付興賀 夏宏偉 熊嘉鑫
基于降階動態(tài)相量模型的電感耦合式勵磁系統(tǒng)間接勵磁電流估計
付興賀 夏宏偉 熊嘉鑫
(東南大學電氣工程學院 南京 210096)
電勵磁同步電機(EESM)具有稀土永磁材料依賴性低、勵磁磁場可控、調(diào)速范圍廣的優(yōu)點,在新能源汽車驅(qū)動領域擁有良好的應用前景。利用電感耦合式無刷勵磁技術可以有效降低傳統(tǒng)有刷EESM的摩擦損耗和維護成本。但是,無刷勵磁技術的引入導致勵磁電流無法直接測量,因此提出一種基于降階動態(tài)相量模型的間接式勵磁電流估計方法。首先利用電感耦合關系將勵磁電流的直接估計轉(zhuǎn)換為間接估計,有效地提高了算法的魯棒性;然后推導出勵磁電流降階動態(tài)相量估計模型,進一步提高間接估計方法的精度;接著考慮電流諧波影響,提出變系數(shù)改進方法;最后通過仿真和實驗驗證了估計方法的有效性。
電勵磁同步電機 電感耦合式無刷勵磁技術 電流估計 動態(tài)相量模型
電勵磁同步電機(Electrically Excited Synch-ronous Machine, EESM)具有稀土永磁材料依賴性低、勵磁調(diào)節(jié)靈活、調(diào)速范圍廣等優(yōu)點,在新能源汽車電驅(qū)動領域展現(xiàn)出特有的技術和成本優(yōu)勢[1]。但傳統(tǒng)EESM的電刷集電環(huán)結(jié)構(gòu)會引起摩擦損耗、增加維護成本、降低電機工作可靠性[2]。因此,無刷勵磁技術已成為EESM應用發(fā)展的迫切需求和亟待解決的關鍵問題[3]。現(xiàn)有無刷勵磁方式主要包括勵磁機式、諧波勵磁及無線電能傳輸式[4-6]。無線電能傳輸勵磁方式又可以分為電感耦合式和電容耦合式。其中,電感耦合式勵磁方法結(jié)構(gòu)簡單、傳輸效率高,具有廣闊的應用前景[7]。
對于無刷勵磁系統(tǒng),采用開環(huán)方式控制勵磁電流難以滿足EESM高精度勵磁磁場調(diào)節(jié)和速度控制要求,必須依靠勵磁電流反饋構(gòu)建閉環(huán)控制系統(tǒng)才能提高勵磁電流的控制精度和抗干擾能力[8-9]。但無刷勵磁系統(tǒng)的勵磁繞組隨轉(zhuǎn)子一起旋轉(zhuǎn),勵磁能量發(fā)送回路和接收回路之間無直接電氣連接,致使勵磁電流反饋的獲取面臨技術挑戰(zhàn)[10]。
無刷勵磁方案的差異和特點決定了勵磁電流獲取方法各有區(qū)別。在勵磁機方案中,可以根據(jù)勵磁機模型計算出勵磁機轉(zhuǎn)子的電壓、電流,再根據(jù)整流器模型計算勵磁電流估計值[11]。在諧波勵磁方案中,可以通過靜態(tài)實驗建立離線表格,根據(jù)定子諧波繞組電流估計勵磁電流[12]。電容耦合式勵磁方案比較特殊,勵磁靜止側(cè)和旋轉(zhuǎn)側(cè)共用同一電流回路,經(jīng)過處理和折算便可直接獲得勵磁電流[13]。在電感耦合式勵磁系統(tǒng)中,獲取勵磁電流的方式包括:無線通信式、模型估計式。無線通信方式需要在二次回路增加采樣電路,利用無線通信裝置將采樣到的勵磁電流數(shù)據(jù)發(fā)送至一次回路[14]。該方法原理簡單,但是需要額外增加電路裝置,且傳遞的反饋信號易受到電機內(nèi)磁場的干擾。模型估計方式包括基于電機繞組模型估計和基于線圈耦合電感模型估計?;陔姍C繞組模型的電流估計方式需要先建立電機繞組與勵磁繞組之間的磁鏈和電壓關系,再根據(jù)采集到的定子端電壓和電流計算出勵磁電流[15];基于線圈耦合電感模型估計則需建立電感等效電路模型,利用一次電壓、電流信息計算出勵磁電流[16]。模型估計方式獲取勵磁電流對硬件要求較小,但是估計效果受數(shù)學模型精度及參數(shù)擾動的影響。
反映勵磁系統(tǒng)電路中物理關系的數(shù)學模型主要包括穩(wěn)態(tài)模型和瞬態(tài)模型[17]。前者計算簡單但是精度較低;后者精度高但計算復雜。除此之外,還有精度較高且計算相對簡單的全階和降階動態(tài)相量模型[18]。但目前上述模型多用于無線電能傳輸系統(tǒng)建模和參數(shù)優(yōu)化,鮮有研究將其應用于無刷電勵磁電機的勵磁電流估計。
針對模型估計中存在的參數(shù)擾動問題,文獻[19]提出一種利用母線電流修正勵磁電流估計值的方法,在一臺最大勵磁電流為18 A的樣機上進行驗證,變負載工況下的估計誤差在2%以內(nèi)。該方法具有一定的估計精度,但是實現(xiàn)過程依賴大量實驗結(jié)果,普適性低,且需要增加一個電流傳感器用于檢測母線電流。文獻[20]利用一次側(cè)LCL型諧振補償結(jié)構(gòu)的特點,提出一種適用于變負載工況的電流估計方法,并考慮了一次電流的諧波影響,在一臺額定勵磁電流為2 A的樣機上完成了實驗驗證,最終的電流估計誤差約為5.7%。該方法計算簡單,但受限于一次側(cè)特定的補償形式,需要用到兩個電流傳感器,且并未考慮負載參數(shù)變化對電流估計的影響。
鑒于此,本文針對串聯(lián)-串聯(lián)補償型電感耦合式無刷勵磁系統(tǒng),提出了一種基于系統(tǒng)降階動態(tài)相量模型的間接勵磁電流估計方法,具有計算簡單、負載適應性強、硬件成本低等特點。本文首先設計了勵磁能量傳輸電路的拓撲結(jié)構(gòu),建立勵磁系統(tǒng)的等效電路模型;然后為避免負載參數(shù)擾動的影響,利用電感耦合關系,選取二次側(cè)反射電壓作為中間變量,提出一種間接式電流估計方法,建立降階動態(tài)相量估計模型,進一步提高間接估計方法的估計精度;接著考慮二次電流的諧波影響,提出變波形系數(shù)改進方法;最后通過仿真和實驗驗證了上述電流估計方法的有效性。
根據(jù)電勵磁電機勵磁傳輸功率的要求,建立圖1所示的串聯(lián)-串聯(lián)感應耦合式無線電能傳輸系統(tǒng)的電路拓撲。該結(jié)構(gòu)高階非線性的特性不利于勵磁電流的在線估計。但無刷勵磁系統(tǒng)正常工作時處于諧振狀態(tài),可以采用基波分析法對系統(tǒng)非線性環(huán)節(jié)進行簡化并建立等效電路模型[21],在一定誤差范圍內(nèi)可以降低模型復雜度但又不失電流估計的有效性。
圖1 串聯(lián)-串聯(lián)補償型感應耦合式無刷勵磁系統(tǒng)結(jié)構(gòu)
當母線電壓保持不變時,根據(jù)系統(tǒng)實際的移相角即可計算出逆變器輸出電壓的基波有效值。在后續(xù)分析中利用式(2)將非線性的逆變器環(huán)節(jié)等效為一個電壓源。
勵磁系統(tǒng)中作為負載的勵磁繞組端電壓滿足
圖2 整流橋和負載等效電路模型
圖3 無刷勵磁系統(tǒng)等效電路模型
圖4 一次側(cè)等效電路模型
Fig.4 Equivalent model of wireless power transfer systems
利用一次側(cè)等效模型開展勵磁電流間接估計擺脫了對負載參數(shù)的依賴,提高了估計方法的魯棒性,同時降低了等效電路的儲能元件數(shù)量和模型階數(shù)。
對于含諧振環(huán)節(jié)的系統(tǒng),可以采用動態(tài)相量法進行數(shù)學建模,計算復雜度低于瞬態(tài)模型并且精度高于穩(wěn)態(tài)模型,還可以進行降階處理簡化計算。本節(jié)將推導基于降階動態(tài)相量模型的勵磁電流估計數(shù)學表達式。
動態(tài)相量模型的每個狀態(tài)量對應兩個微分方程,分別為實部方程和虛部方程,因此系統(tǒng)一次側(cè)等效電路模型對應的全階動態(tài)相量模型為4階。為了方便計算,可以利用諧振網(wǎng)絡的特點對全階動態(tài)相量方程進行降階處理。根據(jù)式(7)寫出原始的諧振網(wǎng)絡動態(tài)相量模型在域下的表達式為
利用式(9)即可將諧振網(wǎng)絡的動態(tài)相量模型的階數(shù)由二階降為一階,如圖5所示。
降階動態(tài)相量模型精度高于穩(wěn)態(tài)模型,計算復雜度遠低于瞬態(tài)時域模型。就模型本身精度而言,全階動態(tài)相量模型略微高于降階動態(tài)模型,但降階動態(tài)模型方程階數(shù)更低,計算簡單,更適用于在線計算[18]。因此本文基于降階動態(tài)相量模型來描述勵磁系統(tǒng)一次側(cè)等效電路,并在此基礎上推導出勵磁電流估計表達式。
一次側(cè)等效電路模型對應的微分方程為
將方程中的實部和虛部進行分離,得
式中
對式(16)兩邊進行求導并化簡可得
圖6 擾動觀測器結(jié)構(gòu)框圖
在動態(tài)相量模型中,擾動項二次側(cè)反射電壓可以表示為
整理可得
結(jié)合擾動觀測器輸出結(jié)果及式(4),可以寫出基于降階動態(tài)相量估計模型的勵磁電流表達式為
為了更直觀地表現(xiàn)基于降階動態(tài)相量間接勵磁電流估計方法的效果,給出基于穩(wěn)態(tài)模型的勵磁電流估計式用于對比分析。
結(jié)合一次側(cè)等效電路模型中各元件的穩(wěn)態(tài)模型和基爾霍夫電壓方程,推導出基于穩(wěn)態(tài)模型的勵磁電流估計表達式為
式中,1rms為一次電流有效值。
表1 無刷勵磁系統(tǒng)參數(shù)
Tab.1 Parameters of wireless excitation system
圖7 時兩種估計模型結(jié)果對比
在不同溫度下,勵磁繞組電阻可由式(23)計算。
上述結(jié)果表明,本文所提的間接式估計方法是可行的,且相較于穩(wěn)態(tài)估計模型,基于降階動態(tài)相量模型的估計方法具有更高的估計精度和魯棒性。
圖8 時兩種估計模型結(jié)果對比
圖9 Rf =15 Ω時二次電流有效值及勵磁電流估計結(jié)果
圖10 Rf =20 Ω時二次電流有效值及勵磁電流估計結(jié)果
式(4)中基于基波假設的始終為0.9。但實際上受二次電流諧波影響,波形系數(shù)是一個與和相關的時變系數(shù)。不同工況下仿真計算得到的隨和變化曲線如圖11所示。
圖12 變系數(shù)勵磁電流估計結(jié)果
Fig.12 Results of variable coefficient estimator
圖13 時變系數(shù)勵磁電流估計結(jié)果
Fig.13 Variable coefficient estimation results when
綜上所述,基于降階動態(tài)相量模型的估計方法精度顯著高于穩(wěn)態(tài)模型估計方法,并且采用考慮諧波影響的變波形系數(shù)改進估計方法可以進一步提高電流估計的精度和魯棒性。
圖14 時變系數(shù)勵磁電流估計結(jié)果
本文搭建的實驗平臺如圖15所示。
圖15 實驗平臺
為了獲取勵磁電流真實值來驗證電流估計效果,對電機轉(zhuǎn)子進行改造,利用電刷集電環(huán)將勵磁繞組引出,如圖16所示。
圖16 勵磁電流測量原理
圖17 時的實驗波形
圖18 時的實驗波形
圖19 的勵磁電流跟蹤曲線
圖20 的勵磁電流跟蹤曲線
為了使勵磁電流估計結(jié)果更加平穩(wěn),增加了軟件濾波環(huán)節(jié)。圖19和圖20中曲線左側(cè)數(shù)值為勵磁電流估計值的平均值,右側(cè)數(shù)值為勵磁電流的平均值。結(jié)果表明,所提電流估計方法具有較高的精度和魯棒性,給定工況下最大相對估計誤差約為4.7%。
綜上所述,實驗結(jié)果與仿真結(jié)果基本一致,變波形系數(shù)改進方法的假設和應用都是合理的,所提的電流估計方法具有較高的精度和魯棒性。
針對串聯(lián)-串聯(lián)補償型電感耦合式無刷勵磁系統(tǒng),本文提出了一種基于降階動態(tài)相量模型的勵磁電流間接估計方法。該方法建立了勵磁系統(tǒng)的一次側(cè)等效電路模型,對勵磁電流進行間接估計,提高了估計方法的魯棒性;建立降階動態(tài)相量估計模型并考慮二次電流的諧波影響,提出變系數(shù)改進方法,進而獲得更高的電流估計精度。
本文所提的勵磁電流估計方法在串聯(lián)-串聯(lián)電感耦合勵磁系統(tǒng)中具有較好的效果,但對整流模型中的波形系數(shù)的細致分析和準確獲取還有待進一步的研究。此外,利用間接估計思想及動態(tài)相量模型,可以實現(xiàn)對更多非串聯(lián)-串聯(lián)型拓撲的電感耦合式勵磁系統(tǒng)高精度、高魯棒性的電流估計,拓寬所提電流估計方法的應用范圍。
[1] Fallows D, Nuzzo S, Galea M. Exciterless wound-field medium-power synchronous machines: their history and future[J]. IEEE Industrial Electronics Magazine, 2022, 16(4): 44-51.
[2] 寇佳寶, 高強, 滕詠哮, 等. 負載換流逆變器驅(qū)動電勵磁同步電機無速度傳感器模型預測控制方法[J]. 電工技術學報, 2021, 36(1): 68-76. Kou Jiabao, Gao Qiang, Teng Yongxiao, et al. Speed sensorless model predictive control for load commutated inverter-fed electrically excited synchronous motor[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 68-76.
[3] 付興賀, 江政龍, 呂鴻飛, 等. 電勵磁同步電機無刷勵磁與轉(zhuǎn)矩密度提升技術發(fā)展綜述[J]. 電工技術學報, 2022, 37(7): 1689-1702. Fu Xinghe, Jiang Zhenglong, Lü Hongfei, et al. Review of the blushless excitation and torque density improvement in wound field synchronous motors[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1689-1702.
[3] 卿曉東, 蘇玉剛. 電場耦合無線電能傳輸技術綜述[J]. 電工技術學報, 2021, 36(17): 3649-3663. Qing Xiaodong, Su Yugang. An overview of electric-filed coupling wireless power transfer technology[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3649-3663.
[5] Dajaku G, Gerling D. Self-excited synchronous machine with high torque capability at zero speed[C]// 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Amalfi, Italy, 2018: 1165-1171.
[6] Di Gioia A, Brown I P, Nie Yue, et al. Design and demonstration of a wound field synchronous machine for electric vehicle traction with brushless capacitive field excitation[J]. IEEE Transactions on Industry Applications, 2018, 54(2): 1390-1403.
[7] Maier M, Parspour N. Operation of an electrical excited synchronous machine by contactless energy transfer to the rotor[J]. IEEE Transactions on Industry Applications, 2018, 54(4): 3217-3225.
[8] Song Kai, Li Zhenjie, Jiang Jinhai, et al. Constant Current/voltage charging operation for series–series and series–parallel compensated wireless power transfer systems employing primary-side controller[J]. IEEE Transactions on Power Electronics, 2018, 33(9): 8065-8080.
[9] Zaghrini C, Khoury G, Fadel M, et al. Minimum copper losses per torque optimization on electrically excited synchronous motors for electric vehicles applications[C]//2022 IEEE 20th International Power Electronics and Motion Control Conference (PEMC), Brasov, Romania, 2022: 661-666.
[10] Stancu C, Ward T, Rahman K M, et al. Separately excited synchronous motor with rotary transformer for hybrid vehicle application[J]. IEEE Transactions on Industry Applications, 2018, 54(1): 223-232.
[11] Jiao Ningfei, Liu Weiguo, Zhang Zan, et al. Field Current estimation for wound-rotor synchronous starter–generator with asynchronous brushless exciters[J]. IEEE Transactions on Energy Conversion, 2017, 32(4): 1554-1561.
[12] Yao Fei, An Quntao, Sun Lizhi, et al. Optimization design of stator harmonic windings in brushless synchronous machine excited with double-harmonic-windings[C]//2017 International Energy and Sustainability Conference (IESC), Farmingdale, NY, USA, 2017: 1-6.
[13] Hagen S, Dai Jiejian, Brown I P, et al. Low-cost, printed circuit board construction, capacitively coupled excitation system for wound field synchronous machines[C]//2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 2019: 5358-5364.
[14] Zhong Wenxing, Ron Hui S Y. Charging time control of wireless power transfer systems without using mutual coupling information and wireless communication system[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 228-235.
[15] Tang Junfei, Jiang Bowen, Boscaglia L, et al. Observations of field current and field winding temperature in electrically excited synchronous machines with brushless excitation[C]//2022 International Conference on Electrical Machines (ICEM), Valencia, Spain, 2022: 841-847.
[16] Berweiler B, Ponick B. Current and average temperature calculation for electrically excited synchronous machines in case of contactless energy supply[C]//2020 International Conference on Electrical Machines (ICEM), Gothenburg, Sweden, 2020: 1730-1735.
[17] Chen Fengwei, Garnier H, Deng Qijun, et al. Control-oriented modeling of wireless power transfer systems with phase-shift control[J]. IEEE Transactions on Power Electronics, 2020, 35(2): 2119-2134.
[18] Li Hongchang, Fang Jingyang, Tang Yi. Dynamic phasor-based reduced-order models of wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 11361-11370.
[19] Tang Junfei, Liu Yujing, Lundberg S. Estimation algorithm for current and temperature of field winding in electrically excited synchronous machines with high-frequency brushless exciters[J]. IEEE Transactions on Power Electronics, 2021, 36(3): 3512-3523.
[20] Kang Jinsong, Liu Yusong, Sun Liangrong. A primary-side control method of wireless power transfer for motor electric excitation[C]//2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi'an, China, 2019: 2423-2428.
[21] 鄭廣策, 趙凱, 王浩宇, 等. 基于LCC-S補償網(wǎng)絡的無線充電系統(tǒng)小信號模型[J]. 電工技術學報, 2022, 37(21): 5369-5376. Zheng Guangce, Zhao Kai, Wang Haoyu, et al. Small-signal model for inductive power transfer systems using LCC-S compensation[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5369-5376.
[22] Kang Jinsong, Liu Yusong, Sun Liangrong, et al. A reduced-order model for wirelessly excited machine based on linear approximation[J]. IEEE Transactions on Power Electronics, 2021, 36(11): 12389-12399.
[23] Cao Pengju, Tang Yunyu, Zhu Fan, et al. An IPT system with constant current and constant voltage output features for EV charging[C]//IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 2018: 4775-4780.
[24] 趙進國, 趙晉斌, 張俊偉, 等. 無線電能傳輸系統(tǒng)中有源阻抗匹配網(wǎng)絡斷續(xù)電流模式最大效率跟蹤研究[J]. 電工技術學報, 2022, 37(1): 24-35. Zhao Jinguo, Zhao Jinbin, Zhang Junwei, et al. Maximum efficiency tracking study of active impedance matching network discontinous current mode in wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 24-35.
Indirect Field Current Estimation Algorithm for Inductively Coupled Excitation Systems Based on Reduced-Order Dynamic Phasor Model
Fu Xinghe Xia Hongwei Xiong Jiaxin
(School of Electrical Engineering Southeast University Nanjing 210096 China)
Electrically excited synchronous machines (EESM) has the advantages of low dependence on rare earth permanent magnet materials, controllable excitation field and wide speed regulation range, and has a good application prospect in electric vehicles. However, the traditional EESM's brush-slip ring structure caused friction loss, increased maintenance costs, and reduced reliability. Therefore, brushless excitation has become an urgent requirement and a critical issue to be solved for EESM applications. Inductively coupled brushless excitation technology can effectively reduce friction losses and maintenance costs. Currently, mainstream brushless excitation methods include exciter type, harmonic excitation type, and wireless power transfer type. Wireless power transfer excitation can be divided into inductive coupling and capacitive coupling types. Inductive coupling excitation has a simple structure and high transmission efficiency, making it promising for applications.
However, the usage of brushless excitation technology will bring a new challenges. The excitation winding of brushless excitation system rotates with the rotor, and there is no direct electrical connection between the transmitting circuit and the receiving circuit, resulting in the acquisition of excitation current value facing technical challenges. To estimate the field current in similar scenarios has been the scope of some previous studies. The existing current estimation methods can achieve good results in their respective application fields, but there are some limitations and shortcomings, which need to be further developed.
In view of this, an indirect excitation current estimation method based on reduced order dynamic phasor model is proposed for series-series compensation inductively coupled brushless excitation system, which has the characteristics of simple calculation, strong load adaptability and low hardware cost. The topology structure of excitation energy transmission circuit is designed. The equivalent circuit model of excitation system is established. In order to avoid the influence of load parameter disturbance, an indirect current estimation method is proposed by using the inductive coupling relation and the secondary side reflection voltage as the intermediate variable. A reduced order dynamic phasor estimation model is established to further improve the estimation accuracy of the indirect estimation method. Considering the harmonic effect of subside current, an improved method of variable waveform coefficient is proposed. Finally, the validity of the current estimation method is verified by simulation and experiment.
The proposed excitation current estimation method has a good effect in series-series inductively coupled excitation system. And only one current sensor is required, resulting in low hardware cost. However, the detailed analysis and accurate acquisition of waveform coefficients in the rectification model need further research. In addition, the indirect estimation idea and the dynamic phasor model can be used to estimate the current of more inductively coupled excitation systems with non-series-series topology with high accuracy and high robustness, and broaden the application range of the proposed current estimation method.
Electrically excited synchronous machines, inductively coupled brushless excitation technology, current estimation algorithm, dynamic phasor model
10.19595/j.cnki.1000-6753.tces.230946
TM341
國家自然科學基金資助項目(51977035)。
2023-06-23
2023-08-06
付興賀 男,1978年生,博士,副教授,研究方向為高溫特種電機及其控制、伺服系統(tǒng)多源異構(gòu)擾動抑制。E-mail:fuxinghe@seu.edu.cn (通信作者)
夏宏偉 男,1998年生,碩士研究生,研究方向為電機控制。E-mail:220213084@seu.edu.cn
(編輯 赫蕾)