for sustainable energy supply [1–3].There have been continuous and intense interests in improving the energy conversion efficiency of thermoelectric materials,which is mainly determined by the dimensionless figure of merit(zT),defined aszT=S2σT/κtot.In this formula,Sis the Seebeck coefficient,σthe electrical conductivity,Tthe absolute temperature,andκtotthe total thermal conductivity that is composed of the lattice (κL) and electronic (κe) thermal conductivity [4].Ideally,a material with exceptional thermoelectric performance would be with a combination of largeS,highσ,and lowκtot.However,these parameters are coupled to each other,so it is challenging to synergically regulate them to achieve exceptionalzTvalues.In the past decade,researchers have devoted themselves to the exploration of new thermoelectric materials together with performance optimization of existing thermoelectrics.For example,optimization of carrier concentration,adjustment of the Fermi level[5,6],and band convergence [7–9]can effectively improve the power factor (S2σ) of materials.Alternatively,the introduction of high-density grain boundaries [10,11],nanoparticles [12,13],and point defects [14–18]into materials can efficiently scatter phonons with various wavelengths,thus sharply reducing their lattice thermal conductivity.Additionally,the reduction of phonon group velocity plays a vital role in achieving diminishedκL[19,20].

    Zintl compounds are a group of thermoelectric materials with the “electron crystal -phonon glass” features.In these compounds,the anionic groups connected by covalent bonds provide transport channels for carriers,providing properties resembling a “electron crystal”.Furthermore,the cationic and anionic groups bonded by ionic bonds facilitate the scattering of phonons,giving rise to “phonon-glass” properties [21–23].Among them,Mg3Sb2is a typical Zintl-type thermoelectric material,in which the covalent bonding regions are separated from the ionic regions: Mg1 is located in the cationic layer,Mg2 and Sb are covalently bonded to form [Mg2Sb2]2-anion framework,as illustrated in Fig.S1(a).Such structural characteristics play an important role in securing good thermoelectric properties for Mg3Sb2,such as low lattice thermal conductivity.Mg3Sb2normally exhibits p-type conducting behavior,while it can be converted to n type by introducing excessive Mg [24,25].As for n-type Mg3Sb2with multivalley conduction bands,Te-doped Mg3Sb1.5Bi0.5materials possess excellentzTvalues [26,27],e.g.a peakzTvalue of~1.65 at 725 K in Mg3Sb1.48Bi0.48Te0.04[27].Furthermore,Nb doping [28],Mn doping [29,30]and reducing excess Mg[31]were performed to synergistically optimize the electrical and thermal transport properties of Mg3.2Sb1.5Bi0.49Te0.01.For example,a peakzT~1.85 at 723 K and an averagezT~1.25 (from 300 K to 723 K) were achieved in Mg3.15Mn0.05Sb1.5Bi0.49Te0.01[30],by combining the intrinsic low thermal conductivity and doping-optimized electrical transport properties,demonstrating the great potential of n-type Mg3Sb2-based materials in high-performance thermoelectric devices.

    In contrast,thezTof undoped p-type Mg3Sb2remains below 1 due to the poor electrical properties [32],which is attributed to its low carrier concentration and mobility together with the low valence band degeneracy atΓpoint (Fig.S1(b)).In order to enhance the electrical properties of p-type Mg3Sb2,the main approach focuses on doping at Mg or Sb sites to regulate the carrier concentration.Specifically,the doping elements at the Mg site mainly include Li [33],Na [34],Ag[35],Na/Zn[36],Li/Zn[37]and Li/Cd[38],while the doping elements that occupy the Sb position are dominantly Pb [39],Bi [40]and Sn [41],among which the alkali metal doping is the most effective in regulating the carrier concentration.It is also of interest to note that compared with single-element doping,double-element codoping strategy can better regulate the thermoelectric properties of p-type Mg3Sb2.Although thezTof p-type Mg3Sb2has been improved by doping,its electrical and thermal transport properties should be further optimized to compete with its n-type counterpart.Considering that both p-and n-type semiconductors are needed to fabricate thermoelectric devices for practical applications,it is imperative to enhance thezTof p-type Mg3Sb2to accelerate the commercialization process of Mg3Sb2-based thermoelectric devices.

    Herein,we perform codoping of Cd and Ag at Mg sites of p-type Mg3Sb2toward synergistic optimization of thermal and electrical transport properties.The introduction of Cd at the Mg position exerts positive influence on enhancing phonon scattering,which reduces the lattice thermal conductivity obviously,e.g.0.56 W m-1K-1for Mg2.85Cd0.5Sb2(at 773 K).Simultaneously,Ag doping at the Mg site of Mg2.85Cd0.5Sb2effectively enhances the hole concentration,and Cd and Ag codoping increases the density of states effective mass of Mg3Sb2,leading to effectively optimized electrical properties.Eventually,Mg2.82Ag0.03Cd0.5Sb2achieves a peakzTof~0.75 at 773 K and an averagezTof~0.41 (from 300 K to 773 K),which are~240% and~490% higher than those of Mg3.4Sb2,respectively.

    2.Experimental and theoretical methods

    2.1.Sample synthesis

    Polycrystalline Mg3.4-xCdxSb2(x=0,0.1,0.3,0.5) and Mg2.85-yAgyCd0.5Sb2(y=0,0.01,0.03,0.05) samples were prepared by high-energy ball milling and hot pressing,as illustrated in Fig.1.Firstly,high-purity Mg (powder,99.5%),Sb (spheres,99.999%),Cd (powder,99.9%) and Ag (powder,99.9%) were weighed in a stoichiometric ratio and loaded into stainless-steel ball-milling jars in an Ar-filled glove box.Next,the raw materials were mechanically alloyed for 10 h utilizing a high-energy ball mill(SPEX 8000 Mixer/Mill).The obtained milled powders were loaded into a 10 mm diameter graphite die and then consolidated into dense pellets by hot pressing at~873 K for 20 min under a uniaxial pressure of~70 MPa.High relative densities (>95% of the theoretical density) are obtained for all samples (Table S1).

    2.2.Characterization and measurements

    The powder X-ray diffraction (XRD) patterns of all samples were collected on a PANalytical X’pert diffractometer using Cu Kαradiation.The microstructure of the samples was investigated through scanning electron microscopy(SEM,Thermo Scientific Quattro S)and transmission electron microscopy (TEM,Thermo Scientific Talos F200S),which were operated at 20 and 200 kV,respectively.The TEM samples were prepared from the Cd,Ag-codoped bulk pellets using mechanical polishing and ion milling (LEICA EM RES102).The chemical compositions of the Mg3.4Sb2,Mg2.85Cd0.5Sb2and Mg2.82Ag0.03Cd0.5Sb2samples (Table S2)were characterized by electron probe microanalysis (EPMA,JXA-8530F Plus Hyper Probe).The electrical transport properties were measured on bar-shaped samples with dimensions of~9 mm × 3 mm × 3 mm using an ULVAC ZEM-3 instrument from 300 K to 773 K,and the thermal diffusivity (D)was acquired from wafer-shaped samples (with a diameter of 10 mm and a thickness of 1 mm)utilizing a Netzsch LFA 457 instrument over the same temperature range.The electronic thermal conductivity (κe=LσT) can be estimated from the Wiedemann-Franz relationship with the Lorenz number (L)being calculated based on the single parabolic band (SPB)model [42].The temperature-dependent Hall carrier concentration (nH) was measured by a homemade Hall effect measurement apparatus under a magnetic field of ±1 T,and the carrier mobility (μH) was calculated using the formulaμH=σe-1nH-1.The uncertainties in the measurement ofS,σ,κandzTare 5%,5%,10% and 15%,respectively.

    2.3.Theoretical calculations

    The electronic properties of Mg3Sb2were investigated within the framework of the density functional theory[43,44],which was coded in the Vienna Ab-initio Simulation Package[45].The exchange-correlation functional was in the form of Perdew-Burke-Ernzerhof with generalized gradient approximation [46].The GW0approximation was considered for accurately predicting the band gap [47–50].The system was fully relaxed until that the magnitude of the forces acting on all the atoms is less than 0.002 eV-1.The phonon dispersion relations were computed based on the density functional perturbation theory [51].A 3 × 3 × 2 supercell withΓpoint was adopted to calculate the second-order interatomic force constants.

    3.Results and discussion

    3.1.Reducing the lattice thermal conductivity by Cd doping

    Since Mg is rather active and easy to volatilize during heating,we first realize the synthesis of single-phase Mg3Sb2phase (Fig.S2) by ball milling and sintering mixed Mg and Sb precursors with a higher Mg:Sb molar ratio (i.e.,3.4:2)than the stoichiometric ratio.Thereafter,we systematically investigate the effect of Cd doping at the Mg position and the concentration of Mg vacancies on the thermoelectric properties of p-type Mg3.4Sb2.Fig.2(a)shows the powder XRD patterns of Mg3.4-xCdxSb2(x=0,0.1,0.3,0.5),Mg2.85Cd0.5Sb2and Mg2.8Cd0.5Sb2samples synthesized by high-energy ball milling and hot pressing.All diffraction peaks can be indexed to hexagonal Mg3Sb2structure with the space groupPm1 (PDF 71-0404),except that a trace amount of secondary phase Sb is observed in the Mg2.8Cd0.5Sb2sample.A representative SEM image of the Mg2.85Cd0.5Sb2fractured surface is presented in Fig.2(b),revealing microstructures without obvious pore or micro-crack,which is consistent with the high relative density (95% of the theoretical density).Fig.2(c)-(e) display the energy dispersive X-ray spectroscopy (EDS) element maps,showing that all component elements (Mg,Sb and Cd) are evenly distributed in the sample.

    Fig.2.XRD and SEM characterization of Cd-doped Mg3.4Sb2:(a)XRD patterns for Mg3.4-xCdxSb2 (x=0,0.1,0.3,0.5),Mg2.85Cd0.5Sb2 and Mg2.8Cd0.5Sb2,(b) SEM image of the Mg2.85Cd0.5Sb2 sample,and (c -e) corresponding EDS maps of Mg,Sb and Cd,respectively.

    In order to investigate the effect of Cd doping and Mg vacancies on the thermoelectric performance of p-type Mg3.4Sb2,the electrical (Fig.3) and thermal transport properties (Fig.4) of Mg3.4-xCdxSb2(x=0,0.1,0.3,0.5),Mg2.85Cd0.5Sb2and Mg2.8Cd0.5Sb2samples were measured.Fig.3(a) and (b) demonstrate the temperature-dependent electrical conductivity (σ) and Seebeck coefficient (S) for these samples,respectively.The increasingσand decreasingSwith elevated temperature indicate that these samples exhibit a typical nondegenerate semiconductor behavior (an indication of low carrier concentration).The positive Seebeck coefficient indicates that all samples are p-type.With the increasing Cd contents,the electrical conductivity of Mg3.4-xCdxSb2rises monotonously while the Seebeck coefficient predominantly shows the inverse trend.Hall effect measurement shows that the room-temperature Hall carrier concentration (nH) and mobility (μH) of the samples increase from~5.2 × 1016cm-3and 9.6 cm2V-1s-1for the Mg3.4Sb2to~6.5 × 1017cm-3and 27.8 cm2V-1s-1for the Mg2.9Cd0.5Sb2(Table S1),respectively.The increasednHis due to the decrease of activation energy of Mg3Sb2-based materialsviadoping Cd,which could shift impurity/defect levels toward valence band and/or narrow energy gap [52].The increase inμHis possibly related to two reasons: one is that the weakening of ionizing impurity scattering by doping Cd at the Mg site,similar to the cases of Mg3Sb2-xBix[53],Mg3-xAgxSb2[35],Mg3.2-xNbxSb1.5Bi0.49Te0.01[28]and Mg3.19-xLi0.01CdxSb2[38],and the other is that the weakening of the scattering effect of grain boundary on carriers [54–58].In addition,in order to further improve the power factor (S2σ),Mg vacancies were created by reducing the Mg content on the basis of Mg2.9Cd0.5Sb2,leading to the further increased hole concentration (Table S1).Specifically,as to the Mg2.85Cd0.5Sb2sample,the room-temperature carrier concentration is further increased to~9 × 1017cm-3,contributing to a power factor of 0.36 mW m-1K-2at 773 K.

    Fig.3.Temperature-dependent electrical transport properties of Mg3.4-xCdxSb2 (x=0,0.1,0.3,0.5),Mg2.85Cd0.5Sb2 and Mg2.8Cd0.5Sb2: (a) electrical conductivity,(b) Seebeck coefficient,and (c) power factor.

    Fig.4.Temperature-dependent (a) κtot,(b) κL,and (d) zT values for Mg3.4-xCdxSb2 (x=0,0.1,0.3,0.5),Mg2.85Cd0.5Sb2,and Mg2.8Cd0.5Sb2.(c) Phonon dispersions of Mg3Sb2 (blue line) and Mg2CdSb2 (red line) (For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.).

    The temperature-dependent total thermal conductivity and lattice thermal conductivity of Mg3.4-xCdxSb2(x=0,0.1,0.3,0.5),Mg2.85Cd0.5Sb2and Mg2.8Cd0.5Sb2samples are presented in Fig.4(a) and (b),respectively.We can observe that Cd doping on Mg site effectively reduces theκtotof Mg3Sb2-based materials.Specifically,theκtotat room temperature dramatically decreases from 1.41 W m-1K-1for the pristine Mg3.4Sb2to 0.67 W m-1K-1for the Mg2.85Cd0.5Sb2sample(Fig.4(a)),which is attributed to the drastically decreasedκL(Fig.4(b)).Further,it is noted that for the Mg3.4Sb2sample,κLshow a nearlyT-1dependence,indicating the dominance of phonon-phonon Umklapp scattering.However,the temperature-dependentκLof Mg3.4-xCdxSb2gradually deviates from the dependency ofT-1with increasing the Cd content,which is likely related to bipolar effect at elevated temperature.Additionally,by creating extra Mg vacancies (i.e.,the synthesis of Mg2.85Cd0.5Sb2and Mg2.8Cd0.5Sb2),the bipolar effect at the high temperature region is effectively suppressed (Fig.4(b)).

    Room-temperature longitudinal (vl),transverse (vt) and mean (vs) sound velocities of Mg3.4-xCdxSb2decrease with increasing the Cd concentration (Table S1),which indicates a beneficial effect of Cd doping for reducing theκL(κL=,whereCvis the heat capacity,vis the phonon velocity,lis the phonon mean free path,andτis the phonon relaxation time).To understand the origin of the reduced phonon group velocity,we calculated the phonon dispersions of Mg3Sb2and Mg2CdSb2along the high symmetry lines (Fig.4(c)).Compared with Mg3Sb2,the cutoff frequency of phonon spectrum for Mg2CdSb2is surpassed,and the sound velocity decreases significantly around the center of Brillouin zone for transverse acoustic TA1,TA2and longitudinal acoustic LA (Fig.S3(a)–(c)),which is consistent with the experimental results.In addition,the phonon group velocity also sharply decreases for some optical mode,especially the frequency from 100 cm-1to 200 cm-1as shown in Fig 4(c) and S3(d),which also significantly contribute to the lattice thermal conductivity.To summarize,the decreasedκLafter doping Cd is mainly attributed to two factors: the decreased phonon velocityviaintroducing heavier element Cd,and the reduced phonon relaxation time by enhanced point defect phonon scattering.Eventually,the highestzTof~0.43 is achieved in Mg2.85Cd0.5Sb2at 773 K,which is~95% higher than that of the undoped Mg3.4Sb2(~0.22) (Fig.4(d)).

    3.2.Electrical performance optimization by Ag doping

    To obtain the best thermoelectric properties,the optimal carrier concentration is usually on the order of 1019-1020cm-3for most materials,that is,a heavy doping (or degenerate) state [59].We notice that replacing Mg2+by Cd2+does not significantly increase the hole carrier concentration of p-type Mg3.4Sb2.Considering that Ag has one less valence electron than Mg,Ag doping would be expected to effectively increase the hole concentration of Mg3Sb2-based materials.XRD patterns of Mg2.85-yAgyCd0.5Sb2(y=0,0.01,0.03,0.05) sintered samples are exhibited in Fig.5(a),in which the main diffraction peaks are consistent with the ones of Mg3Sb2phase,although there is a weak diffraction peak corresponding to Sb for the samples withy=0.03,0.05.TEMEDS analysis(Fig.5(b)-(f))shows the existence and uniform distribution of Mg,Sb and Cd in the Mg2.82Ag0.03Cd0.5Sb2sample together with the local enrichment of Ag.A selected area electron diffraction (SAED) pattern collected from the Mg2.82Ag0.03Cd0.5Sb2sample is displayed in the inset of Fig.5(g),and is indexed as the one taken along the [20]zone axis of Mg3Sb2.The corresponding high-resolution TEM(HRTEM) image shown in Fig.5(g) reveals a set of crystal planes with lattice spacings of 7.2and 3.9,which can be identified as the (0001) and(010)crystal planes,respectively.

    Fig.5.(a) XRD patterns of Mg2.85-yAgyCd0.5Sb2 (y=0,0.01,0.03,0.05);(b) The high-angle annular dark field-scanning TEM (HAADF-STEM) image of the Mg2.82Ag0.03Cd0.5Sb2 sample,(c)-(f) EDS elemental mappings for Mg,Sb,Cd,and Ag,respectively,and (g) SAED pattern along the [20]zone axis(the inset) and the corresponding HRTEM image.

    Figs.6 and 7 show the electrical transport properties of the Mg3.4Sb2and Mg2.85-yAgyCd0.5Sb2(y=0,0.01,0.03,0.05) samples.It is clear that the electrical conductivity values of the Ag-doped samples are much larger than those of Mg3.4Sb2and Mg2.85Cd0.5Sb2(Fig.6(a)),which is primarily attributed to the increasednHover the measurement temperature range,for example,2.62 × 1019cm-3for Mg2.8Ag0.05Cd0.5Sb2as compared to 9.03 × 1017cm-3for Mg2.85Cd0.5Sb2at room temperature (Fig.6b,Table S1).Notably,the electrical conductivity of the Mg2.82Ag0.03Cd0.5Sb2and Mg2.8Ag0.05Cd0.5Sb2samples reveals three different temperature-dependent variation trends,and Hall effect measurement was performed to understand the mechanism.(i)σfirst increases slowly when the temperature rises from 300 K to~450 K,which is primarily attributed to the slowly increasednHdue to the ionized impurities (Fig.6(b)).With increasing the temperature from 300 K to~450 K,theμHincreases first,exhibiting the temperature-activated behavior that is related to resistive grain boundaries [54,55],and then decreases due to the increased lattice vibration scattering,as shown in Fig.6(c).(ii) Over 450 -623 K,σelevates sharply with the increase of temperature.This could result from the dissolution of Sb secondary phase into the matrices [60]and in turn the generation of more Mg vacancies,which dramatically increases the carrier concentration (Fig.6(b)).Although the carrier mobility is declined gradually (Fig.6(c)),its impact on theσis overwhelmed by that of the sharply increasednH.(iii)σdecreases with increasing the temperature from 623 K to 773 K,which is due to the diminished carrier mobility resulting from the strong lattice vibration scattering (the carrier concentration does not change significantly within this temperature range).It should be noted that the carrier mobility of all samples coincides with theμH≈T–1.5relation over 473–773 K,indicating that acoustic phonon scattering dominates the charge carrier scattering.

    Fig.6.Temperature-dependent (a) electrical conductivity,(b) Hall carrier concentration,and (c) carrier mobility for Mg3.4Sb2 and Mg2.85-yAgyCd0.5Sb2(y=0,0.01,0.03,0.05).

    In addition,the Seebeck coefficient (Fig.7(a)) of the samples gradually decreases with the increase of Ag content.For the Mg2.82Ag0.03Cd0.5Sb2and Mg2.8Ag0.05Cd0.5Sb2samples,the decreasedSwith increasing temperature from 450 K to 623 K is because of the significant increase in the carrier concentration.Due to much-improvedσand still decentS,Ag doping significantly increases the power factor of p-type Mg2.85Cd0.5Sb2,for example,0.7 mW m-1K-2at 773 K for Mg2.82Ag0.03Cd0.5Sb2as compared to 0.36 mW m-1K-2for Mg2.85Cd0.5Sb2(Fig.7(b)).The Pisarenko relationship at 300 K (Fig.7(c)) indicates that the density of states (DOS)effective mass of Cd,Ag-codoped samples (Table S1) rises remarkably compared to that of Mg3.4Sb2.According to the relationshipS∝md*T(3n)-2/3[4],a sharp increase in carrier concentration leads to the decreased Seebeck coefficient for the Cd and Ag codoped samples,although the DOS effective mass increases.Additionally,the temperature-dependent electronic quality factor (BE),which can describe the electronic contribution to the thermoelectric quality factorB=BET/κL(Bdetermines the maximumzTfor a thermoelectric material)[61–63],was calculated based on theSandσmeasured in the high temperature range.It is evident that Ag doping can effectively improve theBEof p-type Mg3Sb2(Fig.7(d)).It should be noted that any variation inBEwith temperature or doping indicates some extra effects in electrical transport,such as band convergence,additional electron scattering,and bipolar conduction [61].

    Fig.7.Temperature-dependent (a) seebeck coefficient and (b) power factor for Mg3.4Sb2 and Mg2.85-yAgyCd0.5Sb2 (y=0,0.01,0.03,0.05).(c) Pisarenko relationship for all samples at 300 K,in which both the calculated results (based on the single parabolic band model [62],dashed lines) and experimental data (spherical symbols) are included.(d) Temperature-dependent BE calculated based on a single parabolic band transport with acoustic phonon scattering model [61].

    The total thermal conductivity of Cd,Ag-codoped samples,shown in Fig.8(a),is remarkably low,ranging between 0.65 and 0.8 W m-1K-1over 300–773 K.Due to the muchimproved electrical conductivity,the Mg2.85-yAgyCd0.5Sb2samples attain increasedκe,as shown in Fig.8(b),which leads to higherκtotin Mg2.8Ag0.05Cd0.5Sb2at 773 K than Mg3.4Sb2.Fig.8(c) presents the lattice thermal conductivity,indicating that Cd,Ag codoping can lead to the lowκLin the samples.Specifically,Mg2.8Ag0.05Cd0.5Sb2obtains the lowestκLof 0.43 W m-1K-1at 773 K,which is about 39%lower than that of Mg3.4Sb2(0.7 W m-1K-1).Eventually,due to the significantly reducedκLand enhancedS2σcontributed by Cd and Ag doping,respectively,an excellentzTvalue of 0.75 is obtained in the Mg2.82Ag0.03Cd0.5Sb2sample at 773 K,which is about 240% and 74% higher than that of Mg3.4Sb2(0.22) and Mg2.85Cd0.5Sb2(0.43),respectively(Fig.8(d)).

    Fig.8.Temperature-dependent (a) κtot,(b) κe,(c) κL,and (d) zT values of Mg3.4Sb2 and Mg2.85-yAgyCd0.5Sb2 (y=0,0.01,0.03,0.05).

    Fig.9(a) and S4 demonstrate the temperature-dependentzTof p-type Mg3Sb2-based materials reported in this study and previous literatures.As can be seen,thezTvalues of our Mg2.82Ag0.03Cd0.5Sb2compares very favorably to those of single element-doped (dashed lines) and codoped (solid lines) Mg3Sb2-based thermoelectrics previously reported.Notably,the Mg2.82Ag0.03Cd0.5Sb2sample also delivers an excellent averagezT(zTavg) of~0.41 over the temperature range from 300 K to 773 K,which is considerably higher than those of pristine p-type Mg3Sb2and most of other reported p-type Mg3Sb2-based materials(Fig.9(b)).This study demonstrates an effective Cd and Ag codoping strategy to synergistically optimize the thermal and electrical transport properties of Mg3Sb2,contributing to the high-performing p-type Mg3Sb2thermoelectrics.

    4.Conclusions

    In this work,Mg3.4-xCdxSb2(x=0,0.1,0.3,0.5) and Mg2.85-yAgyCd0.5Sb2(y=0,0.01,0.03,0.05) samples have been synthesized by ball milling and hot pressing.Cd doping not only increases the carrier concentration and mobility of p-type Mg3Sb2,but also introduces a large number of point defects and diminishes the phonon velocity,leading to a low room-temperature thermal conductivity value of 0.67 W m-1K-1in Mg2.85Cd0.05Sb2.Further,additional Ag doping effectively elevates the carrier concentration and in turn significantly improves the electrical conductivity and power factor,resulting in improvedzTover the whole temperature range.A notable example is the Mg2.82Ag0.03Cd0.5Sb2sample,which approaches a highzTvalue of 0.75 at 773 K and a highzTaveof~0.41 over the temperature range from 300 K to 773 K.These results indicate the effectiveness of Cd and Ag codoping in synergistically optimizing the electrical and thermal transport properties of p-type Mg3Sb2toward excellent peak and averagezT.

    Declaration of competing interest

    There are no conflicts to declare.

    Acknowledgments

    The work is financially supported by the National Natural Science Foundation of China (Grant No.52071041,11874356,51802034).The work performed at the Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences (CAS) is supported by the Key Research Program of Frontier Sciences,CAS (Grant No.QYZDB-SSW-SLH016).We acknowledge Guiwen Wang from the Analytical and Testing Center of Chongqing University for her assistance in thermoelectric property measurement.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.jma.2021.09.012.

    成年人黄色毛片网站| 欧美av亚洲av综合av国产av| 亚洲欧美日韩另类电影网站| 国产日韩一区二区三区精品不卡| 免费不卡黄色视频| 一级,二级,三级黄色视频| 十八禁网站免费在线| 国产亚洲精品久久久久久毛片| 丁香六月欧美| 两人在一起打扑克的视频| 18美女黄网站色大片免费观看| 男女床上黄色一级片免费看| 涩涩av久久男人的天堂| 中文亚洲av片在线观看爽| 亚洲专区字幕在线| 两个人看的免费小视频| 久久久久久亚洲精品国产蜜桃av| 久久久久久久精品吃奶| 99在线人妻在线中文字幕| 男人舔女人下体高潮全视频| 日本黄色视频三级网站网址| 欧美日韩国产mv在线观看视频| 欧美中文综合在线视频| 一级作爱视频免费观看| 日韩av在线大香蕉| 国产午夜精品久久久久久| 色在线成人网| 久热爱精品视频在线9| 丝袜美足系列| 丰满迷人的少妇在线观看| 很黄的视频免费| 亚洲色图 男人天堂 中文字幕| 天堂中文最新版在线下载| 免费看a级黄色片| 亚洲欧美精品综合一区二区三区| 成人精品一区二区免费| 多毛熟女@视频| 免费女性裸体啪啪无遮挡网站| 久久国产精品男人的天堂亚洲| 一本综合久久免费| 亚洲欧美日韩高清在线视频| 久久久国产一区二区| 国产极品粉嫩免费观看在线| 免费搜索国产男女视频| 女生性感内裤真人,穿戴方法视频| 两个人免费观看高清视频| 人人妻,人人澡人人爽秒播| 精品福利观看| 精品国产国语对白av| 久久午夜综合久久蜜桃| 中文字幕色久视频| 欧美乱妇无乱码| 亚洲欧美一区二区三区黑人| 啦啦啦 在线观看视频| 日韩欧美一区视频在线观看| 97碰自拍视频| 身体一侧抽搐| 人人澡人人妻人| 高清av免费在线| aaaaa片日本免费| 在线观看日韩欧美| 最近最新免费中文字幕在线| 亚洲人成77777在线视频| 88av欧美| 国产av在哪里看| 久久久久久人人人人人| 黑人巨大精品欧美一区二区mp4| 免费日韩欧美在线观看| 麻豆一二三区av精品| 精品第一国产精品| 精品欧美一区二区三区在线| 女警被强在线播放| 黄片大片在线免费观看| 欧美在线一区亚洲| 日韩欧美免费精品| 国产精品日韩av在线免费观看 | 国产av一区在线观看免费| 日本wwww免费看| 午夜精品久久久久久毛片777| 麻豆av在线久日| 国产av精品麻豆| 国产一区二区激情短视频| 久久天堂一区二区三区四区| 无遮挡黄片免费观看| 亚洲精品一区av在线观看| 亚洲av成人不卡在线观看播放网| 国产99白浆流出| 麻豆成人av在线观看| 老司机亚洲免费影院| 一本综合久久免费| 亚洲欧美日韩高清在线视频| 黄色丝袜av网址大全| 国内久久婷婷六月综合欲色啪| 精品熟女少妇八av免费久了| 桃红色精品国产亚洲av| av超薄肉色丝袜交足视频| 性色av乱码一区二区三区2| 一夜夜www| 午夜亚洲福利在线播放| 亚洲一码二码三码区别大吗| 男女之事视频高清在线观看| 久久人妻福利社区极品人妻图片| 天堂动漫精品| 日本精品一区二区三区蜜桃| 久久中文看片网| 亚洲精品粉嫩美女一区| 国产精品免费一区二区三区在线| 国产一卡二卡三卡精品| 天堂√8在线中文| 午夜福利,免费看| 在线免费观看的www视频| 国产又色又爽无遮挡免费看| 一a级毛片在线观看| 男女做爰动态图高潮gif福利片 | 亚洲一区中文字幕在线| 欧美国产精品va在线观看不卡| 97人妻天天添夜夜摸| 757午夜福利合集在线观看| 成人永久免费在线观看视频| 国产亚洲精品一区二区www| 亚洲专区字幕在线| 九色亚洲精品在线播放| 亚洲 国产 在线| 自线自在国产av| ponron亚洲| 在线视频色国产色| 两个人免费观看高清视频| av视频免费观看在线观看| 国产黄a三级三级三级人| 国产三级黄色录像| 视频区欧美日本亚洲| 天堂中文最新版在线下载| 高清黄色对白视频在线免费看| 最近最新免费中文字幕在线| 超色免费av| 成人黄色视频免费在线看| av超薄肉色丝袜交足视频| 视频区图区小说| 50天的宝宝边吃奶边哭怎么回事| 一本综合久久免费| 丰满饥渴人妻一区二区三| 午夜影院日韩av| 免费在线观看完整版高清| 欧美日韩亚洲综合一区二区三区_| 精品免费久久久久久久清纯| 亚洲一区二区三区欧美精品| e午夜精品久久久久久久| 亚洲男人的天堂狠狠| 亚洲 欧美一区二区三区| 女性被躁到高潮视频| ponron亚洲| 丰满的人妻完整版| 国产一区二区三区综合在线观看| 村上凉子中文字幕在线| 成人三级黄色视频| 一进一出好大好爽视频| 国产精品免费一区二区三区在线| 亚洲中文av在线| 高清黄色对白视频在线免费看| 一边摸一边抽搐一进一小说| 一区在线观看完整版| 成人18禁在线播放| 精品国产国语对白av| 欧美日韩av久久| 国产99白浆流出| 亚洲伊人色综图| 欧美黑人精品巨大| 日本精品一区二区三区蜜桃| 国产精品自产拍在线观看55亚洲| 久久99一区二区三区| 午夜福利在线观看吧| aaaaa片日本免费| av网站在线播放免费| 久久国产亚洲av麻豆专区| 亚洲自偷自拍图片 自拍| 精品国产亚洲在线| 婷婷精品国产亚洲av在线| 久热这里只有精品99| 亚洲精品国产精品久久久不卡| 一夜夜www| 久久午夜亚洲精品久久| 欧美日韩福利视频一区二区| 亚洲成国产人片在线观看| 淫妇啪啪啪对白视频| 免费在线观看视频国产中文字幕亚洲| 一级黄色大片毛片| 精品人妻1区二区| 丰满的人妻完整版| 亚洲九九香蕉| 免费人成视频x8x8入口观看| 午夜精品在线福利| 国产成人一区二区三区免费视频网站| 亚洲欧美精品综合久久99| 人人澡人人妻人| 国产成人精品久久二区二区免费| 亚洲国产精品合色在线| 一边摸一边做爽爽视频免费| 日韩精品青青久久久久久| 国产真人三级小视频在线观看| 在线永久观看黄色视频| 99在线人妻在线中文字幕| 91av网站免费观看| 成人手机av| 国产欧美日韩综合在线一区二区| www国产在线视频色| 国产高清国产精品国产三级| 亚洲情色 制服丝袜| 欧美乱码精品一区二区三区| 97人妻天天添夜夜摸| 国产高清视频在线播放一区| 婷婷六月久久综合丁香| 成人免费观看视频高清| 免费看十八禁软件| 99精品久久久久人妻精品| 精品久久蜜臀av无| 亚洲精品av麻豆狂野| 亚洲一区中文字幕在线| 精品一区二区三区视频在线观看免费 | 中文字幕色久视频| 男女高潮啪啪啪动态图| 久久国产亚洲av麻豆专区| 9热在线视频观看99| 999精品在线视频| 国产高清激情床上av| 欧美黄色片欧美黄色片| 极品教师在线免费播放| 欧美乱妇无乱码| 中文字幕色久视频| 欧美乱码精品一区二区三区| 悠悠久久av| 精品人妻在线不人妻| 露出奶头的视频| 这个男人来自地球电影免费观看| 极品人妻少妇av视频| √禁漫天堂资源中文www| 精品国产国语对白av| 精品国产亚洲在线| 99re在线观看精品视频| 亚洲黑人精品在线| 国产亚洲欧美精品永久| 手机成人av网站| 一边摸一边做爽爽视频免费| 丰满饥渴人妻一区二区三| 国产精品日韩av在线免费观看 | 男人舔女人的私密视频| 欧美日韩精品网址| 天堂√8在线中文| 十分钟在线观看高清视频www| 黄色成人免费大全| 国产三级黄色录像| 欧美中文综合在线视频| 国产高清视频在线播放一区| 午夜亚洲福利在线播放| 久久影院123| 999久久久国产精品视频| 一二三四社区在线视频社区8| 热99re8久久精品国产| 色播在线永久视频| 国产高清激情床上av| bbb黄色大片| 9热在线视频观看99| 亚洲精品美女久久av网站| 大码成人一级视频| 国产一区二区三区视频了| 免费观看人在逋| 久久人妻av系列| 成人av一区二区三区在线看| 在线看a的网站| 亚洲欧洲精品一区二区精品久久久| 亚洲 欧美一区二区三区| 老司机靠b影院| 亚洲精品粉嫩美女一区| 免费不卡黄色视频| 亚洲人成网站在线播放欧美日韩| 亚洲av日韩精品久久久久久密| 成年女人毛片免费观看观看9| 久热爱精品视频在线9| 久久久久久久午夜电影 | 色婷婷久久久亚洲欧美| 亚洲激情在线av| 女警被强在线播放| 国产精品98久久久久久宅男小说| 在线永久观看黄色视频| 制服诱惑二区| 精品卡一卡二卡四卡免费| 91成人精品电影| 日韩人妻精品一区2区三区| 久久国产精品人妻蜜桃| 黑人巨大精品欧美一区二区蜜桃| 国产成人精品无人区| 国产aⅴ精品一区二区三区波| 最好的美女福利视频网| 国产精品久久视频播放| 色播在线永久视频| 国产av一区二区精品久久| 成年人黄色毛片网站| 中文字幕av电影在线播放| 亚洲国产看品久久| 制服诱惑二区| 久久久久国产精品人妻aⅴ院| 在线免费观看的www视频| 欧美日韩一级在线毛片| 在线观看舔阴道视频| 丰满的人妻完整版| 性少妇av在线| 国产精品免费视频内射| 久久精品影院6| 欧美一级毛片孕妇| 亚洲精品中文字幕在线视频| 色综合站精品国产| www国产在线视频色| 色哟哟哟哟哟哟| av有码第一页| 国产亚洲欧美98| 777久久人妻少妇嫩草av网站| 日韩精品青青久久久久久| 亚洲精品中文字幕在线视频| 午夜福利,免费看| 青草久久国产| 欧美久久黑人一区二区| 久久久久久免费高清国产稀缺| 宅男免费午夜| 欧美成狂野欧美在线观看| 黑人欧美特级aaaaaa片| 久久久久国产精品人妻aⅴ院| av视频免费观看在线观看| 日韩大码丰满熟妇| 日韩大尺度精品在线看网址 | 亚洲色图av天堂| 在线免费观看的www视频| 午夜精品久久久久久毛片777| 亚洲av成人一区二区三| 亚洲第一av免费看| 久久久久九九精品影院| 一级毛片女人18水好多| 亚洲av成人不卡在线观看播放网| 黄频高清免费视频| 国产av一区在线观看免费| 999精品在线视频| 精品久久久久久久毛片微露脸| 精品欧美一区二区三区在线| 中文亚洲av片在线观看爽| 90打野战视频偷拍视频| 性欧美人与动物交配| 一二三四在线观看免费中文在| 一二三四社区在线视频社区8| 久99久视频精品免费| 一级毛片高清免费大全| 亚洲 国产 在线| 丝袜美腿诱惑在线| 91麻豆av在线| 亚洲人成网站在线播放欧美日韩| 久久精品影院6| 性少妇av在线| a级毛片黄视频| 国产精品免费一区二区三区在线| 欧美成狂野欧美在线观看| 男男h啪啪无遮挡| 成人三级黄色视频| 十八禁人妻一区二区| 亚洲精品久久午夜乱码| 亚洲成人精品中文字幕电影 | 91麻豆av在线| 亚洲精品成人av观看孕妇| 国产精品二区激情视频| 国产欧美日韩综合在线一区二区| 国产亚洲精品综合一区在线观看 | 他把我摸到了高潮在线观看| 18禁裸乳无遮挡免费网站照片 | 91字幕亚洲| 一个人免费在线观看的高清视频| 老司机午夜福利在线观看视频| 欧美日韩精品网址| 欧美黄色片欧美黄色片| 99香蕉大伊视频| 亚洲欧美一区二区三区久久| 精品久久久久久,| 久久久久久久精品吃奶| 国内久久婷婷六月综合欲色啪| 欧美日韩黄片免| 女性生殖器流出的白浆| 性欧美人与动物交配| 欧美日韩精品网址| 日本精品一区二区三区蜜桃| 黄色片一级片一级黄色片| 日韩国内少妇激情av| 一进一出好大好爽视频| 欧美日韩视频精品一区| 在线国产一区二区在线| 99re在线观看精品视频| 一边摸一边抽搐一进一小说| 亚洲专区字幕在线| 天堂动漫精品| 国产亚洲欧美精品永久| 亚洲精品一区av在线观看| 欧美色视频一区免费| 色婷婷久久久亚洲欧美| 日韩 欧美 亚洲 中文字幕| 麻豆av在线久日| 亚洲 欧美一区二区三区| 国产一区在线观看成人免费| 日韩高清综合在线| 精品久久久精品久久久| 丰满的人妻完整版| 黄色片一级片一级黄色片| 黑人巨大精品欧美一区二区mp4| a级片在线免费高清观看视频| 一区在线观看完整版| 在线观看舔阴道视频| 一区福利在线观看| 午夜精品在线福利| av电影中文网址| 午夜a级毛片| 一区二区三区精品91| 在线国产一区二区在线| 欧美在线黄色| 色精品久久人妻99蜜桃| 最近最新中文字幕大全电影3 | 十八禁网站免费在线| 精品一区二区三区四区五区乱码| 欧美人与性动交α欧美软件| 在线永久观看黄色视频| 一区在线观看完整版| 黑人操中国人逼视频| 国产主播在线观看一区二区| 十分钟在线观看高清视频www| 三上悠亚av全集在线观看| 交换朋友夫妻互换小说| av国产精品久久久久影院| 午夜福利欧美成人| 99在线视频只有这里精品首页| 757午夜福利合集在线观看| 国产午夜精品久久久久久| 亚洲第一欧美日韩一区二区三区| 欧美日韩黄片免| 久久中文字幕一级| 久久人妻av系列| 99re在线观看精品视频| 操出白浆在线播放| 一二三四在线观看免费中文在| 国产欧美日韩精品亚洲av| 久久久国产成人精品二区 | 一级,二级,三级黄色视频| 色综合婷婷激情| 免费av毛片视频| 国产亚洲欧美98| 少妇 在线观看| 黄色视频,在线免费观看| 正在播放国产对白刺激| 亚洲成人免费av在线播放| 老鸭窝网址在线观看| 亚洲午夜理论影院| 亚洲激情在线av| 无人区码免费观看不卡| 老司机在亚洲福利影院| 成人免费观看视频高清| 久久午夜综合久久蜜桃| 亚洲国产精品999在线| 一级作爱视频免费观看| 国产精品99久久99久久久不卡| 久久久国产精品麻豆| 国产片内射在线| 国产野战对白在线观看| 成人亚洲精品一区在线观看| 久久久久久久精品吃奶| 99精品在免费线老司机午夜| 在线观看一区二区三区激情| 嫁个100分男人电影在线观看| 好看av亚洲va欧美ⅴa在| 欧美在线黄色| 制服诱惑二区| 曰老女人黄片| 亚洲av电影在线进入| 国产aⅴ精品一区二区三区波| 男女午夜视频在线观看| 午夜免费激情av| 无限看片的www在线观看| 中文字幕人妻丝袜一区二区| 精品久久久久久成人av| 三上悠亚av全集在线观看| 日韩av在线大香蕉| 亚洲中文日韩欧美视频| 国产欧美日韩一区二区三| 十分钟在线观看高清视频www| 每晚都被弄得嗷嗷叫到高潮| cao死你这个sao货| 亚洲av成人一区二区三| 欧美午夜高清在线| 欧美黄色淫秽网站| 国产成人欧美| 日韩人妻精品一区2区三区| 搡老熟女国产l中国老女人| 国产精品爽爽va在线观看网站 | 午夜福利影视在线免费观看| 精品乱码久久久久久99久播| 少妇的丰满在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产欧美一区二区综合| 午夜91福利影院| 亚洲成av片中文字幕在线观看| 91麻豆av在线| 韩国精品一区二区三区| 嫁个100分男人电影在线观看| 国产精品久久久久成人av| 日韩三级视频一区二区三区| 欧美中文综合在线视频| 日本五十路高清| 久久香蕉激情| 久久香蕉精品热| 亚洲国产精品一区二区三区在线| 热re99久久国产66热| 深夜精品福利| 午夜久久久在线观看| av中文乱码字幕在线| 一级作爱视频免费观看| 又紧又爽又黄一区二区| 18禁美女被吸乳视频| 一级毛片精品| 精品乱码久久久久久99久播| 久久久国产一区二区| 动漫黄色视频在线观看| 一边摸一边抽搐一进一小说| 欧美性长视频在线观看| 成人免费观看视频高清| 国产精品一区二区免费欧美| 亚洲片人在线观看| 久久久国产成人精品二区 | 高清毛片免费观看视频网站 | 国产男靠女视频免费网站| 国产熟女午夜一区二区三区| 国产视频一区二区在线看| 久久精品国产亚洲av高清一级| 在线观看免费高清a一片| 人人妻人人爽人人添夜夜欢视频| av网站在线播放免费| 国产男靠女视频免费网站| 国产成人精品无人区| 亚洲欧美一区二区三区久久| 天堂动漫精品| 国产aⅴ精品一区二区三区波| 午夜福利欧美成人| 狂野欧美激情性xxxx| 涩涩av久久男人的天堂| bbb黄色大片| 欧美一区二区精品小视频在线| 国产精华一区二区三区| 一级a爱视频在线免费观看| 亚洲av熟女| 一本综合久久免费| 国产精品爽爽va在线观看网站 | 一区二区三区激情视频| 最近最新免费中文字幕在线| 一边摸一边抽搐一进一出视频| 国产成人精品无人区| 免费在线观看视频国产中文字幕亚洲| 天天添夜夜摸| 精品国产国语对白av| 欧美日韩中文字幕国产精品一区二区三区 | 伊人久久大香线蕉亚洲五| 99在线视频只有这里精品首页| 亚洲精品在线美女| 大香蕉久久成人网| 亚洲人成网站在线播放欧美日韩| 日韩人妻精品一区2区三区| 国产精品国产高清国产av| 51午夜福利影视在线观看| 久久精品国产综合久久久| 亚洲av电影在线进入| 精品高清国产在线一区| 女性生殖器流出的白浆| 一级毛片高清免费大全| 国产亚洲欧美在线一区二区| 一级毛片精品| 国产精品九九99| 免费一级毛片在线播放高清视频 | 亚洲第一青青草原| 制服人妻中文乱码| 国产精品免费一区二区三区在线| 国产精品一区二区在线不卡| 国产主播在线观看一区二区| 亚洲精品国产一区二区精华液| 99re在线观看精品视频| 91麻豆av在线| 精品国产一区二区三区四区第35| 精品午夜福利视频在线观看一区| 无遮挡黄片免费观看| 性欧美人与动物交配| 亚洲欧美日韩无卡精品| 国产成人欧美在线观看| 一级a爱片免费观看的视频| www国产在线视频色| 精品久久久久久,| 女人被狂操c到高潮| 欧美av亚洲av综合av国产av| 99久久综合精品五月天人人| 国产一区在线观看成人免费| 精品久久久久久成人av| 两个人免费观看高清视频| 国产片内射在线| 亚洲av美国av| 人人妻人人添人人爽欧美一区卜| 一二三四社区在线视频社区8| 日日夜夜操网爽| 成人免费观看视频高清| 精品卡一卡二卡四卡免费| 久久中文字幕人妻熟女| 国产精品久久久久成人av| 最近最新中文字幕大全免费视频| 女性被躁到高潮视频| 亚洲国产欧美一区二区综合| 亚洲熟女毛片儿| 两性夫妻黄色片| 亚洲专区中文字幕在线| 日本vs欧美在线观看视频| 精品久久久久久,|