• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Ce content on the modification of Mg2Si phase in Mg-5Al-2Si alloy

    2023-10-16 03:19:34BoHuWenJieZhuZiXinLiSeulBiLeeDeJingLiXioQinZengYoonSukChoi
    Journal of Magnesium and Alloys 2023年7期

    Bo Hu ,Wen-Jie Zhu ,Zi-Xin Li ,Seul Bi Lee ,De-Jing Li,c,* ,Xio-Qin Zeng,c ,Yoon Suk Choi,**

    aNational Engineering Research Center of Light Alloy Net Forming,School of Materials Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China

    b School of Materials Science and Engineering,Pusan National University,Busan 46241,Republic of Korea

    c The State Key Laboratory of Metal Matrix Composites,Shanghai Jiao Tong University,800 Dongchuan Road,Shanghai 200240,China

    Abstract The effect of Ce content (0–1.6 wt.%) on the modification of Mg2Si phase in the as-cast Mg-5Al-2Si alloy was investigated.The original Chinese script type Mg2Si phase was refined distinctly and transformed to dispersive block shape gradually by adding Ce element.The length of Chinese script type Mg2Si phase was reduced from 110 to 50 μm with increasing Ce content to 1.6 wt.%.The results calculated by Pandat software indicated that the added Ce element first combined with Si to form CeSi2 phase,which could serve as the heterogeneous nucleation of Mg2Si phase due to the small lattice mismatch of 7.97%.The modification of Mg2Si phase was mainly attributed to the facts that Ce changed the growth steps of Mg2Si phase and CeSi2 promoted the nucleation of Mg2Si phase.With increasing Ce content from 0 wt.% to 1.6 wt.%,the YS,UTS and EL at 150 °C were improved from 67.7 MPa,91.2 MPa and 1.6% to 84.2 MPa,128 MPa and 7.5%,respectively.

    Keywords: Mg-Al-Si alloys;Mg2Si modification;Heterogeneous nucleation;Mechanical properties.

    1.Introduction

    As the lightest structural alloy,magnesium alloy has great potential for application in automotive and aerospace industries,owing to its low density,high specific strength and good castability [1–8].However,the relatively inferior elevatedtemperature strength and elongation of magnesium alloys constrain further application,compared with other commercial aluminum alloys [9–15].In recent years,researches have shown that due to the presence of thermally stable intermetallic Mg2Si phase,the Mg-Al-Si series alloys were developed as heat resistant alloys used at elevated temperatures.Mg2Si phase has high melting point,low density,high hardness,high elastic modulus and low thermal expansion coefficient [16–18].However,the undesirable,large Chinese script type Mg2Si phase is easily formed in Mg-Al-Si alloys,which would deteriorate the mechanical properties of the alloys.Therefore,the modification of Mg2Si is critical to improve the mechanical properties of Mg-Al-Si alloys [16–18].

    Many researches have been carried out to investigate the modification of Mg2Si phase in Mg-Al-Si alloys by adding alloying elements.It has been reported that the Mg2Si phase in Mg-Al-Si alloys could be modified by Sr,Sb,Ca,P,Zn and RE elements [19–34].Zhang et al.[17]found that Zn could reduce the onset crystallizing temperature and increase the undercooling in Mg-Si alloys,which restricted the grain growth and promoted the nucleation of Mg2Si phase.Tang et al.[25]reported that Sr could refine Mg2Si in the Mg-4Si-2.7Al alloy.Al4Sr can theoretically act as the heterogeneous nucleus for Mg2Si due to the small lattice mismatch;beside,Sr can be adsorbed on the Mg2Si crystal plane,affecting the surface energy of Mg2Si.Ye et al.[30]investigated the effect of Gd on the modification of primary Mg2Si in the Mg-3Si alloy,the results indicated that the morphology of the primary Mg2Si was changed from coarse dendrite into fine polygon,and the size was significantly decreased.Hu et al.[31]found that Nd element could also modify the primary Mg2Si in the Mg-3Si alloy,but the primary Mg2Si become coarser again when the Nd content exceeded 3.0 wt.%.Adding RE elements is an effective way to improve the mechanical properties of Mg-Al-Si alloys,because RE elements can promote the microstructure refinement and improve the stability of an alloy at elevated temperatures.

    The effect of RE elements on the modification of the main strengthening phase in Mg-Al-Si alloys,Chinese script type eutectic Mg2Si,is still to be studied.The calculations of Han et al.[35]indicated that Ce element was surface-active and could be easily absorbed onto the {100} and {111} planes of the Mg2Si crystal,thereby reducing the surface energy of Mg2Si and changing the growth steps of Mg2Si,which was called the poisoning effect.In addition,Ce element can react with Si to form CeSi2intermetallic compound before forming Mg2Si,which may promote the heterogeneous nucleation of the Mg2Si phase,further refining the microstructure of the alloys.However,excessive Ce will lead to the loss of Si content in the Mg-Al-Si alloys,which in turn reduces the fraction of the main strengthening phase Mg2Si.Therefore,adding suitable Ce content will be an effective method to modify the Chinese script type Mg2Si phase in the Mg-Al-Si alloys.

    In this work,efforts have been made to investigate the effect of Ce content (0,0.4,0.8 and 1.6 wt.%) on the Mg2Si modification and mechanical properties of the Mg-5Al-2Si(AS52) alloy.Combining with the evolution of microstructure,the phase diagrams and solidification paths calculated by Pandat software based on Scheil’s model [36]were used to analyze the mechanism of Mg2Si modification.

    2.Experimental procedure

    Commercial high-purity Mg (99.99%),Al (99.99%),Mg-10Si (99.99%) and Mg-90Ce (99.99%) were used to prepare the Mg-5Al-2Si-xCe (x=0,0.4,0.8,1.6 wt.%) alloy ingots.Pure magnesium was melted under a protective gas (mixture of CO2and SF6)in a steel crucible coated with the mixture of sodium silicate and chalky powder.The Mg-10Si master alloy and pure aluminum were added into the melt at 680 °C.The melt was held at 780 °C for 20~30 min after adding the Mg-90Ce master alloy into it at 750 °C.Then the melt was stirred for 10 min at 740°C and held at 750°C for 20~30 min to ensure homogenization.Finally,it was poured into a preheated(200 °C) steel mold at 750 °C,and cooled naturally to room temperature to prepare as-cast Mg-5Al-2Si-xCe alloy ingots.The chemical compositions of the specimens were determined by inductively coupled plasma atomic emission spectroscopy(ICP-AES) and the results were listed in Table 1.

    Table 1Chemical compositions of the experimental alloys.

    Metallographic samples were cut from the middle segment of the alloy ingots.The specimens were etched using Aceticpicral reagent (5 mL acetic acid,6 g picric acid,10 mL H2O,and 100 mL ethanol) after grinding and polishing.The microstructure was characterized using ZEISS optical microscope (OM),electron probe micro-analyzer (EPMA-1600,JEOL,Japan) and MIEA field emission scanning electron microscope(FE-SEM)equipped with an energy dispersive X-ray spectroscopy(EDS).The sizes of phases were evaluated based on 10 OM images for each alloy using Image-Pro-Plus software.Phase identification was conducted by Rigaku X-ray diffraction (XRD),which was performed using monochromatic Cu Kα1 radiation at 40 kV and 40 mA.The hardness of the sample was characterized by the Vickers hardness tester(XHVT-10Z)with a loading force of 5 kg and a loading time of 20 s.The hardness value of each alloy was an average of 10 individual measurements.The tensile samples (54.5 mm × 15.0 mm × 2.0 mm) cut from the middle segment of alloy ingotswere tested on a tensiletesting machine (Zwick Z100) under astrainrate of 1 × 10-4s-1at 150 °C.The 0.2% yield strength (YS),ultimate tensile strength (UTS) and the fracture elongation (EL) were obtained based on the average of 5 tests.The tensile fracture morphology was observed by FE-SEM.

    3.Results

    3.1.Phase diagram of Mg-5Al-2Si-xCe alloys calculated by Pandat software

    Fig.1 shows the phase diagrams of Mg-5Al-xSi and Mg-5Al-2Si-xCe alloy systems calculated by Pandat software.The phase diagram of the Mg-5Al-xSi alloy system can be considered as a pseudo-binary eutectic system that varies with Si content.It indicates that the Mg-5Al-2Si alloy can be regarded as a pseudo-binary hypereutectic alloy.While cooling,the primary Mg2Si is generated from the liquid first.When the composition of the liquid phase reaches the binary eutectic point,the eutectic Mg+Mg2Si structure is formed from the liquid until the Si element is completely consumed.Since the maximum solid solubility of Al element in the Mg matrix is 12.7 wt.%,which is greater than 5 wt.%,the formation of Mg-Al intermetallic compound during solidification cannot be seen from the equilibrium phase diagram.

    Fig.1.Phase diagrams of the (a) Mg-5Al-xSi alloy system and (b) Mg-5Al-2Si-xCe alloy system calculated by Pandat software.

    As shown in Fig.1(b),the phase diagram of the Mg-5Al-2Si-xCe alloy system can be considered as a pseudo-binary system that varies with Ce content.In the Mg-5Al-2Si-0.4Ce alloy,when the temperature of the liquid reaches the liquidus,the Ce element will react with Si to form CeSi2first.Then the structure Mg2Si+CeSi2will be generated from the liquid when the liquid composition reaches the binary eutectic point.When the liquid composition reaches the ternary eutectic point,the eutectic structure Mg+Mg2Si+CeSi2will be formed from the liquid until the Si element is completely consumed.Similarly,there is no Mg-Al intermetallic compound formed during solidification according to the equilibrium phase diagram.When the Ce content increases to 0.8 and 1.6 wt.%,the solidification sequences of the phases are the same as that of the Mg-5Al-2Si-0.4Ce alloy.Differently,the fraction of each phase changes.With increasing Ce content,the increasing CeSi2phase may change the microstructure a lot.

    3.2.The effect of Ce content on the phase composition of the Mg-5Al-2Si-xCe alloys

    Fig.2 displays the XRD patterns of Mg-5Al-2Si-xCe(x=0,0.4,0.8,1.6 wt.%) alloys.The results show that the Mg-5Al-2Si alloy consists ofα-Mg,Mg2Si and Mg17Al12phases.When Ce was added,CeSi2phase showed up.As shown in Fig.2,with increasing Ce content,the fraction of CeSi2phase increases slightly.As for the fraction of Mg17Al12phase,there is no obvious changes.It is worth noting that Mg2Si phase is always the main intermetallic compound.

    Fig.2.XRD results of Mg-5Al-2Si-(0,0.4,0.8,1.6) Ce alloys.

    EPMA was used to analyze the distribution of elements(Mg,Al,Si and Ce) in the Mg-5Al-2Si-xCe (x=0,0.4,0.8 wt.%) alloys.As shown in Fig.3(a),in the Mg-5Al-2Si alloy,the Al element is distributed in the Mg17Al12phase,and the Si element is concentrated in the Mg2Si phase.As shown in Fig.3(b,c),after adding Ce element,the Al element is distributed in the Mg17Al12phase,a large amount of Si element exists in the form of Mg2Si phase,and the Ce element exists in the form of CeSi2phase.In addition,the formation of CeSi2phase has an influence on the morphology of the Chinese script type Mg2Si,to some extent.

    Fig.3.EPMA maps of the (a) Mg-5Al-2Si,(b) Mg-5Al-2Si-0.4Ce and (c) Mg-5Al-2Si-0.8Ce alloys.

    There are two types of Mg2Si phases in Mg-5Al-2Si alloy,polygonal type and Chinese script type,as shown in Fig.3(a).The polygonal type phase is primary Mg2Si,and the Chinese script type phase is eutectic Mg2Si [27].The primary Mg2Si phase is surrounded byα-Mg and Chinese script type Mg2Si.Due to the relatively high cooling rate,its solidification deviates from the equilibrium phase diagram.During solidification,the Mg2Si is formed primarily,resulting in an enrichment of magnesium around the primary Mg2Si.As the temperature decreases to the eutectic point,the eutectic structure ofα-Mg and Chinese script type Mg2Si is formed around the primary Mg2Si [25,27].For the Ce-modified AS52 alloy,as shown in Fig.3(b),Ce element exists in the form of CeSi2phase.The CeSi2phase appears around the Mg2Si phase,which may have a great effect on the modification of Mg2Si phase.As shown in Fig.3,the size of Chinese script type Mg2Si phase decreases with increasing Ce content.

    3.3.The effect of Ce content on the size of Mg2Si phase

    Fig.4 shows the low magnification OM images of the present alloys.For all alloys,two types of Mg2Si phases(Chinese script type and polygonal type) can be easily observed.It can be found from Fig.4(a) that the Mg2Si in the unmodified AS52 alloy exhibits large Chinese script type morphology.After adding a small amount of Ce to the AS52 alloy,although the Chinese script type Mg2Si phase is still obvious,it becomes relatively fine as shown in Fig.4(b,c).At the same time,the polygonal Mg2Si phase has also been refined.Furthermore,as shown in Fig.4(d),adding more Ce(1.6 wt.%) has a better refinement effect.And its morphology changes from initial Chinese script type to irregular block shape.These indicate better mechanical properties can be obtained in the Mg-5Al-2Si-1.6Ce alloy.

    In order to quantify the ability of Ce to refine the Mg2Si phase,the sizes of Chinese script type and polygonal type Mg2Si phases were evaluated based 10 OM images of each alloy.The results are presented in Fig.5.The length of the Chinese script type Mg2Si phase is around 110 μm and the size of the polygonal type Mg2Si phase is about 23 μm in the unmodified Mg-5Al-2Si alloy.With addition of Ce,the sizes of Chinese script type and polygonal type Mg2Si phases are decreased gradually.Specially,when the Ce content is 1.6 wt.%,the length of Chinese script type Mg2Si phase is reduced to 50 μm,and the size of polygonal type Mg2Si phase is reduced to 8 μm.

    3.4.Mechanical properties of Mg-5Al-2Si-xCe alloys

    The mechanical properties of the Mg-5Al-2Si alloy are improved by adding Ce element.As shown in Fig.6(a),the hardness of the Mg-5Al-2Si alloy is 53.9 HV;when the added Ce content is 0.4 wt.%,0.8 wt.% and 1.6 wt.%,the hardness increases to 54.6 HV,55.9 HV and 56.2 HV,respectively.

    Fig.6.The (a) hardness and (b) tensile properties increase with increasing Ce content in Mg-5Al-2Si-xCe alloys.

    Tensile properties of Mg-5Al-2Si-xCe alloys at 150 °C with varying Ce contents are shown in Fig.6(b).The values of YS,UTS and EL of the modified AS52 alloys,are obviously higher than that of the unmodified AS52 alloy.The results confirm the expectation based on the metallographic results.The YS,UTS,EL values of AS52 alloy at 150 °C are 67.7 MPa,91.2 MPa,1.6%,while for the Mg-5Al-2Si-1.6Ce alloy are 84.2 MPa,128 MPa,7.5%,respectively.The increasing in tensile strength and elongation is attributed to the finer Mg2Si phase,to most extent.According to the Orowan mechanism,the stress required to force dislocations to bypass the second phase particles is inversely proportional to the distance between particles,which explains why the refinement of Mg2Si increases the strength of the Mg-5Al-2Si alloy.

    Fig.7 shows the typical SEM images of the tensile fracture surfaces of Mg-5Al-2Si-xCe alloys at 150°C.Many fracture facets are present,some dimples and lacerated ridges can also be observed in the tensile fracture surfaces,indicating that all the tensile fracture surfaces have mixed characteristics of cleavage and quasi-cleavage fractures [26].The fracture surface of the Mg-5Al-2Si alloy exhibits large cleavage type facets,which can reach 230 μm,as shown by the yellow arrows in Fig.7(a).This phenomenon is mainly attributed to the large Chinese script type Mg2Si phase in the Mg-5Al-2Si alloy.The microcracks will initiate at the Chinese script type Mg2Si and propagate along the interface of Mg2Si/Mg to form large fracture facets due to the concentration of tensile stress.Fortunately,the cleavage type facets in the fracture surface of the Ce containing Mg-5Al-2Si-xCe alloys are much smaller,as shown by the yellow arrows in Fig.7(b–d).There are more dimples and lacerated ridges on the fracture surface of the Mg-5Al-2Si-1.6Ce alloy shown in Fig.7(d).Therefore,as the Ce content increases,the refinement of Mg2Si increases the plasticity of the Mg-5Al-2Si alloy significantly.

    4.Discussion

    4.1.Ce modifies the morphology of Mg2Si phase

    Fig.8 shows the end morphology of the Chinese script type Mg2Si phase in the microstructure.As shown in Fig.8(a),in Mg-5Al-2Si alloy,the end of Chinese script type Mg2Si phase is relatively sharp.When the Ce content is 0.4 wt.%,as shown in Fig.8(b),the end of Chinese script type Mg2Si phase changes and the fraction of sharp end decreases.With increasing Ce content to 0.8 and 1.6 wt.%,as shown in Fig.8(c,d),the end of Chinese script type Mg2Si phase is relatively smooth.

    According to the theory of surface energy [30,31],alloying elements can reduce the surface energy of Mg2Si phase,thereby inhibiting the growth of Mg2Si phase and optimizing its morphology.Since Ce is a surface-active element,whose maximum solid solubility in Mg matrix is very low (only 0.74 wt.%),it is easy to enrich in the front of liquid-solid interface.Han et al.[35]reported that Ce atoms would be adsorbed onto the {100} and {111} planes of the Mg2Si crystals,which reduced their surface energy by lattice distortion and thereby inhibited the growth on the<100>and<111>crystal orientations.In addition,<100>and<111>are the preferred orientations of Mg2Si with a face-centered cubic structure.Therefore,due to the poison effect of Ce,the preferred growth manner of the Mg2Si is suppressed,while another type of growth,isotropic growth type,is accelerated [35,37–40].Consequently,with increasing Ce content,the morphology of Chinese script type Mg2Si phase becomes smoother.

    4.2.Ce promotes the nucleation of Mg2Si phase

    As shown in Fig.9(a),there are three kinds of second phases including Mg17Al12and two types of Mg2Si in the unmodified AS52 alloy.When Ce is added,CeSi2phase appears in the modified AS52 alloys.As shown in Fig.9(b–d),the white CeSi2particles are often intertwined with the gray Mg2Si particles,and part of the CeSi2particle is wrapped by the Mg2Si particle,which indicates that there is a certain nucleation relationship between these two phases.In addition,according to the calculation result of the phase diagram shown in Fig.1(b),the CeSi2phase is formed earlier than the Mg2Si phase.Therefore,the CeSi2phase may be the nucleation site of Mg2Si phase,thereby promoting the nucleation and refinement of Mg2Si.

    Fig.9.SEM images of (a) Mg-5Al-2Si,(b) Mg-5Al-2Si-0.4Ce,(c) Mg-5Al-2Si-0.8Ce and (d) Mg-5Al-2Si-1.6Ce alloys.

    As shown in Fig.10,a small particle existed in the polygonal Mg2Si phase was proved as the nucleation site of the polygonal Mg2Si phase in our previous work [41].The concentration profiles of elements show that the particle inside the polygonal type Mg2Si,is enriched in Ce element(Ce:Si ≈1:2,atomic ratio),its stoichiometry is about CeSi2.It can also be found that CeSi2particles aggregate around the Chinese script type Mg2Si phase.In addition,Han et al.[35]reported that the Ce atoms could be absorbed on the surface of Mg2Si crystal,which reduced the surface energy and poisoned the growth steps of Mg2Si.As a result,the isotropic growth type would be accelerated resulting in smoother Mg2Si particles.

    Fig.10.CeSi2 acted as the nucleation site of Mg2Si in Mg-5Al-2Si-0.4Ce alloy [41].

    Further analysis is needed to confirm that the CeSi2phase can act as the nucleation site for the formation of Mg2Si phase.Generally,the nucleation ability of one phase on another phase can be expressed by the lattice mismatch of interface between two phases.The lattice mismatch of interface between two phases can be calculated by Bramfitt’s lattice mismatch equation [42]as displayed in Eq.(1):

    where(hkl)sis a low-index plane of the substrate,(hkl)nis a low-index plane of the nucleated solid,[uvw]sis a low-index direction in(hkl)s,[uvw]nis a low-index direction in(hkl)n,d[uvw]sis the interatomic spacing along[uvw]s,d[uvw]nis the interatomic spacing along[uvw]n,andθis the angle between[uvw]sand[uvw]n.The Bramfitt’s theory[42]indicates that if the mismatch between two planes is smaller than 15%,one phase can act as the heterogeneous nucleation site for another.

    The tetragonal CeSi2(lattice parameters:a=4.156,c=13.840) belongs to I41/amd (141) space group.Mg2Si has a face-centered cubic structure with a lattice constant ofa=6.391and belongs to Fmm (225) space group.As the substrate,(001) plane of CeSi2is selected as the lowindex plane.As the nucleated solid,(100) plane of Mg2Si is selected as the low-index plane.The atomic arrangement of CeSi2on (001) lattice plane is displayed in Fig.11(a),and that of Mg2Si on(100)lattice plane is displayed in Fig.11(b).The matching relationship between (001) plane of CeSi2and(100) plane of Mg2Si is displayed in Fig.11(c).Then the lattice mismatch between the (001) CeSi2// (100) Mg2Si planes can be calculated to be 7.97%,which is considerably less than 15%.Therefore,CeSi2is an effective heterogeneous nucleation substrate for the Mg2Si phase.The formation of small CeSi2particles promotes the nucleation of Mg2Si phase,which modifies the morphology of Mg2Si phase and reduces its size.

    Fig.11.Schematic of (a) the atomic arrangement of CeSi2 on (001) lattice plane and (b) the atomic arrangement of MgSi2 on (100) lattice plane;(c) matching relationship between atoms of CeSi2 on (001) lattice plane and Mg2Si on (100) lattice plane;(d) the lattice mismatch between the (001) CeSi2// (100) Mg2Si planes is 7.97%.

    Two key points are responsible for the modification of Mg2Si phase.On the one hand,Ce atoms reduce the surface energy of the Mg2Si crystal,which poisons the growth steps of Mg2Si and promotes it to be smooth [35].On the other hand,CeSi2phase can act as the nucleation site for the Mg2Si phase,which promotes Mg2Si to be fine and dispersive.This trend is more pronounced as the increasing of Ce content.

    4.3.Ce changes the solidification sequence then modifies Mg2Si phase

    As shown in Figs.1–3,the experimental results are different from that predicted by equilibrium phase diagram,due to the severe solute segregation caused by the high cooling rate.During the solidification process in this experiment,there is little diffusion behavior in the solid phase,while the liquid phase diffusion is relatively sufficient.Compared with the result of equilibrium solidification prediction,our experimental results are more consistent with the prediction results by Scheil’s model.It assumes that there is no diffusion in the solid phase during the solidification process,while the liquid phase is completely diffused.

    Fig.12(a) shows the solidification paths of Mg-5Al-2SixCe alloys calculated by Pandat software based on Scheil’s model.In the Mg-5Al-2Si alloy,there are three kinds of structures,primary Mg2Si,binary eutectic Mg+Mg2Si and ternary eutectic Mg17Al12+Mg+Mg2Si.After adding Ce element,four types of structures will be generated,primary CeSi2,binary eutectic Mg2Si+CeSi2,ternary eutectic Mg+Mg2Si+CeSi2and quaternary eutectic Mg17Al12+Mg+Mg2Si+CeSi2.As shown in Fig.12(b),the formation temperature and the fraction of each phase can also help to understand the solidification process of Mg-5Al-2Si-1.6Ce alloy.Different Ce contents mainly change the formation temperature of CeSi2.Obviously,the fraction of CeSi2will also change slightly.

    Fig.12.(a) Solidification paths of Mg-5Al-2Si-xCe alloys calculated by Pandat software based on Scheil’s model;(b) mole fraction of each phase in Mg-5Al-2Si-1.6Ce alloy calculated by Pandat software based on Scheil’s model.

    The possibility of forming a compound between elements generally depends on the value of electronegativity difference.A larger value means a higher formation possibility [43,44].The electronegativities of Mg,Al,Si and Ce are 1.31,1.61,1.98 and 1.12 [45,46],respectively.As shown in Table 2,the electronegativity difference between Si and Ce(0.86)is larger than that between Si and Mg (0.67),Al and Ce (0.49),Al and Si (0.37) or Mg and Ce (0.19),which means that Ce element preferentially reacts with Si rather than Mg and Al.In the unmodified Mg-5Al-2Si alloy,the electronegativity difference of Mg/Si is largest,so the Mg2Si intermetallic compound will be preferentially formed.Since there is no Al-Si intermetallic compound,Mg17Al12will be formed last.In the modified Mg-5Al-2Si-xCe alloys,the electronegativity difference of Ce/Si is largest,so the CeSi2intermetallic compound will be preferentially formed.Since most Ce atoms will be consumed by the formation of CeSi2phase,there is no Ce atoms used to form Al-Ce and Mg-Ce compounds.As that of the unmodified Mg-5Al-2Si alloy,the Mg2Si phase and Mg17Al12phase will be formed later.Therefore,adding different contents of Ce element mainly affects the fraction of CeSi2.

    Table 2Intermetallic compounds formed in this work.

    According to the experimental results and the calculation results,the microstructure evolution can be described by the schematic diagram shown in Fig.13.As shown in Fig.13(a),in the unmodified Mg-5Al-2Si alloy,there are three types of second phases,polygonal type Mg2Si primarily formed between 651 and 613 °C,Chinese script type Mg2Si generated between 613 and 436 °C and the irregular porous Mg17Al12formed at 436 °C.The sizes of two types of Mg2Si phases are large,and their ends are sharp.As shown in Fig.13(b),in the modified alloy with 0.4 wt.% Ce,the second phase first formed between 685 and 649 °C is CeSi2.Subsequently,the polygonal Mg2Si is generated between 649 and 613 °C.Finally,as that of the unmodified Mg-5Al-2Si alloy,the Chinese script type Mg2Si and the irregular porous Mg17Al12are formed.Differently,the CeSi2phase can act as the nucleation site of polygonal type Mg2Si and Chinese script type Mg2Si.Therefore,their particles are refined by CeSi2.Due to the poisoning effect of Ce element [35],the Mg2Si particles become smooth.With increasing Ce content to 0.8 and 1.6 wt.%,CeSi2will be formed at higher temperatures.Since the formation of CeSi2consumes some Si content,the formation temperature of polygonal Mg2Si is further reduced.In addition,more CeSi2particles enhance the refinement of Mg2Si.As shown in Fig.13(d),in the Mg-5Al-2Si-1.6Ce alloy,the Mg2Si particles become smaller and smoother.

    It is worth noting that,due to the relatively low Ce content,the formation of CeSi2phase requires a concentration enrichment process.Therefore,Mg2Si will be formed before all Ce atoms are consumed by the formation of CeSi2phase.Because the Ce element has a strong ability of surface enrichment,the low content of Ce can be enriched to achieve the composition condition for the formation of CeSi2.At the same time,Ce atoms can be adsorbed on the surface of the Mg2Si crystal along with the formation of Mg2Si,thereby changing the surface energy of the Mg2Si crystal,poisoning its growth steps and promoting it to be smooth [35].The two processes of generating CeSi2phase and poisoning Mg2Si phase can be carried out simultaneously,so the Mg2Si phase will be refined due to the increase in the number of nuclei,and its morphology will also become smooth.

    5.Conclusion

    Effects of Ce content on the Mg2Si modification and mechanical properties of Mg-5Al-2Si-xCe (x=0,0.4,0.8,1.6 wt.%) alloys have been investigated.The main results are summarized as follows:

    (1) The length of Chinese script type Mg2Si phase decreased significantly from 110 to 50 μm with increasing Ce content to 1.6 wt.%.The morphology of the Mg2Si phase transformed from large and sharp Chinese script type to small and smooth block shape.

    (2) The mechanical properties of Mg-5Al-2Si-xCe alloys at 150 °C were improved due to the refinement of Mg2Si phase.Especially,after adding 1.6 wt.% Ce,the YS,UTS and EL of the Mg-5Al-2Si alloy were improved from 67.7 MPa,91.2 MPa and 1.6% to 84.2 MPa,128 MPa and 7.5%,respectively.

    (3) The modification of the Mg2Si phase is mainly attributed to two aspects: on the one hand,Ce atoms reduce the surface energy of Mg2Si crystal,poison the growth steps and then promote the isotropic growth of Mg2Si.On the other hand,the preferential formation of CeSi2compound promotes the nucleation of Mg2Si phase due to the small lattice mismatch of 7.97%.

    Acknowledgements

    This research was supported by the Major Science and Technology projects in Qinghai province (2018-GX-A1) and Global Frontier Program through the Global Frontier Hybrid Interface Materials (GFHIM) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science,ICT &Future Planning (Grant No.2013M3A6B1078874).This work was also funded by Shanghai Science and Technology Committee(Grant No.18511109302)and the National Natural Science Foundation of China (Grant No.51825101).

    久久国产亚洲av麻豆专区| 女警被强在线播放| 少妇精品久久久久久久| 天天躁日日躁夜夜躁夜夜| 欧美大码av| 国产一区亚洲一区在线观看| 少妇人妻 视频| 又大又黄又爽视频免费| 99热网站在线观看| kizo精华| 国产xxxxx性猛交| avwww免费| 蜜桃在线观看..| 人妻 亚洲 视频| 丁香六月天网| 97在线人人人人妻| 天天躁夜夜躁狠狠躁躁| 国产精品久久久av美女十八| 波多野结衣av一区二区av| 狠狠精品人妻久久久久久综合| 国产成人欧美| 啦啦啦视频在线资源免费观看| 50天的宝宝边吃奶边哭怎么回事| 久久青草综合色| 成人18禁高潮啪啪吃奶动态图| 亚洲精品国产一区二区精华液| 色婷婷久久久亚洲欧美| 国语对白做爰xxxⅹ性视频网站| 欧美日韩精品网址| √禁漫天堂资源中文www| 久久ye,这里只有精品| 制服人妻中文乱码| 丰满迷人的少妇在线观看| 国产精品人妻久久久影院| 丰满人妻熟妇乱又伦精品不卡| 免费av中文字幕在线| 国产成人免费观看mmmm| 色综合欧美亚洲国产小说| 国产精品三级大全| 成人影院久久| 午夜老司机福利片| 国产成人一区二区三区免费视频网站 | 99精国产麻豆久久婷婷| 肉色欧美久久久久久久蜜桃| 少妇裸体淫交视频免费看高清 | 中文字幕高清在线视频| 成人国产av品久久久| 精品卡一卡二卡四卡免费| 91精品国产国语对白视频| 黄色毛片三级朝国网站| 在线观看免费高清a一片| 美女福利国产在线| 人妻人人澡人人爽人人| 在现免费观看毛片| 欧美乱码精品一区二区三区| 日韩免费高清中文字幕av| 久久精品亚洲熟妇少妇任你| 黄色视频在线播放观看不卡| 精品国产乱码久久久久久小说| 狂野欧美激情性xxxx| 精品欧美一区二区三区在线| bbb黄色大片| 大香蕉久久成人网| 亚洲欧洲日产国产| 成人国产av品久久久| 精品一区二区三区av网在线观看 | 亚洲av电影在线观看一区二区三区| 激情五月婷婷亚洲| 国产成人啪精品午夜网站| 午夜福利在线免费观看网站| 亚洲一区二区三区欧美精品| 伦理电影免费视频| 一二三四在线观看免费中文在| 老司机靠b影院| 精品视频人人做人人爽| www.999成人在线观看| 女人久久www免费人成看片| 黄色一级大片看看| 大香蕉久久网| 天堂中文最新版在线下载| 中国美女看黄片| 中文字幕人妻熟女乱码| 一区二区三区精品91| 免费人妻精品一区二区三区视频| 美女主播在线视频| 免费不卡黄色视频| 777米奇影视久久| 中国国产av一级| 少妇猛男粗大的猛烈进出视频| 国精品久久久久久国模美| 欧美人与善性xxx| 99精国产麻豆久久婷婷| 18在线观看网站| 亚洲国产av影院在线观看| www.精华液| 欧美日韩国产mv在线观看视频| 国产精品久久久久久精品电影小说| 亚洲熟女毛片儿| 91字幕亚洲| 亚洲精品久久成人aⅴ小说| 国产精品久久久人人做人人爽| 亚洲av美国av| www.av在线官网国产| 精品免费久久久久久久清纯 | 欧美 亚洲 国产 日韩一| www日本在线高清视频| 精品高清国产在线一区| 国产免费视频播放在线视频| 在线观看免费高清a一片| 免费在线观看影片大全网站 | 丰满少妇做爰视频| 中文字幕高清在线视频| 日日爽夜夜爽网站| 亚洲午夜精品一区,二区,三区| 在线观看www视频免费| 午夜两性在线视频| 成年av动漫网址| 一区福利在线观看| 亚洲人成网站在线观看播放| av有码第一页| 汤姆久久久久久久影院中文字幕| 国产成人av教育| 免费久久久久久久精品成人欧美视频| 久久精品久久精品一区二区三区| 亚洲国产最新在线播放| 99国产精品一区二区三区| 欧美成人午夜精品| av线在线观看网站| 午夜免费观看性视频| 国产精品.久久久| 亚洲精品美女久久av网站| 国产在线免费精品| 久久久精品免费免费高清| 国产91精品成人一区二区三区 | 新久久久久国产一级毛片| av在线app专区| 亚洲,欧美精品.| 最近中文字幕2019免费版| 亚洲一区二区三区欧美精品| 99香蕉大伊视频| 性少妇av在线| 熟女少妇亚洲综合色aaa.| 国产成人av激情在线播放| 久久影院123| 国精品久久久久久国模美| 免费日韩欧美在线观看| 又紧又爽又黄一区二区| 婷婷色av中文字幕| 亚洲国产精品成人久久小说| 国产极品粉嫩免费观看在线| 亚洲九九香蕉| 日韩av在线免费看完整版不卡| 国产精品成人在线| 免费不卡黄色视频| 在线观看国产h片| 国产av国产精品国产| 一级黄片播放器| 午夜精品国产一区二区电影| 999精品在线视频| 亚洲精品自拍成人| 麻豆av在线久日| 香蕉国产在线看| 国产97色在线日韩免费| 精品久久久久久电影网| 首页视频小说图片口味搜索 | 成年女人毛片免费观看观看9 | 亚洲美女黄色视频免费看| 日韩一卡2卡3卡4卡2021年| 爱豆传媒免费全集在线观看| 黑人欧美特级aaaaaa片| 女性被躁到高潮视频| 欧美精品高潮呻吟av久久| 久久国产精品大桥未久av| 人人妻人人澡人人看| 黄色毛片三级朝国网站| 狠狠精品人妻久久久久久综合| 在线天堂中文资源库| 免费观看a级毛片全部| 国产av国产精品国产| 国产精品国产三级国产专区5o| 人妻人人澡人人爽人人| 亚洲 国产 在线| 久久亚洲精品不卡| 欧美精品一区二区免费开放| 日本av手机在线免费观看| 男人舔女人的私密视频| 十八禁网站网址无遮挡| 一级,二级,三级黄色视频| 久久99一区二区三区| 久久久久久亚洲精品国产蜜桃av| 亚洲 欧美一区二区三区| 国产片特级美女逼逼视频| 国产亚洲精品第一综合不卡| 91麻豆精品激情在线观看国产 | 国产av一区二区精品久久| 日韩一区二区三区影片| 中文乱码字字幕精品一区二区三区| 三上悠亚av全集在线观看| av欧美777| 男女免费视频国产| 久9热在线精品视频| 熟女少妇亚洲综合色aaa.| 亚洲,一卡二卡三卡| 欧美日韩成人在线一区二区| 大香蕉久久成人网| 性少妇av在线| 欧美少妇被猛烈插入视频| 在线 av 中文字幕| 亚洲精品国产av成人精品| 在线av久久热| 国产精品一区二区在线不卡| 亚洲精品日本国产第一区| 亚洲精品成人av观看孕妇| 亚洲成人免费电影在线观看 | 日日摸夜夜添夜夜爱| 香蕉国产在线看| 亚洲免费av在线视频| 我的亚洲天堂| 欧美久久黑人一区二区| 后天国语完整版免费观看| 亚洲精品国产色婷婷电影| 热99国产精品久久久久久7| 久久精品亚洲熟妇少妇任你| 999久久久国产精品视频| 欧美黄色片欧美黄色片| 国产有黄有色有爽视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产看品久久| 欧美日韩综合久久久久久| 午夜免费男女啪啪视频观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲伊人色综图| 国产在线观看jvid| 国产亚洲av片在线观看秒播厂| 亚洲一区中文字幕在线| av在线老鸭窝| 国产一区二区激情短视频 | 国产免费又黄又爽又色| 深夜精品福利| 51午夜福利影视在线观看| av片东京热男人的天堂| 好男人视频免费观看在线| 97人妻天天添夜夜摸| 国产精品久久久久久精品古装| 日韩精品免费视频一区二区三区| 国产亚洲欧美在线一区二区| 欧美亚洲 丝袜 人妻 在线| 午夜福利免费观看在线| 国产主播在线观看一区二区 | 在线 av 中文字幕| 国产日韩欧美视频二区| 男人舔女人的私密视频| 欧美av亚洲av综合av国产av| 建设人人有责人人尽责人人享有的| 国产精品国产三级国产专区5o| 国产淫语在线视频| 女人久久www免费人成看片| 伊人亚洲综合成人网| 婷婷色麻豆天堂久久| 久久九九热精品免费| 十八禁人妻一区二区| 国产亚洲欧美精品永久| 男男h啪啪无遮挡| 国产黄色视频一区二区在线观看| 精品亚洲成国产av| 色94色欧美一区二区| 视频在线观看一区二区三区| 中文精品一卡2卡3卡4更新| 日韩免费高清中文字幕av| 丝瓜视频免费看黄片| 亚洲精品中文字幕在线视频| 一区二区日韩欧美中文字幕| 久久久欧美国产精品| 不卡av一区二区三区| 18禁观看日本| 久久国产精品男人的天堂亚洲| 性高湖久久久久久久久免费观看| 久久性视频一级片| 亚洲熟女精品中文字幕| 老司机午夜十八禁免费视频| 日日夜夜操网爽| 国产精品久久久久成人av| 国产亚洲av高清不卡| 成人国语在线视频| 欧美大码av| 夫妻午夜视频| 亚洲成国产人片在线观看| 99精品久久久久人妻精品| 久久久久视频综合| 免费高清在线观看视频在线观看| 这个男人来自地球电影免费观看| 美女脱内裤让男人舔精品视频| 热99久久久久精品小说推荐| 欧美日韩亚洲综合一区二区三区_| 大片电影免费在线观看免费| 麻豆乱淫一区二区| 国产一区二区激情短视频 | 黄片播放在线免费| 午夜日韩欧美国产| 一级黄色大片毛片| a级片在线免费高清观看视频| 欧美日韩视频精品一区| 女人爽到高潮嗷嗷叫在线视频| 久久亚洲精品不卡| 99精品久久久久人妻精品| 黄色a级毛片大全视频| 亚洲天堂av无毛| 国产1区2区3区精品| 自线自在国产av| 色网站视频免费| 一区二区av电影网| 99国产精品一区二区三区| 超碰97精品在线观看| 免费观看av网站的网址| 国产成人欧美在线观看 | 国产精品99久久99久久久不卡| 深夜精品福利| 少妇人妻久久综合中文| 九色亚洲精品在线播放| 亚洲av美国av| 女人精品久久久久毛片| 美女福利国产在线| 999精品在线视频| 国产黄色视频一区二区在线观看| 久久精品熟女亚洲av麻豆精品| 久久久久久久久久久久大奶| 人人妻,人人澡人人爽秒播 | 麻豆av在线久日| 国产av国产精品国产| 久久狼人影院| 久久九九热精品免费| 2021少妇久久久久久久久久久| 男女床上黄色一级片免费看| 日韩大片免费观看网站| 国产精品国产三级国产专区5o| 午夜福利免费观看在线| 伦理电影免费视频| 亚洲图色成人| 电影成人av| 国精品久久久久久国模美| 丁香六月天网| 久久免费观看电影| 色视频在线一区二区三区| 99久久人妻综合| 日韩熟女老妇一区二区性免费视频| 尾随美女入室| 18在线观看网站| 啦啦啦中文免费视频观看日本| 免费黄频网站在线观看国产| 视频在线观看一区二区三区| 91精品伊人久久大香线蕉| 日韩欧美一区视频在线观看| 免费在线观看黄色视频的| a级毛片黄视频| 国产精品.久久久| 色综合欧美亚洲国产小说| 中文字幕亚洲精品专区| 色精品久久人妻99蜜桃| 高清不卡的av网站| 极品少妇高潮喷水抽搐| 国产欧美日韩一区二区三区在线| 精品国产乱码久久久久久男人| 男女边吃奶边做爰视频| 亚洲成人免费电影在线观看 | 又粗又硬又长又爽又黄的视频| 纯流量卡能插随身wifi吗| 免费女性裸体啪啪无遮挡网站| 国产精品成人在线| 一本色道久久久久久精品综合| 一边摸一边做爽爽视频免费| 老汉色av国产亚洲站长工具| 可以免费在线观看a视频的电影网站| 天堂俺去俺来也www色官网| 你懂的网址亚洲精品在线观看| 久久久久久久久免费视频了| 国产日韩欧美亚洲二区| 欧美精品人与动牲交sv欧美| 国产成人精品久久二区二区免费| 国产日韩欧美在线精品| 最新的欧美精品一区二区| 丁香六月欧美| 国产免费又黄又爽又色| 男人操女人黄网站| 欧美 亚洲 国产 日韩一| 尾随美女入室| av又黄又爽大尺度在线免费看| 国产爽快片一区二区三区| 一级片免费观看大全| 咕卡用的链子| 美女高潮到喷水免费观看| 免费av中文字幕在线| 国产精品麻豆人妻色哟哟久久| 国产黄频视频在线观看| 亚洲自偷自拍图片 自拍| 老司机影院毛片| 久久久精品94久久精品| www.自偷自拍.com| 色精品久久人妻99蜜桃| 久久国产亚洲av麻豆专区| 精品亚洲成国产av| 男人操女人黄网站| 天天躁日日躁夜夜躁夜夜| 欧美成人精品欧美一级黄| 18在线观看网站| 午夜日韩欧美国产| 亚洲久久久国产精品| 女人精品久久久久毛片| 欧美日韩亚洲高清精品| 久久精品成人免费网站| 欧美日韩国产mv在线观看视频| 国产一卡二卡三卡精品| av一本久久久久| 国产又色又爽无遮挡免| 国产成人啪精品午夜网站| 久久久精品免费免费高清| av天堂久久9| 赤兔流量卡办理| 两个人看的免费小视频| 国产亚洲欧美在线一区二区| 高清欧美精品videossex| 久久人妻熟女aⅴ| 王馨瑶露胸无遮挡在线观看| 亚洲人成网站在线观看播放| 少妇人妻久久综合中文| 国产精品一二三区在线看| 男女之事视频高清在线观看 | 欧美激情高清一区二区三区| 欧美少妇被猛烈插入视频| 国产爽快片一区二区三区| 亚洲黑人精品在线| 9191精品国产免费久久| 国产一区二区三区综合在线观看| 国产片内射在线| 国产1区2区3区精品| 亚洲中文字幕日韩| 久久99一区二区三区| 国产成人免费无遮挡视频| 久久国产精品男人的天堂亚洲| 免费在线观看黄色视频的| 青青草视频在线视频观看| 夜夜骑夜夜射夜夜干| 欧美黄色片欧美黄色片| 一本色道久久久久久精品综合| 日韩中文字幕欧美一区二区 | 精品第一国产精品| 精品一区二区三卡| 成人国语在线视频| 国产爽快片一区二区三区| 久久九九热精品免费| 欧美日韩亚洲国产一区二区在线观看 | 女人精品久久久久毛片| 亚洲av综合色区一区| 欧美xxⅹ黑人| 脱女人内裤的视频| 国产主播在线观看一区二区 | 国产高清视频在线播放一区 | 国产精品99久久99久久久不卡| 最新的欧美精品一区二区| 黑人欧美特级aaaaaa片| 国产真人三级小视频在线观看| 国产女主播在线喷水免费视频网站| 美国免费a级毛片| 黑丝袜美女国产一区| 啦啦啦中文免费视频观看日本| 精品人妻熟女毛片av久久网站| 国产高清videossex| 亚洲精品国产区一区二| 三上悠亚av全集在线观看| 男的添女的下面高潮视频| 午夜91福利影院| 日韩 欧美 亚洲 中文字幕| 青草久久国产| 老司机深夜福利视频在线观看 | 只有这里有精品99| 亚洲精品一区蜜桃| 日本猛色少妇xxxxx猛交久久| 久久av网站| 丝袜美足系列| av网站免费在线观看视频| 妹子高潮喷水视频| 七月丁香在线播放| 精品一区二区三卡| 看免费av毛片| 国产亚洲精品久久久久5区| 久久国产精品影院| 视频区图区小说| 日韩视频在线欧美| 亚洲精品久久午夜乱码| 久久人妻熟女aⅴ| 欧美日韩精品网址| 麻豆国产av国片精品| 成年av动漫网址| 大码成人一级视频| 亚洲,欧美,日韩| 久久精品国产综合久久久| 男女下面插进去视频免费观看| 丰满饥渴人妻一区二区三| 午夜老司机福利片| 考比视频在线观看| 91精品伊人久久大香线蕉| 纵有疾风起免费观看全集完整版| 飞空精品影院首页| 亚洲综合色网址| 另类亚洲欧美激情| 国精品久久久久久国模美| 精品国产一区二区三区久久久樱花| 欧美 亚洲 国产 日韩一| 老鸭窝网址在线观看| 999精品在线视频| 久久这里只有精品19| 亚洲国产毛片av蜜桃av| 午夜久久久在线观看| 亚洲男人天堂网一区| av国产久精品久网站免费入址| 男的添女的下面高潮视频| a 毛片基地| 国产女主播在线喷水免费视频网站| 亚洲自偷自拍图片 自拍| 亚洲精品美女久久av网站| 午夜激情久久久久久久| 国产精品欧美亚洲77777| 男人舔女人的私密视频| 成人黄色视频免费在线看| 侵犯人妻中文字幕一二三四区| 中文字幕人妻丝袜制服| 免费在线观看日本一区| 日韩欧美一区视频在线观看| 大码成人一级视频| 新久久久久国产一级毛片| 久久久久视频综合| 亚洲精品一二三| 亚洲,一卡二卡三卡| 亚洲七黄色美女视频| 午夜两性在线视频| 久久这里只有精品19| 日韩视频在线欧美| 亚洲情色 制服丝袜| 国产亚洲欧美在线一区二区| 热99国产精品久久久久久7| 伊人亚洲综合成人网| 国产成人欧美| 欧美黄色淫秽网站| 国产不卡av网站在线观看| av在线播放精品| 免费女性裸体啪啪无遮挡网站| 一二三四在线观看免费中文在| 观看av在线不卡| 日本91视频免费播放| 成人18禁高潮啪啪吃奶动态图| 久久久国产精品麻豆| 免费日韩欧美在线观看| 成人手机av| av线在线观看网站| 国产亚洲欧美精品永久| 蜜桃在线观看..| 中文字幕高清在线视频| 国产精品久久久久久人妻精品电影 | 深夜精品福利| 亚洲精品国产av成人精品| 丝袜人妻中文字幕| av在线app专区| 亚洲精品乱久久久久久| 久久久精品免费免费高清| 亚洲中文日韩欧美视频| 人成视频在线观看免费观看| 超碰97精品在线观看| 成年女人毛片免费观看观看9 | a 毛片基地| 永久免费av网站大全| 欧美精品亚洲一区二区| 亚洲精品日韩在线中文字幕| 一二三四在线观看免费中文在| 高清黄色对白视频在线免费看| av不卡在线播放| 国产精品av久久久久免费| 午夜福利视频精品| 成年人免费黄色播放视频| 亚洲精品久久午夜乱码| www.av在线官网国产| 免费在线观看日本一区| 啦啦啦 在线观看视频| 大片免费播放器 马上看| 国产精品av久久久久免费| 咕卡用的链子| 纵有疾风起免费观看全集完整版| 一级黄片播放器| 69精品国产乱码久久久| www.自偷自拍.com| 日韩中文字幕视频在线看片| 国产淫语在线视频| 亚洲av电影在线观看一区二区三区| 亚洲中文av在线| 亚洲自偷自拍图片 自拍| 亚洲国产欧美一区二区综合| 另类精品久久| 人人妻人人澡人人看| av在线app专区| 色婷婷av一区二区三区视频| 高潮久久久久久久久久久不卡| 亚洲久久久国产精品| 美女福利国产在线| 男女之事视频高清在线观看 | 中文字幕亚洲精品专区| 午夜老司机福利片| 国产精品久久久av美女十八| 久久久精品94久久精品| 在线精品无人区一区二区三| 男男h啪啪无遮挡| 亚洲av日韩在线播放| 日韩一区二区三区影片| 精品久久久久久电影网| 99re6热这里在线精品视频| 狂野欧美激情性bbbbbb| 成年女人毛片免费观看观看9 | 精品一品国产午夜福利视频|