楊智 盧超 白仟宇 陳輝源 李濤
摘 要:水系鋅離子電池以高比容量的鋅金屬為負(fù)極,具有低成本、高安全性與無(wú)毒環(huán)保等優(yōu)良特性,成為了當(dāng)前備受關(guān)注的新型儲(chǔ)能裝置之一.然而,目前難以開(kāi)發(fā)出與鋅負(fù)極相匹配的正極材料,這成為了制約水系鋅離子電池大規(guī)模發(fā)展的重要因素.釩酸銨鹽因具有較快的離子擴(kuò)散速率和較高的比容量而在水系鋅離子電池正極材料領(lǐng)域展現(xiàn)出廣闊的應(yīng)用前景.首先介紹了釩酸銨鹽正極材料的鋅存儲(chǔ)機(jī)制及其水熱法制備工藝,針對(duì)釩酸銨鹽在應(yīng)用過(guò)程中存在的釩溶解與電導(dǎo)率較低等問(wèn)題,著重綜述了金屬離子插層、水分子插層、聚合物插層、材料復(fù)合與氧空位構(gòu)建等優(yōu)化改性策略.最后,對(duì)釩酸銨鹽正極材料的發(fā)展趨勢(shì)進(jìn)行了展望,為高性能水系鋅離子電池的設(shè)計(jì)與開(kāi)發(fā)提供借鑒.
關(guān)鍵詞:水系鋅離子電池;釩酸銨鹽;正極材料;插層;氧空位
中圖分類(lèi)號(hào):TM912;TQ135.11
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1004-5422(2023)03-0274-09DOI:10.3969/j.issn.1004-5422.2023.03.009
0 引 言
可充電鋰離子電池(LIBs)因高容量與高工作電壓等優(yōu)點(diǎn)自發(fā)明以來(lái)一直主導(dǎo)著便攜式電子產(chǎn)品(筆記本電腦和手機(jī)等)及電動(dòng)汽車(chē)等市場(chǎng)[1-3].但是,LIBs因成本高和電解質(zhì)易燃等問(wèn)題限制了其在大規(guī)模能源存儲(chǔ)中的應(yīng)用[4].與LIBs相比,水系鋅離子電池(AZIBs)在安全性與生產(chǎn)成本等方面具有明顯的優(yōu)勢(shì)[5].AZIBs具有高理論容量、低氧化還原電位、低電阻和高穩(wěn)定性等諸多優(yōu)點(diǎn)[6-7],被認(rèn)為是極具應(yīng)用前景的一種新型儲(chǔ)能裝置.當(dāng)前,錳基材料[8]、釩基材料[9]、普魯士藍(lán)及其類(lèi)似物[10]和聚陰離子化合物[11]等被認(rèn)為是理想的AZIBs正極材料.其中,釩基材料因具有獨(dú)特的V-O八面體結(jié)構(gòu)和多種V元素氧化態(tài)使其成為AZIBs正極材料領(lǐng)域的研究熱點(diǎn)[12].釩基材料中,V2O5可為Zn2+的脫出/嵌入提供大量的存儲(chǔ)空間,但其仍然存在著晶面間距窄、導(dǎo)電性差和動(dòng)力學(xué)緩慢等缺陷[13],嚴(yán)重阻礙了釩基材料的應(yīng)用.研究表明,嵌入適量的金屬離子(Na+[14]、K+[15]、Li+[16]和Ag+[17]等)不僅可以對(duì)V-O結(jié)構(gòu)起到支撐作用,還可以提高離子擴(kuò)散速率和電導(dǎo)率.
最近研究發(fā)現(xiàn),釩酸銨鹽中離子半徑較大的NH+4作為V-O層間“支柱”不僅可以提高材料的結(jié)構(gòu)穩(wěn)定性,還可以極大促進(jìn)Zn2+在V-O層之間的可逆脫出/嵌入[18].除此之外,NH+4相對(duì)于Na和K等金屬元素而言,還表現(xiàn)出較小的分子量和密度,因此釩酸銨鹽還展現(xiàn)出更高的質(zhì)量比容量和體積比容量[19].當(dāng)前,常見(jiàn)的AZIBs正極材料釩酸銨鹽有(NH4)V10O25、(NH4)2V6O16·1.5H2O、NH4V4O10和NH4V3O8等.
本文綜述了釩酸銨鹽材料的鋅存儲(chǔ)機(jī)制、制備工藝,以及改性策略(金屬離子插層、高分子聚合物插層、水分子插層、材料復(fù)合和氧空位構(gòu)建),并對(duì)釩酸銨鹽材料作為AZIBs正極材料的發(fā)展方向進(jìn)行展望.
1 釩酸銨鹽的鋅存儲(chǔ)機(jī)制
釩酸銨鹽以NH+4作為V-O層之間的“支柱”,相比于普通的V-O結(jié)構(gòu)而言擁有更穩(wěn)定的結(jié)構(gòu),其儲(chǔ)能機(jī)制與V2O5類(lèi)似,主要包括可逆的Zn2+脫出/嵌入機(jī)制、Zn2+-H+共嵌入機(jī)制,以及Zn2+-H2O共嵌入機(jī)制.Zn2+的離子半徑約為0.74 ,小于NH+4的離子半徑(1.43 ),因此Zn2+可以在V-O層間自由脫出/嵌入(見(jiàn)圖1(A))[20].圖1(B)為Zn2+-H+的共嵌入過(guò)程,水系電解液中存在的大量H+,在某些特定的氧化還原反應(yīng)狀態(tài)下可與Zn2+共同插入釩酸銨鹽的V-O層,這種雙離子嵌入機(jī)制可使材料獲得高容量和長(zhǎng)循環(huán)穩(wěn)定性[21].在H2O-Zn2+共嵌入機(jī)制中(見(jiàn)圖1(C)),嵌入V-O層間的H2O可以與V-O層相互作用,既能起到緩沖高電荷密度的作用,還可促進(jìn)電極界面處的電荷轉(zhuǎn)移[22],晶格中殘留的少量H2O分子可以促進(jìn)多價(jià)離子在界面和主體框架處的插入[23].在釩酸銨鹽材料的放電過(guò)程中,Zn2+-H+或Zn2+-H2O的共插入還會(huì)生成一種副產(chǎn)物Zn3(OH)2V2O7·H2O [18],該產(chǎn)物會(huì)在充電時(shí)發(fā)生分解.
2 釩酸銨鹽的制備工藝
由于釩酸銨鹽晶格中的NH+4在高溫煅燒時(shí)會(huì)脫離V-O層而導(dǎo)致結(jié)構(gòu)分解,故釩酸銨鹽的制備多采用反應(yīng)條件溫和的水熱法.水熱法通過(guò)液相或多相化學(xué)反應(yīng)制備出成分均勻的納米材料,無(wú)需高溫處理即可得到晶型完整、粒度分布均勻、分散性良好、形貌可控的材料.
Dong等[21]采用水熱法制備的(NH4)2V7O16·3.2H2O納米片不僅結(jié)晶度良好,還具有較大的晶格間距(0.224 nm),可為Zn2+的快速傳輸提供便利通道,使材料展現(xiàn)出優(yōu)異的電化學(xué)性能.Wang等[24]利用水熱法合成的(NH4)2V7O16·3.6H2O在5A/g電流密度下經(jīng)過(guò)1 000次充放電循環(huán)后仍可保留98.4%的比容量(見(jiàn)圖2(A)).Tamilselvan等[25]在水熱過(guò)程中添加六亞甲基四胺,制備出了如圖2(B)所示的玫瑰花狀(NH4)0.37V2O5·0.15H2O材料.研究人員還利用水熱法制備出十字交叉狀形貌[26](見(jiàn)圖2(C))和三維花狀形貌[27](見(jiàn)圖2(D))的NH4V4O10,這類(lèi)獨(dú)特的形貌既增加了電解液和活性材料之間的接觸面積,為Zn2+的快速脫出/嵌入提供了諸多通道,還縮短了Zn2+遷移擴(kuò)散路徑,并且有效抑制了電化學(xué)過(guò)程中發(fā)生的體積膨脹.此外,Yang等[28]采用水熱法成功在碳纖維基底上生長(zhǎng)出垂直且均勻分布的NH4V4O10,這種方法制備的材料不僅可以通過(guò)與碳纖維的相互作用來(lái)誘導(dǎo)橫向鋅枝晶的生長(zhǎng),還可以通過(guò)其較差的電解質(zhì)親和力和滯留力減輕界面處副產(chǎn)物的積累,使Zn2+的擴(kuò)散更加容易.此外,區(qū)別于普通水熱法的微波水熱法以微波作為熱源,不僅熱能利用率更高,還有效節(jié)省了能源.例如,Chen等[29]利用微波水熱法只用了2.5 h便合成出晶面間距為0.82 nm的(NH4)2V6O16·1.5 H2O,與普通的水熱合成法相比極大節(jié)省了時(shí)間.同時(shí),Liu等[30]還使用微波水熱法在30 min內(nèi)便實(shí)現(xiàn)了NH4V3O8和Zn3(OH)2V2O7·2H2O的復(fù)合,產(chǎn)物呈現(xiàn)出獨(dú)特的3D納米花狀結(jié)構(gòu)(見(jiàn)圖2(E)).
3 釩酸銨鹽的改性策略
AZIBs正極材料中,金屬氧化物材料的發(fā)展受限于電化學(xué)反應(yīng)過(guò)程中的體積膨脹和相對(duì)較低的電導(dǎo)率.釩酸銨鹽材料同樣存在著充電過(guò)程中結(jié)構(gòu)坍塌、V-O層與二價(jià)Zn2+之間靜電作用強(qiáng)、釩溶解及電導(dǎo)率較差等問(wèn)題.鑒于此,當(dāng)前多采用金屬離子插層、水分子插層、聚合物插層、材料復(fù)合與構(gòu)建氧空位等策略來(lái)予以解決,以達(dá)到提高釩酸銨鹽電化學(xué)性能的目的.
3.1 金屬離子插層改性
插入釩酸銨鹽V-O層中的金屬離子會(huì)與NH+4形成一種獨(dú)特的“共支撐”結(jié)構(gòu),可以有效提高材料結(jié)構(gòu)的穩(wěn)定性,緩解NH+4之間的靜電排斥.例如,Sun等[31]將Na+插入到V-O層中不僅緩解了結(jié)構(gòu)坍塌的問(wèn)題,還為Zn2+的傳輸提供了較大的晶面間距,同時(shí)抑制了釩離子在水系電解質(zhì)中的溶解.Wang等[32]還指出Na+插入V-O層中還可以增強(qiáng)材料的擴(kuò)散動(dòng)力學(xué),降低Zn2+在脫出/嵌入過(guò)程中的靜電排斥力,使材料展現(xiàn)出優(yōu)異的電化學(xué)性能(見(jiàn)圖3(A)).此外,將堿金屬陽(yáng)離子引入V-O層后可極大增強(qiáng)離子鍵合特性而使材料結(jié)構(gòu)保持穩(wěn)定.例如,Zong等[33]將K+引入釩酸銨的V-O層替換部分NH+4,不僅使結(jié)構(gòu)更加穩(wěn)定,還優(yōu)化了離子擴(kuò)散的路徑,并削弱了Zn2+的擴(kuò)散勢(shì)壘(見(jiàn)圖3(B)).張濤等[34]將Al3+預(yù)嵌入(NH4)2V10O25·8H2O材料中,Al3+和NH+4在V-O層間形成“雙支柱”,有效提高了Zn2+的擴(kuò)散動(dòng)力學(xué),改善材料的電化學(xué)性能.He等[35]指出,Zn2+的插層不僅可以降低同一夾層中相鄰NH+4離子之間的靜電排斥,還可以產(chǎn)生陽(yáng)離子空位,這些陽(yáng)離子空位與H2O分子相互作用使O-O鍵的靜電斥力增加,可進(jìn)一步擴(kuò)大層間距,確保了Zn0.3(NH4)0.3V4O10·0.91H2O在室溫和低溫下均可以進(jìn)行快速離子傳輸,從而獲得優(yōu)異的循環(huán)性能(見(jiàn)圖3(C)).眾所周知,釩基氧化物與鉬基氧化物擁有相似的晶體結(jié)構(gòu)和電化學(xué)窗口.因此,Wang等[36]將Mo6+嵌入NH4V4O10的V-O層中,這不僅為Zn2+的脫出/嵌入提供了足夠的空間,還使能帶結(jié)構(gòu)間隙變窄,電荷載流子濃度增加,有效增強(qiáng)了電導(dǎo)率和離子擴(kuò)散系數(shù).此外,Ti作為一種優(yōu)秀的氧化還原活性摻雜劑,可通過(guò)防止相變來(lái)提高材料的結(jié)構(gòu)穩(wěn)定性.例如,Lu等[37] 將Ti嵌入V-O層中不僅使晶體結(jié)構(gòu)更加穩(wěn)定,還增強(qiáng)了鋅離子的擴(kuò)散速率,從而確保了Zn2+的快速脫出/嵌入,使材料獲得了更穩(wěn)定的循環(huán)性能(見(jiàn)圖3(D)).
3.2 水分子插層改性
水分子插入V-O層中能與Zn2+形成水合鋅離子,可有效削弱V-O晶格與Zn2+之間的靜電作用,降低Zn2+在正極材料中的擴(kuò)散勢(shì)壘.除此之外,水分子插層還具有擴(kuò)大層間距與降低NH+4擴(kuò)散勢(shì)壘等優(yōu)點(diǎn)[38].如圖4(A)與圖4(B)所示,Wang等[39]制備的(NH4)2V6O16·1.5H2O在擁有結(jié)合水的狀態(tài)下相比于Xu等[40]制備的(NH4)2V6O16展現(xiàn)出更優(yōu)異的性能,在0.1 A/g電流密度下,(NH4)2V6O16·1.5 H2O提供了479 mAh/g的高比容量,而(NH4)2V6O16的比容量?jī)H為322.0 mAh/g.另外,Jiang等[41]還將NH4V3O8·0.5H2O與其他釩基正極材料進(jìn)行對(duì)比,結(jié)果表明,由于水分子的插入,NH4V3O8·0.5H2O表現(xiàn)出大多數(shù)材料都不曾擁有的性能.NH4V4O10·0.28H2O[42] 材料中水分子的插入使層間距增大,靜電強(qiáng)度下降,降低了Zn2+擴(kuò)散勢(shì)壘,使其在0.2 A/g的電流密度下?lián)碛?10 mAh/g的比容量.此外,NH4V3O8·1.9H2O [43]、(NH4)2V10O25·8H2O [44]和(NH4)0.58V2O5·0.98H2O [45]在結(jié)合水的作用下均表現(xiàn)出優(yōu)異的電化學(xué)性能.
3.3 聚合物插層改性
導(dǎo)電聚合物作為釩酸銨鹽層狀結(jié)構(gòu)的重要“支柱”,不僅可以擴(kuò)大材料的晶面間距,還可以有效降低Zn2+和晶格氧之間的靜電作用力.電解液中的H2O在充放電過(guò)程中和Zn2+共同嵌入V-O層中,會(huì)導(dǎo)致釩基材料發(fā)生相轉(zhuǎn)變并引起結(jié)構(gòu)坍塌,而插入聚苯胺(PANI)可有效解決這一問(wèn)題.例如,Li等[46]將PANI插入到NH4V3O8·0.5H2O的V-O層中,其晶格間距不僅從7.9 擴(kuò)大到10.8 ,還在10 A/g的電流密度下表現(xiàn)出300 mAh/g的超高比容量,經(jīng)過(guò)1 000次循環(huán)后的容量保持率依然能保持95%.研究發(fā)現(xiàn),聚乙烯二氧噻吩 (PEDOT)比PANI具有更顯著的穩(wěn)定性,近年來(lái)已廣泛應(yīng)用于超級(jí)電容器材料中[47].鑒于這些研究,Bin等[48]將PEDOT插入到NH4V3O8中擴(kuò)大了晶面間距并形成氧空位,不僅使材料的結(jié)構(gòu)更加穩(wěn)定,還降低了動(dòng)能勢(shì)壘,確保了Zn2+可以在不破壞材料主體結(jié)構(gòu)的情況下也能在V-O層中自由脫出/嵌入.此外,Kim等[49]還指出,PEDOT具有潤(rùn)滑作用,能有效抑制電解質(zhì)中陽(yáng)離子的捕獲,提高電解質(zhì)中陽(yáng)離子的擴(kuò)散性.PEDOT的插入使(NH4)2V6O16·1.5H2O展現(xiàn)出更優(yōu)異的倍率性能,如圖5所示.
3.4 材料復(fù)合改性
將碳基材料與電極材料進(jìn)行復(fù)合被認(rèn)為是解決電化學(xué)反應(yīng)過(guò)程中電極材料體積膨脹與電導(dǎo)率較低等問(wèn)題的重要途徑.由于碳納米管不僅擁有穩(wěn)定的C=C共價(jià)化學(xué)鍵,還具有極高的強(qiáng)度和韌性,故Gao等[50]便將碳納米管用于釩基化合物的改性中,不僅有效提升了材料的電荷輸運(yùn)能力和電導(dǎo)率,還顯著增強(qiáng)了材料的柔韌性及機(jī)械穩(wěn)定性.Jiang等[51]還在(NH4)0.38V2O5的合成過(guò)程中引入多壁碳納米管,不僅極大增強(qiáng)了電極材料的導(dǎo)電率,還在材料內(nèi)部形成了豐富的多孔結(jié)構(gòu),有效提升了材料的電化學(xué)性能.另外,Cui等[52]還將還原氧化石墨烯(rGO)充當(dāng)導(dǎo)電介質(zhì)添加入到NH4V4O10的合成過(guò)程中,不僅增強(qiáng)了材料的導(dǎo)電性,還誘導(dǎo)了低價(jià)釩的形成和氧空位的產(chǎn)生,有效緩解了離子間的靜電相互作用,所制備的NH4V4O10-x@rGO復(fù)合材料展現(xiàn)出優(yōu)異的倍率性能(見(jiàn)圖6(A)).此外,Wang等[53]還將表面積大且導(dǎo)電性?xún)?yōu)良的碳化鈦(Mxene)材料引入(NH4)2V10O25·8H2O中,所制備的(NH4)2V10O25·8H2O@Ti3C2Tx超薄納米帶(厚度約為14 nm)導(dǎo)電性良好,不僅實(shí)現(xiàn)了Zn2+的快速傳輸,還在充電/放電過(guò)程中展現(xiàn)出優(yōu)異的倍率性能和回復(fù)性能(見(jiàn)圖6(B)).
3.5 氧空位構(gòu)建
合理的結(jié)構(gòu)設(shè)計(jì)對(duì)改善材料的性能具有重要意義,在釩基材料的晶格中構(gòu)建氧空位可以縮短離子擴(kuò)散距離、提高電導(dǎo)率,有利于增加活性位點(diǎn)、調(diào)節(jié)Zn2+的吸附能,以及提高活性位點(diǎn)的利用率.Bai等[54]制備出含氧空位的(NH4)2V10O25·8H2O,構(gòu)建出的氧空位空隙通道不僅促進(jìn)了離子擴(kuò)散還提高了電導(dǎo)率,有效增強(qiáng)了材料的電荷遷移動(dòng)力學(xué),使材料的倍率和穩(wěn)定性能均獲得顯著提升(見(jiàn)圖7(A)).此外,Cao等[55]還證明氧空位缺陷具有抑制不必要的相變、減小能帶間隙的作用.不僅如此,Zheng等[56]還設(shè)計(jì)了一種去除部分NH+4離子,增加氧空位的雙工程策略,用以解決過(guò)多的NH+4占據(jù)V-O層的層間所造成的Zn2+擴(kuò)散受阻,以及Zn2+和V-O層之間靜電作用過(guò)強(qiáng)的問(wèn)題,這對(duì)于降
低電荷轉(zhuǎn)移阻抗、加速反應(yīng)動(dòng)力學(xué)與減少Zn2+擴(kuò)散能壘具有顯著效果,可確保更多的Zn2+在V-O層間自由脫出/嵌入,使材料擁有更優(yōu)異的電化學(xué)性能(見(jiàn)圖7(B)).實(shí)驗(yàn)和理論均表明,通過(guò)引入氧空位可以有效調(diào)節(jié)電極材料的結(jié)構(gòu)和電子特性,從而提高材料的電導(dǎo)率和動(dòng)力學(xué)特性.
4 結(jié) 語(yǔ)
AZIBs作為一種綠色環(huán)保的新型儲(chǔ)能電池,具有放電容量高、功率密度大、生產(chǎn)成本低與安全性能好等優(yōu)點(diǎn),在大規(guī)模儲(chǔ)能領(lǐng)域展現(xiàn)出良好的應(yīng)用前景與價(jià)值.釩酸銨鹽作為一類(lèi)具有高比容量的AZIBs正極材料,相關(guān)研究已經(jīng)取得了較大進(jìn)展,但其大規(guī)模發(fā)展與應(yīng)用仍面臨一些問(wèn)題.首先,釩基化合物較低的工作電壓(<2 V)導(dǎo)致基于該正極材料的能量密度不夠理想.在材料主體結(jié)構(gòu)中引入離子基團(tuán)(如PO3-4和F-等)可提高其工作電壓,今后的研究應(yīng)注重探索如何有效提高其工作電壓;其次,插層策略雖可提高材料的結(jié)構(gòu)穩(wěn)定性和動(dòng)力學(xué)性能,但也會(huì)因插入物占據(jù)V-O層的部分空間而阻礙Zn2+的遷移,還會(huì)使材料產(chǎn)生一定程度的相變.后續(xù)需進(jìn)一步研究預(yù)插入物的類(lèi)型、數(shù)量及其對(duì)材料的結(jié)構(gòu)與電化學(xué)性能的影響規(guī)律.此外,目前對(duì)于釩酸銨鹽的儲(chǔ)能機(jī)制,以及結(jié)構(gòu)演變規(guī)律仍缺乏清晰的認(rèn)識(shí),今后的研究工作應(yīng)采取更科學(xué)、更先進(jìn)的手段對(duì)其進(jìn)行解析.
參考文獻(xiàn):
[1]Choi J W,Aurbach D.Promise and reality of post-lithium-ion batteries with high energy densities[J].Nat Rev Mater,2016,1(4):1-16.
[2]王鵬博,鄭俊超.鋰離子電池的發(fā)展現(xiàn)狀及展望[J].自然雜志,2017,39(4):283-289.
[3]Zubi G,Dufo-López R,Carvalho M,et al.The lithium-ion battery:State of the art and future perspectives[J].Renew Sust Energy Rev,2018,89:292-308.
[4]閆金定.鋰離子電池發(fā)展現(xiàn)狀及其前景分析[J].航空學(xué)報(bào),2014,35(10):2767-2775.
[5]陳麗能,晏夢(mèng)雨,梅志文,等.水系鋅離子電池的研究進(jìn)展[J].無(wú)機(jī)材料學(xué)報(bào),2017,32(3):225-234.
[6]Wang F,Borodin O,Gao T,et al.Highly reversible zinc metal anode for aqueous batteries[J].Nat Mater,2018,17(6):543-549.
[7]Li Y,F(xiàn)u J,Zhong C,et al.Recent advances in flexible zinc-based rechargeable batteries[J].Adv Energy Mater,2019,9(1):1802605-1-1802605-9.
[8]周世昊,吳賢文,向延鴻,等.水系鋅離子電池錳基正極材料[J].化學(xué)進(jìn)展,2021,33(4):649-669.
[9]孫晴,高筠.水系鋅離子電池的最新研究進(jìn)展[J].材料導(dǎo)報(bào),2022,36(17):5-11.
[10]Yi H,Qin R,Ding S,et al.Structure and properties of prussian blue analogues in energy storage and conversion applications[J].Adv Funct Mater,2021,31(6):2006970-1-2006970-11.
[11]衡永麗,谷振一,郭晉芝,等.Na3V2(PO4)3@C用作水系鋅離子電池正極材料的研究[J].儲(chǔ)能科學(xué)與技術(shù),2021,10(3):938-944.
[12]Tang H,Peng Z,Wu L,et al.Vanadium-based cathode materials for rechargeable multivalent batteries:challenges and opportunities[J].Electrochem Energy R,2018,1(2):169-199.
[13]Chen D,Rui X,Zhang Q,et al.Persistent zinc-ion storage in mass-produced V2O5 architectures[J].Nano Energy,2019,60:171-178.
[14]莫俊,黃杰,袁新海,等.NaV3O8作為鋰離子電池正極材料的制備及應(yīng)用[J].廣州化學(xué),2017,42(2):43-47.
[15]Tang B,F(xiàn)ang G,Zhou J,et al.Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries[J].Nano Energy,2018,51:579-587.
[16]Alfaruqi M H,Mathew V,Song J,et al.Electrochemical zinc intercalation in lithium vanadium oxide:a high-capacity zinc-ion battery cathode[J].Chem Mater,2017,29(4):1684-1694.
[17]Shan L,Yang Y,Zhang W,et al.Observation of combination displacement/intercalation reaction in aqueous zinc-ion battery[J].Energy Storage Mater,2019,18:10-14.
[18]衡永麗,谷振一,郭晉芝,等.水系鋅離子電池用釩基正極材料的研究進(jìn)展[J].物理化學(xué)學(xué)報(bào),2021,37(3):17-32.
[19]Rehman Lashari N,Zhao M,Zheng Q,et al.Enhanced rate capability and cycling stability of novel ammonium vanadate materials used in aqueous Li-ion batteries[J].Energy Fuels,2021,35(5):4570-4576.
[20]Zhang Y,Jiang H,Xu L,et al.Ammonium vanadium oxide [(NH4)2V4O9]sheets for high capacity electrodes in aqueous zinc ion batteries[J].ACS Appl Energy Mater,2019,2(11):7861-7869.
[21]Dong W,Du M,Zhang F,et al.In situ electrochemical transformation reaction of ammonium-anchored heptavanadate cathode for long-life aqueous zinc-ion batteries[J].ACS Appl Mater Inter,2021,13(4):5034-5043.
[22]Kundu D,Adams B D,Duffort V,et al.A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J].Nat Energy,2016,1(10):1-8.
[23]Shin J,Choi D S,Lee H J,et al.Hydrated intercalation for high-performance aqueous zinc ion batteries[J].Adv Energy Mater,2019,9(14):1900083-1-1900083-10.
[24]Wang Z,Zhang J,Wang H,et al.Hydrothermal synthesis of ammonium vanadate [(NH4)2V7O16·3.6H2O]as a promising zinc-ion cathode:Experimental and theoretical study of its storage[J].Electrochim Acta,2022,404:139785-1-139785-9.
[25]Tamilselvan M,Sreekanth T V M,Yoo K,et al.Wide interlayer spacing ammonium vanadate (NH4)0.37V2O5·0.15(H2O) cathode for rechargeable aqueous zinc-ion batteries[J].J Ind Eng Chemy,2021,93:176-185.
[26]Sun R,Qin Z,Liu X,et al.Intercalation mechanism of the ammonium vanadate (NH4V4O10) 3D decussate superstructure as the cathode for high-performance aqueous zinc-ion batteries[J].ACS Sustainable Chem Eng,2021,9(35):11769-11777.
[27]任曉寧,梁靜,陶占良,等.花狀NH4V4O10微納米結(jié)構(gòu)的水熱制備及電化學(xué)嵌鋰性能[J].高等學(xué)?;瘜W(xué)學(xué)報(bào),2011,32(3):618-623.
[28]Yang Z,Li W,Zhang Q,et al.A piece of common cellulose paper but with outstanding functions for advanced aqueous zinc-ion batteries[J].Mater Today Energy,2022,28:101076-1-101076-10.
[29]Chen S,Zhang Y,Geng H,et al.Zinc ions pillared vanadate cathodes by chemical pre-intercalation towards long cycling life and low-temperature zinc ion batteries[J].J Power Sources,2019,441:227192-1-227192-7.
[30]Liu L,Lin Z,Shi Q,et al.High-performance 3D biphasic NVO/ZVO synthesized by rapid chemical precipitation as cathodes for Zn-ion batteries[J].Electrochem Commun,2022,140:107331-1107331-10.
[31]Sun R,Dong S,Xu F,et al.Co-intercalation strategy of constructing partial cation substitution of ammonium vanadate {(NH4)2V6O16} for stable zinc ion storage[J].Dalt T,2022,51(19):7607-7612.
[32]Wang X,Naveed A,Zeng T,et al.Sodium ion stabilized ammonium vanadate as a high-performance aqueous zinc-ion battery cathode[J].Chem Eng J,2022,446P2:137090-1-137090-10.
[33]Zong Q,Wang Q Q,Liu C,et al.Potassium ammonium vanadate with rich oxygen vacancies for fast and highly stable Zn-ion storage[J].ACS nano,2022,16(3):4588-4598.
[34]張濤,周坤蕃,陽(yáng)思念,等.Al3+預(yù)嵌(NH4)2V10O25·8H2O正極材料在水系鋅離子電池的應(yīng)用[J].精細(xì)化工,2022,39(2):282-287.
[35]He T,Weng S,Ye Y,et al.Cation-deficient Zn0.3(NH4)0.3V4O10·0.91H2O for rechargeable aqueous zinc battery with superior low-temperature performance[J].Energy Storage Mater,2021,38:389-396.
[36]Wang H,Jing R,Shi J,et al.Mo-doped NH4V4O10 with enhanced electrochemical performance in aqueous Zn-ion batteries[J].J Alloy Compd,2021,858:158380-1-158380-9.
[37]Lu Y,Liu L,Mandler D,et al.High switching speed and coloration efficiency of titanium-doped vanadium oxide thin film electrochromic devices[J].J Mater Chem C,2013,1(44):7380-7386.
[38]Qu Z,Zhou B,Li B,et al.A theoretical study on the role of ammonium ions in the double-layered V2O5 electrode[J].Phys Chem Chem Phys,2021,23(7):4187-4194.
[39]Wang X,Xi B,F(xiàn)eng Z,et al.Layered (NH4)2V6O16·1.5 H2O nanobelts as a high-performance cathode for aqueous zinc-ion batteries[J].J Mater Chem A,2019,7(32):19130-19139.
[40]Xu L,Zhang Y,Jiang H,et al.Facile hydrothermal synthesis and electrochemical properties of (NH4)2V6O16 nanobelts for aqueous rechargeable zinc ion batteries[J].Coll Surf A Physicochem Eng Asp,2020,593:124621-1-124621-9.
[41]Jiang H,Zhang Y,Pan Z,et al.NH4V3O8·0.5H2O nanobelts with intercalated water molecules as a high performance zinc ion battery cathode[J].Mater Chem Front,2020,4(5):1434-1443.
[42]Zhu T,Mai B,Hu P,et al.Ammonium ion and structural water Co-assisted Zn2+ intercalation/de-intercalation in NH4V4O10·0.28H2O[J].Chinese J Chem,2021,39(7):1885-1890.
[43 Lai J,Tang H,Zhu X,et al.A hydrated NH4V3O8 nanobelt electrode for superior aqueous and quasi-solid-state zinc ion batteries[J].J Mater Chem A,2019,7(40):23140-23148.
[44]Jiang H,Zhang Y,Pan Z,et al.Facile hydrothermal synthesis and electrochemical properties of (NH4)2V10O25·8H2O nanobelts for high-performance aqueous zinc ion batteries[J].Electrochim Acta,2020,332:135506-1-135506-11.
[45]Zhao H,F(xiàn)u Q,Yang D,et al.In operando synchrotron studies of NH+4 preintercalated V2O5·nH2O nanobelts as the cathode material for aqueous rechargeable zinc batteries[J].ACS nano,2020,14(9):11809-11820.
[46]Li Y,Liu Y,Chen J,et al.Polyaniline intercalation induced great enhancement of electrochemical properties in ammonium vanadate nanosheets as an advanced cathode for high-performance aqueous zinc-ion batteries[J].Chem Eng J,2022,448:137681-1-137681-10.
[47]Murugan A V,Kale B B,Kwon C W,et al.Synthesis and characterization of a new organo-inorganic poly (3,4-ethylene dioxythiophene) PEDOT/V2O5 nanocomposite by intercalation[J].J Mater Chem,2001,11(10):2470-2475.
[48]Bin D,Huo W,Yuan Y,et al.Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery[J].Chem,2020,6(4):968-984.
[49]Kim J,Lee S H,Park C,et al.Controlling vanadate nanofiber interlayer via intercalation with conducting polymers:cathode material design for rechargeable aqueous zinc ion batteries[J].Adv Funct Mater,2021,31(26):2100005-1-2100005-15.
[50]Gao X,Yin W,Liu X.Carbon nanotubes-based electrode for Zn ion batteries[J].Mater Res Bull,2021,138:111246-1-111246-12.
[51]Jiang Y,Wu Z,Ye F,et al.Spontaneous knitting behavior of 6.7-nm thin (NH4)0.38V2O5 nano-ribbons for binder-free zinc-ion batteries[J].Energy Storage Mater,2021,42:286-294.
[52]Cui F,Wang D,Hu F,et al.Deficiency and surface engineering boosting electronic and ionic kinetics in NH4V4O10 for high-performance aqueous zinc-ion battery[J].Energy Storage Mater,2022,44:197-205.
[53]Wang X,Wang Y,Jiang Y,et al.Tailoring ultrahigh energy density and stable dendrite-free flexible anode with Ti3C2Tx Mxene nanosheets and hydrated ammonium vanadate nanobelts for aqueous rocking-chair zinc ion batteries[J].Adv Funct Mater,2021,31(35):2103210-1-2103210-12.
[54]Bai Y,Zhang H,Hu Q,et al.Tuning the kinetics of binder-free ammonium vanadate cathode via defect modulation for ultrastable rechargeable zinc ion batteries[J].Nano Energy,2021,90:106596-1-106596-9.
[55]Cao J,Zhang D,Yue Y,et al.Oxygen defect enriched (NH4)2V10O25·8H2O nanosheets for superior aqueous zinc-ion batteries[J].Nano Energy,2021,84:105876-1-105876-11.
[56]Zheng Y,Tian C,Wu Y,et al.Dual-engineering of ammonium vanadate for enhanced aqueous and quasi-solid-state zinc ion batteries[J].Energy Storage Mater,2022,52:664-674.
(實(shí)習(xí)編輯:羅 媛)
Abstract:Aqueous zinc ion batteries(AZIBs),which use zinc metal with high specific capacity as anode material,have excellent characteristics such as low cost,high safety,nontoxicity and environmental friendliness so that such batteries are used as promising energy storage devices that have attracted much attention.At present,it is difficult to develop cathode materials matching with metal zinc anode,which is an important factor hindering the large-scale development of AZIBs.Ammonium vanadate salts show attractive application prospects in the field of cathode materials for AZIBs due to their fast ion diffusion rate and high specific capacity.The zinc storage mechanism of ammonium vanadate salt and the hydrothermal preparation process are firstly introduced,and then the optimization and modification strategies such as metal ion intercalation,water molecule intercalation,polymer intercalation,material compositing,and oxygen vacancy construction are highlighted to address the problems of vanadium dissolution and low electrical conductivity of ammonium vanadate salts.Finally,the development trend of ammonium vanadate salt cathode materials is studied to provide useful reference for the design and development of high performance AZIBs.
Key words:aqueous zinc ion battery;ammonium vanadate salt;cathode material;intercalation layer;oxygen vacancy
基金項(xiàng)目:云南省高校怒江河谷生物質(zhì)資源高值轉(zhuǎn)化與利用實(shí)驗(yàn)室開(kāi)放基金(Z386);成都大學(xué)人才工程科研啟動(dòng)項(xiàng)目(2081921012);四川省粉末冶金工程技術(shù)研究中心開(kāi)放基金項(xiàng)目(SC-FMYJ2021-11);四川省科技廳重點(diǎn)項(xiàng)目(23ZDYF0675)
作者簡(jiǎn)介:楊 智(1996—),男,碩士研究生,從事水系鋅離子電池及其關(guān)鍵材料研究.E-mail:1263168633@qq.com
通信作者:李 濤(1974—),男,博士,副教授,從事納米材料和電催化功能材料研究.E-mail:litao@cdu.edu.cn