• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel energetic framework with the combination of 5,6-fused triazolo-triazine and nitropyrazole-tetrazole for energy-stability balanced explosive

    2023-10-09 04:29:48ChengchuangLiHaoGuJieTangGuojieZhangGuangbinChengHongweiYang
    Defence Technology 2023年9期

    Cheng-chuang Li,Hao Gu,Jie Tang,Guo-jie Zhang,Guang-bin Cheng ,Hong-wei Yang

    School of Chemistry and Chemical Engineering,Nanjing University of Science and Technology,Nanjing,210094,China

    Keywords:Fused and bridged rings Energetic skeleton Balanced energy-stability Energetic materials

    ABSTRACT In recent years,the introduction of fused rings own high density and low sensitivity has promoted the development of energetic materials.However,the development of energetic compounds containing fused and bridged rings by introducing multiple nitrogen heterocycles at different sites of fused rings is still difficult to progress,which seriously limits the emergence of advanced energetic compounds.In this study,a series of energetic materials choosing different nitrogen rich heterocycles at the vacancies of the fused ring,i.e.,neutral compound 5,6 and their ionic derivatives(compounds 7-12)were designed and synthesized.Compounds 5 and 6 were further confirmed by single crystal X-ray diffraction,while the crystal analysis and theoretical calculations were carried out to explore the relationship between crystal structure and physicochemical properties.All of the newly synthesized compounds (5-12) are insensitive to mechanical stimulation (IS >40 J;FS ≥342 N) and they own the high detonation velocity (D:8322-9075 m/s).Notably,hydrazine salt 11 own the higher detonation velocity (9075 m/s) and powder density(1.83 g/cm3),but exhibits lower sensitivity(IS>40 J)than the classical energetic compound RDX(8795 m/s,1.80 g/cm3,7.5 J).It is obvious that the combination of 5,6-fused triazolo-triazine and nitropyrazole-tetrazole may be a new energetic skeleton for synthesising the heterocyclic compounds with balanced energy-stability.

    1.Introduction

    As a unique branch of chemical materials,the strategies to design High Energy Density Materials(HEDMs)in civil and military has been widely concerned in recent decades[1].The design core of novel HEDMs is to balance high energy and low sensitivity at the same time [2].The existing nitrogen rich heterocyclic compounds like HMX and CL-20 have high heat of formation and the enhanced detonation performance,but their application is limited owing to the high impact and friction sensitivity [3-5].Therefore,it is necessary to give consideration to both the safety and the energy performance when exploring the synthesis strategy of new energetic frameworks.The following effective strategies for designing these kinds of ideal energetic compounds may be helpful for reference: (1) introducing amino groups into energetic frameworks to enhance intramolecular or intermolecular hydrogen bond interactions;(2) constructing energetic metal-organic frameworks;(3) constructing the fused ring skeleton with larger πconjugate system[6-8].

    In exploring the synthesis of modern energetic compounds,the construction of fused ring skeleton (3) is an efficient way to improve the performance of new high energetic compounds.Owing to the unique cage structure or polycyclic coplanar structure and the conjugated system,the fused ring compounds show positive heat of formation,high density and good stability [9,10].Various of fused energetic materials containing 1,2,4-triazine have been synthesized with good energetic performance and stability over recent years[11-14].In particular,the fused compounds based on 5-amine-1,2,4-triazine and tetrazole energetic framework have attracted the extensive attention because of their good properties.For instance (Scheme 1),7,8-dinitro-pyrazolium [5,1-C] [1,2,4]triazine-3-(1H-tetrazole-5-yl)-4-amine (I) and 7-nitro-[1,2,4]triazolo [5,1-c] [1,2,4]triazin-3-(1H-tetrazol-5-yl)-4-amine (II)display high detonation velocities(8755 m/s and 8651 m/s)and low sensitivities over 35 J[11,12].The ortho amino group and tetrazole ring on the fused ring stabilize the molecular structure of these energetic compounds through intramolecular and intermolecular hydrogen bond interactions [15].At the same time,incorporating the tetrazole group into the fused framework could improve the stability and density through hydrogen bonding interactions [16].

    However,the reported energetic compounds based on 5-amine-1,2,4-triazine and tetrazole energetic framework exhibit undesirably defects(Scheme 1).For instance,compoundIand compoundIIhave high density and detonation properties,but they own the poor thermal stability (Td(onset): 174 ℃ (I),181 ℃ (II)) [11,12].Moreover,3-nitro-6-(1H-tetrazol-5-yl)-[1-3]triazolo [5,1-c] [1,2,4]triazin-7-amine (III) have high sensitivity (IS: 5 J),while compounds

    IIIand 6-(1H-tetrazol-5-yl)tetrazolo [5,1-c] [1,2,4]triazin-7-amine(IV) own the low energy density (ρ: 1.77 g/cm3,1.795 g/cm3)[12,13].Herein,in order to design energetic compounds with high explosive properties and good molecular stability,we tried to develop the derivatives of 5,6-fused triazolo-triazine ring which contain 5-amine-1,2,4-triazine and tetrazole [17].There are some significant advantages of the 5,6-fused triazolo-triazine: (a)numerous energetic C-N,N-N,C=N and N=N bonds provide a large energy storage capacity;(b) low mechanical sensitivity;(c)enough vacancies for detonation groups.After that,the most urgent problem to be solved is to construct nitrogen rich heterocycle at the vacancies of the 5,6-fused triazolo-triazine ring.The nitropyrazole rings own high heat of formation and good stability,which can be effective moieties for improving comprehensive properties of energetic compounds [18-21].There are few reports that two vacancies of the fused ring backbone were explosive modified with different nitrogen rich heterocycles through the C-C bond.It is proved that the combination of 5,6-fused triazolo-triazine and nitropyrazole-tetrazole may be a new energetic skeleton for synthesising the heterocyclic compounds with balanced energystability.

    Based on the above analysis,two neutral energetic compounds5and6and their divalent cationic salts (compounds7-12) were synthesized (Scheme 1).The prepared compounds were characterized by multinuclear nuclear magnetic resonance (NMR)spectroscopy,elemental analysis (EA) and differential scanning calorimetry(DSC).In addition,based on the obtained single-crystal parameters,quantum chemistry calculations of compounds5and6are performed to investigate the structure-property relationships.

    2.Results and discussion

    2.1.Synthesis

    In this study,5-amine-3-(5-nitro-1H-pyrazol)-1H-1,2,4-triazol(1) can be easily synthesized according to the reported procedure[17].In the first step,compound1was used as the starting material to synthesize compound3through diazotization reaction and condensation reaction with a yield of 89.0%.(Scheme 2).According to the method in literature[11],a closed-loop reaction will occur in compound3when the temperature is heated to 85 ℃.However,only a small amount of flocs separated out after diluting the solution with water in the reaction system.We tried to increase the reaction temperature in a gradient of 10 ℃.To our delight,when the temperature rises to 105 ℃,compound5can be easily collected by filtering with a yield of 92.5%.Considering the energy limitation of compound5,nitro group was attempted to introduce into the vacancy of pyrazole ring by one-step nitration.However,compound6was not successfully obtained(Scheme 2)by using nitrate sulfur mixed acid.Therefore,5-amine-3-(4,5-dinitro-1H-pyrazol)-1H-1,2,4-triazol (2)was selected as substrate to synthesize compound6.Firstly,compound4(yield: 77.8%) were obtained following the similar procedure [22].After that,compound4was further converted to compound6with energy stability equilibrium by reacting with sodium azide at 105 ℃ (yield: 90.6%).

    Scheme 2.Synthetic routes of 5-6 and their energetic salts 7-12.

    In order to further improve the energy properties of neutral compounds,compounds5and6reacted with monovalent organic bases in acetonitrile at a stoichiometric ratio of 1:2 to produce the corresponding energetic salts7-12 with the yields ranging from 88.5% to 92.4% (Scheme 2).

    2.2.Single crystal X-ray structure analysis

    In order to determine the structure of the compounds to obtain more structural information,compounds5and6were characterized by single crystal X-ray structure determination.The crystals of both compounds5and6were recrystallized from dimethyl sulfoxide (DMSO),while their molecular structures are depicted in Fig.1(a) and Fig.2(a).Compound5?3DMSO crystallizes in the monoclinic space group P21(Z=2),which has a calculated density of 1.494 g/cm3at 173 K.Compound 6?3DMSO crystallizes in the monoclinic space group P21/n.And there be four molecules per unit cell (Z=4) with the calculated density of 1.526 g/cm3at 173 K.

    Fig.1.(a) The molecular structure of 5?3DMSO;(b) The planarity of 5?3DMSO;(c) The packing diagram and stacking diagram of 5? 3DMSO.

    Fig.2.(a) The molecular structure of 6?3DMSO;(b) The planarity of 6?3DMSO;(c) The packing diagram and stacking diagram of 6? 3DMSO.

    As shown in Fig.1(b),the dihedral angle(4.106°)confirmed that the triazolo-triazine ring and nitropyrazole ring of compound5?3DMSO are nearly in the same plane.At the same time,the torsion angles display that the nitro and pyrazole are almost coplanar(O4-N1-C1-N2 179.3 (13)°,O5-N1-C1-N2 -3.1 (18)°).On the other side,the amino group and the triazolotriazine bicyclic ring are almost coplanar(N9-C6-C7-N8 180.0(7)°,N9-C6-C7-C8 0.7(12)°).There is an intramolecular hydrogen bond existing in the crystal structure of compound 5?3DMSO(N9-H9A…N12)with the length of 3.012 ?.The crystals of compound 5 exhibit the classic face-to-face stacking,and the nearest distance between the two layers is 3.1 ?(Fig.1(c)).It is worth mentioning that the classic faceto-face stacking mode can effectively explain the low mechanical sensitivity of compound 5 [23].

    In the structure of compound6?3DMSO,the fused ring are not coplanar with pyrazole ring,which can be determined by C2-C3-C4-N5(-10.3(8)°)and C2-C3-C4-N6(170.0(5)°)as the dihedral angle of the fused-tetrazolo ring and triazole ring(Fig.2(b)).Furthermore,the two nitro groups in the ortho position on the pyrazole are slightly twisted out of plane.As observed,the torsion angles of one nitro and pyrazole are O1-N1-C1-N3 (10.8(7)°),O2-N1-C1-N3 -168.4 (5)°) while the other nitro group are O3-N2-C2-C1 (74.3 (6)°),O4-N2-C2-C1 (-106.4 (7)°).In the conjoined structure of fused and tetrazole rings,there is a stable system formed by intramolecular hydrogen bond between tetrazole ring and amino group(N10-H10B…N11 2.879 ?),which helps compound 6 to be more stable.As shown in Fig.2(c),a wave-like stacked crystal structure emerges during the stacking process with the interlayer distance of 2.9 ? (Fig.2(c)).

    2.3.Physic and energetic properties

    All powdered compounds were dried sufficiently at 25 ℃ to remove the solvent before testing,which was judged by differential scanning calorimetry (DSC).The energetic properties of compounds5-12are shown in Table 1.

    Table 1 The energetic properties of compounds 5-12.

    The densities of compounds5-12were measured by using argon gas pycnometer at room temperature [24].Among all these compounds,the compounds5and6(1.82 g/cm3,ρ=1.87 g/cm3)own the higher density than that of traditional energetic compound RDX(ρ=1.80 g/cm3,while the density of anionic salts7-12is in the range of 1.76-1.87 g/cm3.The heats of formation(△Hfc)of compounds5-12was calculated by using Gaussian 09,which exhibits the positive high numerical HOF values due to the high enthalpy of the fused rings.Generally speaking,high nitrogen organic salts have higher nitrogen content,formation enthalpy and detonation performance,but lower density than neutral compounds.Comparing the ionic compounds7-12,it is easy to find that the heat of formation of ammonium salt,hydroxylamine salt and hydrazine salt increase in turn.Although hydrazine salts8and11have a lower density than neutral compounds,their heat of formation is higher,which may be related to the high nitrogen content and rich N=N bonds of hydrazine salts.Using the experimental density at room temperature,the detonation characteristics were calculated by EXPLO5(version 6.01)program.The detonation velocity and detonation pressure of5-12lie in the range from 8322 m/s to 9075 m/s and 25.4-32.3 GPa,respectively.Among them,the detonation velocity of cationic salts7-12is higher than that of their neutral compounds.Notably,the detonation velocity performance of hydrazine salt11(D=9075 m/s) and hydroxylamine salt12(D=8843 m/s) is higher than that of RDX(D=8795 m/s).Hydrazine salts8and11have higher detonation properties than other cationic salts,which may be related to the higher nitrogen content,higher heat of formation and abundant N=N bonds of hydrazine salts.

    The sensitivity was tested with standard BAM fall hammer and BAM friction testing machine to evaluate the safety of compounds against external stimuli [25].All of the newly synthesized compounds5-12(IS>40 J,FS ≥342 N)own the lower sensitivity than the traditional explosives TNT (IS=15 J,FS=353 N).Herein,in order to better explain the relationship between sensitivity and structure of compounds5and6,the weak interactions were analyzed by employing two-dimensional fingerprint and Hirshfeld surface [26].Sensitivity can be demonstrated by the shape of the Hirshfeld surface.On the surface of Hirshfeld,red represents the area with high degree of close contact,and blue represents the area with low degree of close contact[27].The molecules of compounds5and6are approximately coplanar,and the red region (intermolecular interaction force) is large and evenly distributed (Fig.3(a) and Fig.3(b)).According to the two-dimensional fingerprints of compounds5and6in Figs.3(b)and 3(d),it can be easily found that the proportions of N-H,H-N,O-H and H-O in the total weak interaction are 61.8% and 59.0% of5and6,respectively.Compound5has a higher hydrogen bond ratio,which can partly explain its lower sensitivity than compound6.In addition,the π-π interaction(C-N and N-C interaction) (9.90%) of compound5is higher than that of compound6(9.30%).Compound5has the stronger π-π stacking interactions,making it more stable.Thus,the above results indicate that the energy of the compound might increase with the increasing of the nitro group number on the pyrazole ring,while the weak interaction will reduce in the meantime.In addition,the strong O-O interaction increases the possibility of accidental explosion,which also leads to higher sensitivity of compounds.As shown in Fig.3(e),the low percentages of O-O interactions for compounds5and6(1.00% for5and 1.90% for6) indicates that compound6has lower sensitivity.

    Fig.3.Hirshfeld surfaces,2D-fingerprint plots and percentage contribution for (a) 5 and (c) 6,(b) 5 and (d) 6,(e) (5 and 6).

    In order to study the effect of the weak intermolecular and intramolecular interactions on crystal packing of5and6,the noncovalent interaction (NCI) plots were applied [28].Generally,the blue region represents the hydrogen bond interaction,while the green flakes represent π-π interactions.As shown in Fig.4(a),the clear green layer between the two molecules indicates that the compound5own strong π-π interaction.Moreover,the larger green flakes indicate the stronger π-π interaction in compound5(Figs.4(a) and 4(b)).The extensive π-π interactions may suggest that compound5own low impact and friction sensitivity.In addition,there are obvious intramolecular hydrogen bonds in both compounds5and6(Figs.4(a)and 4(b)).The existence of hydrogen bond and strong π -π interaction contribute to the satisfactory density and low sensitivity of compounds5and6,which is consistent with the experimental results.

    Fig.4.NCI plots for compound (a) 5 and (b) 6.

    Fig.5.3D-DSC curve of all energetic compounds.

    The thermodynamic stability is the focus of the test to evaluate the explosives [29].The thermal stability of all the synthesized compounds5-12was determined by differential scanning calorimetry measurement.As shown in Fig.5,all compounds exhibit an exothermic peak,which indicates that they decompose without melting point.Compounds5and6began to decompose from 250 ℃ to 201 ℃,while their energetic salts5-12have the onset decomposition temperature between 194 ℃ and 261 ℃.It is noteworthy that compound5and6has the high peak temperature of 272 ℃ and 217 ℃,which is higher than the peak temperature of RDX (Td=204 ℃) (Fig.5).

    Compared with compound5,a concentrated red region near the pyrazole ring of compound6changes to a blue region,indicating that positive charge accumulation begins to change to negative charge accumulation.In order to further explore the difference of thermodynamic stability between mononitro fused compound5and dinitro fused compound6,the molecular electrostatic potential(ESP) analysis were drawn [30].Different color depths in the ESP diagram represent the ESP values in the molecules which was drawn by the Multiwfn software.As shown in Fig.6,compared with compound5,a concentrated red region near the pyrazole ring changes to the blue region of compound6,which indicates that the positive charge accumulation begins to change to negative charge accumulation.At the same time,with the introduction of nitro,the maximum positive charge in the red region of N-H position of pyrazole ring increases to 68.51 kcal/mol.In addition,the maximum electrostatic potential near amino group and N-H of tetrazole in compound6increases significantly compared with that of compound5(58.64 kcal/mol),which can be used to explain the worse stability of compound6(Figs.6(a)and 6(b)).

    Fig.6.Electrostatic potential (ESP) of (a) 5 and (b) 6.

    Compatibility refers to the ability when explosives are mixed or contacted with other materials,the physical and chemical properties of the system will not exceed the allowable range compared with the original components.It is necessary to consider the compatibility closely related to the safety and reliability of explosives.The DSC diagram at the heating rate of 2,5,10 and 20 K/min is displayed in Supporting Information,so as to obtain the decomposition peak temperature of the individual(mixed)system(Table 2).The peak temperature deviation value(ΔTp)is calculated according to the decomposition peak at different heating rates in Table 2.According to the Ozawa formula,the apparent activation energy (ΔE)with the changing rate ΔE/Eais calculated [31].The compatibility of samples can be judged according to ΔTpand ΔE/Ea.As shown in Table 3,the compatibility between RDX and compound 6,NC and compound 5 has reached compatibility level 1,which indicates that they have good compatibility respectively.At the same time,the compatibility of RDX with compound 5,NC and compound 6 reached compatibility level 2 respectively.The above analysis can be used to prove that compounds 5 and 6 have good safety and reliability when mixed with traditional energetic compounds.

    Table 2 Decomposition peak temperature under different beating rates.

    Table 3 Opinion of explosive’s compatibility.

    3.Conclusions

    In summary,with the combination of 5,6-fused triazolo-triazine and nitropyrazole-tetrazole,the energy-stability balanced compounds 5 and 6 were synthesized in this work.Meanwhile,a series of divalent cationic salts 7-9 and 10-12 were synthesized based on neutral compounds 5 and 6,respectively.Notably,all these fused compounds demonstrate low sensitivity(IS>40 J;FS ≥342 N)and the high detonation velocity (D: 8322-9075 m/s).Among them,energetic salt (11) exhibits better integrated properties(D=9075 m/s,IS >40 J,ρ=1.83 g/cm3) than that of the RDX(D=8795 m/s,IS=7.5 J,ρ=1.80 g/cm3).In order to study the relationship between structure and properties,the NCI,ESP,twodimensional fingerprint and Hirshfeld surface were applied.Through the analysis of compatibility,it can be proved that compounds 5 and 6 have better safety and reliability when mixed with traditional energetic compounds(RDX and NC).Based on the above analysis,it is obvious that the combination of 5,6-fused triazolotriazine and nitropyrazole-tetrazole is an effective method to design energetic materials with high energy and low sensitivity.

    4.Experimental section

    4.1.Synthesis of 3-carbonitrile-4-amino-7-(5-nitro-1H-pyrazol-3-yl)-[1,2,4]triazolo [5,1-c] [1,2,4]triazine (3)

    Compound1(1.97 g,10.0 mmol) was slowly added to the mixture of 3 ml of concentrated hydrochloric acid in 10 ml of water.The sodium nitrite(0.75 g,11.0 mmol)and water(6 ml)was added to the mixture at -5 ℃ for 1 h.Then,a mixture of malononitrile(0.50 g,10.5 mmol) and sodium acetate (3.97 g,11.7 mmol) was added to the system.The reaction system was stirred at -5 ℃ for 2 h,and then raised to 30 ℃ for overnight reaction.The precipitate was filtered,washed with ethanol and dried at 30 ℃ to give a brown solid(2.40 g,89.0%).1H NMR(500 MHz,DMSO-d6):6.05(br),8.92 (s) ppm.13C NMR (125 MHz,DMSO-d6) δ 111.6,115.5,132.6,134.2,136.8,144.6,155.85,158.1 ppm.Elemental analysis for C8H4N10O2(272.19):calcd.C 35.30,H 1.48,N 51.46%.Found:C 35.35,H 1.49,N 51.40%.

    4.1.1.Synthesis of 4-amine-3-(1h-tetrazol-5-yl)-7-(5-nitro-1Hpyrazol-3-yl)-[1,2,4]triazolo [5,1-c] [1,2,4]triazin (5)

    0.35 g of NaN3and compound3(1.36 g,5.0 mmol)was added to the 40 ml of N,N-dimethylformamide at 0 ℃ and stirred for half an hour.Slowly heat to 105 ℃ and react for 24 h.After that,a large number of solid precipitates out.The precipitate was filtered,washed with ethanol and dried at 30 ℃ to give a brown black solid(1.44 g,92.5%).1H NMR (500 MHz,DMSO-d6): 7.54 (s),8.99 (s),10.03(s)ppm.13C NMR(125 MHz,DMSO-d6):δ 101.9,120.8,136.3,140.40,152.5,156.2,156.4,156.8 ppm.IR (KBr): 3608,3426,3209,3153,3016,2970,2480,1641,1580,1567,1529,1469,1431,1385,1369,1305,1277,1256,1200,1174,1068,997,930,820,752,700,626,587 cm-1.Elemental analysis for C8H5N13O2(315.22):calcd.C 30.48,H 1.60,N 57.77%.Found: C 30.58,H 1.60,N 57.67%.

    Procedure for prepare salts 7-9.

    Add the 28% ammonia (0.02 g,1.4 mmol),98% hydrazine monohydride (0.71 g,1.4 mmol) and 50% hydroxylamine water(0.92 mg,1.4 mmol) to the mixed solution of compound5(0.31 g,1.0 mmol)in acetonitrile(15 ml)under stirring at 25 ℃,while the reaction was maintained for half an hour.The precipitate obtained by filtration was washed with acetonitrile.

    Dark brown solid,yield: 0.32 g,91.2%.1H NMR (500 MHz,DMSO-d6): 7.45 (s),7.66 (br) ppm.13C NMR (125 MHz,DMSO-d6):δ 102.3,126.8,139.6,140.4,156.0,157.7,158.4,159.2 ppm.IR (KBr):3741,3562,3146,2988,2813,1861,1620,1580,1518,1477,1475,1259,1196,1179,1112,1011,937,902,822,778,732,707,626,580 cm-1.Elemental analysis for C8H11N15O2(349.12): calcd.C 27.51,H 3.17,N 60.15%.Found: C 27.55,H 3.19,N 60.09%.

    Hydrazinium salt (8).

    Dark yellow solid,yield: 0.34 g,90.7%.1H NMR (500 MHz,DMSO-d6):7.27 (s),7.50 (s) ppm.13C NMR (125 MHz,DMSO-d6):δ 102.4,126.1,139.5,142.2,155.52,156.1,158.1,160.6 ppm.IR(KBr):3401,3307,3142,2845,2603,2169,1641,1585,1501,1486,1536,1486,1361,1291,1158,1070,1025,997,972,944,825,784,749,623,560 cm-1.Elemental analysis for C8H13N17O2(379.31): calcd.C 25.33,H 3.45,N 62.78%.Found: C 25.33,H 3.46,N 62.77%.

    Brown solid,yield:0.35 g,89.3%.1H NMR(500 MHz,DMSO-d6):7.31 (s),8.04 (br) ppm.13C NMR (125 MHz,DMSO-d6): δ 101.9,126.9,137.8,139.7,155.9,156.9,157.2,158.2 ppm.IR (KBr): 3674,3559,3121,2985,2897,2495,1861,1631,1571,1518,1455,1342,1243,1204,990,937,906,829,766,693,623,570 cm-1.Elemental analysis for C8H11N15O4(381.28): calcd.C 25.20,H 2.91,N 55.51%.Found: C 25.25,H 2.92,N 55.45%.

    4.1.1.1.Synthesis of 3-carbonitrile-4-amino-7-(4,5-dinitro-1H-pyrazol-3-yl)-[1,2,4]triazolo[5,1-c][1,2,4]triazine(4).Compound 4 was synthesized by using a synthetic method similar to that of compound 3,but compound 2 (2.40 g,10 mmol) was used instead of compound 1.Yellow solid,yield: 2.42 g,77.8%.1H NMR (500 MHz,DMSO-d6): 8.39 (s) ppm.13C NMR (125 MHz,DMSO-d6): δ 110.8,115.1,128.0,135.9,144.3,149.2,155.9,159.2 ppm.Elemental analysis for C8H3N11O4(317.79): calcd.C 30.29,H 0.95,N 48.58%.Found: C 30.38,H 0.96,N 48.48%.

    4.1.1.2.Synthesis of 4-amine-3-(1h-tetrazol-5-yl)-7-(4,5-dinitro-1Hpyrazol-3-yl)-[1,2,4]triazolo [5,1-c] [1,2,4]triazin (6).0.35 g of NaN3and compound 4 (2.02 g,6.0 mmol) were suspended in 40 ml of DMF.The solution was heated to 105 ℃ and reacted for 12 h.The solution is concentrated and then diluted with an aqueous solution of sodium chloride until the maximum amount of sediment is present.The precipitate was filtered,washed with ethanol and dried at 30℃ to obtain brownish black solid,yield:3.24 g,90.6%.1H NMR (500 MHz,DMSO-d6):7.75 (s),8.31 (s) ppm.13C NMR(125 MHz,DMSO-d6):δ 120.9,127.3,133.4,140.9,148.2,152.6,156.2,156.4 ppm.IR (KBr): 3653,3562,3205,2985,2987,2904,2141,1644,1557,1476,1399,1393,1340,1238,1193,1106,1018,944,902,850,759,679,644,580,490 cm-1.Elemental analysis for C8H4N14O4(360.21): calcd.C 26.28,H 1.12,N 54.44%.Found: C 26.30,H 1.15,N 54.39%.

    Procedure for prepare salts 10-12.

    Add the 28% ammonia (0.02 g,1.4 mmol),98% hydrazine monohydride (0.71 g,1.4 mmol) and 50% hydroxylamine water(0.92 mg,1.4 mmol) to the mixed solution of compound6(0.36 g,1.0 mmol) in acetonitrile(15 ml)under stirring at 25 ℃,while the reaction was maintained for half an hour.The precipitate obtained by filtration was washed with acetonitrile.

    Brown solid,yield:0.35 g,88.5%.1H NMR(500 MHz,DMSO-d6):δ 6.32 (s),7.66 (br) ppm.13C NMR (125 MHz,DMSO-d6): δ 125.9,128.2,137.4,139.5,149.5,155.7,156.3,156.8 ppm.IR (KBr): 3569,3167,2985,2127,1693,1567,1411,1492,1418,1322,1256,1151,1105,1067,1032,951,848,763,693,667,558 cm-1.Elemental analysis for C8H10N16O4(394.28): calcd.C 24.37,H 2.56,N 56.84%.Found: C 24.40,H 2.60,N 56.77%.

    4.1.1.3.Hydrazinium salt (11).Brown solid,yield: 0.39 g,92.4%.1H NMR (500 MHz,DMSO-d6): δ 6.33 (s),7.73 (br) ppm.13C NMR(125 MHz,DMSO-d6):δ 126.1,128.2,137.4,139.6,149.5,155.8,156.3,156.8 ppm.IR (KBr): 3664,3328,2985,2901,2614,2162,1630,2585,1480,1378,1350,1319,1249,1154,1105,1028,994,846,808,752,693,616,581 cm-1.Elemental analysis for C8H12N18O4(424.31):calcd.C 22.65,H 2.85,N 59.42%.Found:C 22.70,H 2.86,N 59.36%.

    Hydroxylammonium salt (12).

    Brown solid,yield:0.38 g,90.2%.1H NMR(500 MHz,DMSO-d6):δ 7.18 (s),7.78 (s) ppm.13C NMR (125 MHz,DMSO-d6): δ 125.3,128.2,137.3,139.7,149.5,155.8,157.6,159.7 ppm.IR (KBr): 3681,2995,2971,2897,2185,1637,1570,1518,1508,1445,1396,1329,1245,1165,1046,1009,1011,948,860,780,630,574 cm-1.Elemental analysis for C8H10N16O6(426.27):calcd.C 22.54,H 2.36,N 52.57%.Found: C 22.59,H 2.41,N 52.47%.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    This work is supported by the National Natural Science Foundation of China (Grant No.21875110,22075143) and the Science Challenge Project.H.Y thanks the Qing Lan Project for the grant.

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.dt.2022.10.003.

    午夜精品在线福利| 国产伦精品一区二区三区四那| 亚洲精品日本国产第一区| 成年人午夜在线观看视频 | 国产成人精品久久久久久| av免费观看日本| 搡老乐熟女国产| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品影视一区二区三区av| xxx大片免费视频| 五月天丁香电影| 性插视频无遮挡在线免费观看| 婷婷六月久久综合丁香| 国产一区二区三区av在线| 久久99热这里只有精品18| 欧美性感艳星| 两个人视频免费观看高清| av女优亚洲男人天堂| 黄片wwwwww| 日韩精品青青久久久久久| 亚洲成人精品中文字幕电影| 久久久精品欧美日韩精品| 午夜福利视频1000在线观看| 建设人人有责人人尽责人人享有的 | 男人爽女人下面视频在线观看| 性插视频无遮挡在线免费观看| 大片免费播放器 马上看| 一区二区三区乱码不卡18| 国产亚洲精品久久久com| 欧美激情在线99| 午夜福利视频精品| 午夜福利视频1000在线观看| 亚洲人与动物交配视频| 久久久久久久大尺度免费视频| 赤兔流量卡办理| 欧美精品一区二区大全| 欧美精品国产亚洲| 国产黄色视频一区二区在线观看| 久久久久久久久中文| 中文天堂在线官网| 欧美一区二区亚洲| 亚洲av电影不卡..在线观看| 国产老妇女一区| 草草在线视频免费看| 视频中文字幕在线观看| 成人亚洲精品av一区二区| 亚洲无线观看免费| 黄片wwwwww| 久久精品久久精品一区二区三区| 亚洲精品乱码久久久v下载方式| 伊人久久精品亚洲午夜| 久久精品夜夜夜夜夜久久蜜豆| 日本av手机在线免费观看| 日本黄色片子视频| 色综合色国产| 最近最新中文字幕免费大全7| 亚洲婷婷狠狠爱综合网| 97精品久久久久久久久久精品| 色尼玛亚洲综合影院| 久久鲁丝午夜福利片| 亚洲欧美精品专区久久| 久久热精品热| 久久久午夜欧美精品| 国产高清不卡午夜福利| 国产乱人视频| 国产一区二区亚洲精品在线观看| 国产片特级美女逼逼视频| 真实男女啪啪啪动态图| 中文天堂在线官网| 国产精品女同一区二区软件| 欧美成人精品欧美一级黄| 不卡视频在线观看欧美| 五月伊人婷婷丁香| 国语对白做爰xxxⅹ性视频网站| 精品亚洲乱码少妇综合久久| 午夜亚洲福利在线播放| 日韩av免费高清视频| 97热精品久久久久久| 直男gayav资源| 久久鲁丝午夜福利片| av免费观看日本| 一区二区三区四区激情视频| 精品久久久久久久久久久久久| 欧美激情国产日韩精品一区| 成人亚洲欧美一区二区av| 天天躁夜夜躁狠狠久久av| 美女大奶头视频| 亚洲国产av新网站| 国产亚洲午夜精品一区二区久久 | av卡一久久| 熟妇人妻不卡中文字幕| 亚洲第一区二区三区不卡| 国产欧美另类精品又又久久亚洲欧美| 国产黄色视频一区二区在线观看| 国产成人freesex在线| 日本午夜av视频| 亚洲国产精品成人综合色| 欧美极品一区二区三区四区| 在线a可以看的网站| 精品久久久久久电影网| 五月天丁香电影| 国产伦精品一区二区三区四那| 亚洲精品乱码久久久久久按摩| 成人特级av手机在线观看| 天天躁日日操中文字幕| 久久国内精品自在自线图片| 嫩草影院入口| 午夜精品在线福利| 一本一本综合久久| 国产黄色视频一区二区在线观看| 欧美日韩亚洲高清精品| 又黄又爽又刺激的免费视频.| 久久精品国产亚洲av涩爱| 日韩精品青青久久久久久| 精品国产三级普通话版| 亚洲内射少妇av| 观看美女的网站| 插阴视频在线观看视频| 午夜激情福利司机影院| 欧美高清性xxxxhd video| 黄色欧美视频在线观看| 成年版毛片免费区| 国产精品人妻久久久影院| 久久久久网色| 联通29元200g的流量卡| h日本视频在线播放| 五月伊人婷婷丁香| 久久6这里有精品| 国产乱来视频区| 国产精品久久久久久久久免| 亚洲在线自拍视频| 午夜免费男女啪啪视频观看| 黄色一级大片看看| 久久久久久九九精品二区国产| 婷婷色综合大香蕉| 午夜激情久久久久久久| av在线播放精品| 国产精品嫩草影院av在线观看| 色视频www国产| 久久久久久久亚洲中文字幕| 色综合色国产| av网站免费在线观看视频 | 2021少妇久久久久久久久久久| 中文字幕久久专区| 日韩欧美精品v在线| 一二三四中文在线观看免费高清| 久久久久久久大尺度免费视频| 黄色日韩在线| 亚洲内射少妇av| 国产精品国产三级国产专区5o| 在线播放无遮挡| 黄片wwwwww| 久久久久九九精品影院| 久久久久免费精品人妻一区二区| 色综合亚洲欧美另类图片| 美女cb高潮喷水在线观看| 午夜免费观看性视频| 自拍偷自拍亚洲精品老妇| 久久97久久精品| 中文字幕人妻熟人妻熟丝袜美| 我的老师免费观看完整版| 亚洲精品国产成人久久av| 成人二区视频| 国产午夜福利久久久久久| 久久久久久久午夜电影| 亚洲av在线观看美女高潮| 国产免费一级a男人的天堂| 青春草亚洲视频在线观看| 国产v大片淫在线免费观看| 国产伦理片在线播放av一区| 99久久中文字幕三级久久日本| 亚洲国产精品成人久久小说| 欧美不卡视频在线免费观看| 国国产精品蜜臀av免费| 直男gayav资源| 两个人的视频大全免费| 亚洲精品久久午夜乱码| 日韩视频在线欧美| 日韩伦理黄色片| 大香蕉97超碰在线| 99re6热这里在线精品视频| 国产精品av视频在线免费观看| 好男人在线观看高清免费视频| 尾随美女入室| av又黄又爽大尺度在线免费看| 国产中年淑女户外野战色| 免费看光身美女| 色吧在线观看| 蜜桃亚洲精品一区二区三区| 日韩欧美 国产精品| 一级二级三级毛片免费看| 直男gayav资源| 免费观看的影片在线观看| 韩国高清视频一区二区三区| av.在线天堂| 国产精品精品国产色婷婷| 九九爱精品视频在线观看| 寂寞人妻少妇视频99o| 国产高清国产精品国产三级 | 网址你懂的国产日韩在线| 日韩制服骚丝袜av| 天堂俺去俺来也www色官网 | 女人十人毛片免费观看3o分钟| 国产大屁股一区二区在线视频| 日韩av不卡免费在线播放| 国精品久久久久久国模美| 久久精品国产鲁丝片午夜精品| 一区二区三区高清视频在线| 久久午夜福利片| 黄色欧美视频在线观看| 久久精品久久久久久噜噜老黄| 久久久色成人| av福利片在线观看| 日本免费a在线| 亚洲不卡免费看| 在线观看av片永久免费下载| 最近手机中文字幕大全| 人妻制服诱惑在线中文字幕| 亚洲最大成人av| 亚洲久久久久久中文字幕| 一区二区三区高清视频在线| 一级毛片我不卡| 欧美高清成人免费视频www| 热99在线观看视频| 色视频www国产| 亚洲国产高清在线一区二区三| 欧美一区二区亚洲| a级一级毛片免费在线观看| 国内揄拍国产精品人妻在线| a级毛色黄片| 美女脱内裤让男人舔精品视频| 我要看日韩黄色一级片| 成人一区二区视频在线观看| 国产成人91sexporn| 非洲黑人性xxxx精品又粗又长| 天天一区二区日本电影三级| 国产精品无大码| 免费看不卡的av| 国产在线男女| 久久久久久九九精品二区国产| 午夜激情久久久久久久| 99久国产av精品国产电影| 又黄又爽又刺激的免费视频.| 国产精品1区2区在线观看.| 男人舔女人下体高潮全视频| 啦啦啦中文免费视频观看日本| 蜜桃亚洲精品一区二区三区| 亚洲,欧美,日韩| 久久99精品国语久久久| 久久久国产一区二区| 久久久色成人| 国产精品伦人一区二区| 成年女人看的毛片在线观看| 六月丁香七月| 看免费成人av毛片| 激情 狠狠 欧美| 久久久a久久爽久久v久久| 国产 一区精品| 久99久视频精品免费| av福利片在线观看| 卡戴珊不雅视频在线播放| 80岁老熟妇乱子伦牲交| 午夜激情久久久久久久| 免费黄频网站在线观看国产| 精品一区二区免费观看| 18禁动态无遮挡网站| 精品人妻偷拍中文字幕| 国产精品熟女久久久久浪| 国产成人精品福利久久| 最近中文字幕高清免费大全6| a级一级毛片免费在线观看| 日日撸夜夜添| 久久久久久久久久久丰满| 亚洲欧美精品专区久久| 三级国产精品片| 永久网站在线| 一区二区三区乱码不卡18| 亚洲欧美日韩东京热| 男女国产视频网站| 午夜视频国产福利| 九色成人免费人妻av| 日韩欧美国产在线观看| 成人国产麻豆网| 美女高潮的动态| 久久热精品热| 乱系列少妇在线播放| 国产精品久久久久久久电影| 好男人视频免费观看在线| 久久精品国产亚洲av涩爱| av一本久久久久| 国产日韩欧美在线精品| 高清日韩中文字幕在线| 高清在线视频一区二区三区| 又大又黄又爽视频免费| 麻豆av噜噜一区二区三区| ponron亚洲| 男插女下体视频免费在线播放| 成人高潮视频无遮挡免费网站| 激情 狠狠 欧美| 美女被艹到高潮喷水动态| 97超视频在线观看视频| 亚洲天堂国产精品一区在线| 99热网站在线观看| 国产在线一区二区三区精| 亚洲国产精品sss在线观看| 最近2019中文字幕mv第一页| 欧美精品一区二区大全| 在线免费十八禁| 在线天堂最新版资源| 国产精品久久久久久av不卡| 国产毛片a区久久久久| 亚洲欧洲日产国产| 成年女人在线观看亚洲视频 | 一级毛片我不卡| 欧美不卡视频在线免费观看| 女人十人毛片免费观看3o分钟| 国产午夜精品论理片| 欧美另类一区| 国产成人午夜福利电影在线观看| 淫秽高清视频在线观看| 97超碰精品成人国产| 麻豆国产97在线/欧美| 最近最新中文字幕大全电影3| 久久久久精品久久久久真实原创| 99热这里只有精品一区| 亚洲欧美精品专区久久| 99久国产av精品国产电影| kizo精华| 国产精品av视频在线免费观看| 日韩亚洲欧美综合| 精品酒店卫生间| av又黄又爽大尺度在线免费看| 秋霞在线观看毛片| 你懂的网址亚洲精品在线观看| 国产亚洲午夜精品一区二区久久 | 色尼玛亚洲综合影院| 边亲边吃奶的免费视频| 免费观看无遮挡的男女| 久久这里有精品视频免费| 亚洲熟女精品中文字幕| 久久国内精品自在自线图片| 赤兔流量卡办理| 久久精品久久久久久噜噜老黄| 日本欧美国产在线视频| 国产毛片a区久久久久| 亚洲18禁久久av| 久久精品久久久久久久性| 网址你懂的国产日韩在线| 国产成人精品婷婷| 久久久久久久大尺度免费视频| 波野结衣二区三区在线| 男女国产视频网站| 蜜桃亚洲精品一区二区三区| 午夜福利网站1000一区二区三区| 91久久精品国产一区二区成人| 精品久久久噜噜| 99re6热这里在线精品视频| 日日撸夜夜添| 日韩一区二区三区影片| 国产有黄有色有爽视频| 久久久精品94久久精品| 成人一区二区视频在线观看| 久久久久久国产a免费观看| 精品一区二区三卡| 国产精品三级大全| 免费看不卡的av| 久久精品综合一区二区三区| 少妇的逼水好多| 精品久久久久久久久av| 中文字幕av在线有码专区| 亚洲av免费在线观看| 观看免费一级毛片| 亚洲18禁久久av| 成人美女网站在线观看视频| 国产国拍精品亚洲av在线观看| 亚洲人成网站高清观看| 九色成人免费人妻av| 久久精品熟女亚洲av麻豆精品 | 99热这里只有精品一区| 亚洲伊人久久精品综合| 国产在视频线在精品| 国产成人91sexporn| 国产乱人偷精品视频| 亚洲伊人久久精品综合| 亚洲人成网站高清观看| 日韩av免费高清视频| 国产欧美日韩精品一区二区| 国产亚洲午夜精品一区二区久久 | 国产爱豆传媒在线观看| 亚洲精品成人av观看孕妇| 纵有疾风起免费观看全集完整版 | 亚洲成人av在线免费| 性插视频无遮挡在线免费观看| 黄色日韩在线| 18禁裸乳无遮挡免费网站照片| 亚洲av二区三区四区| 日本免费a在线| 日本熟妇午夜| a级毛片免费高清观看在线播放| 亚洲精品一区蜜桃| 只有这里有精品99| av在线播放精品| 亚洲在线观看片| 久久精品人妻少妇| 国产av国产精品国产| 久久精品国产鲁丝片午夜精品| 亚洲精品,欧美精品| 国产精品熟女久久久久浪| 亚洲欧美日韩东京热| 久久精品综合一区二区三区| 欧美高清性xxxxhd video| 亚洲精品亚洲一区二区| 高清欧美精品videossex| 高清视频免费观看一区二区 | 午夜精品一区二区三区免费看| 国内揄拍国产精品人妻在线| 在线免费观看不下载黄p国产| 欧美区成人在线视频| 在线观看美女被高潮喷水网站| 日韩电影二区| 亚洲综合色惰| 亚洲国产精品国产精品| 国产一区亚洲一区在线观看| 赤兔流量卡办理| 深爱激情五月婷婷| 欧美激情久久久久久爽电影| 97热精品久久久久久| 欧美三级亚洲精品| 日韩 亚洲 欧美在线| 国产av在哪里看| 亚洲精品456在线播放app| 国产一区二区在线观看日韩| 老师上课跳d突然被开到最大视频| 在线免费观看的www视频| 国产成人精品一,二区| 精品久久国产蜜桃| 欧美人与善性xxx| 91久久精品国产一区二区成人| 亚洲成人av在线免费| 日本欧美国产在线视频| 午夜日本视频在线| 女的被弄到高潮叫床怎么办| 啦啦啦中文免费视频观看日本| 岛国毛片在线播放| 最后的刺客免费高清国语| 永久网站在线| 韩国av在线不卡| 日本午夜av视频| 欧美成人午夜免费资源| 免费电影在线观看免费观看| 可以在线观看毛片的网站| 我要看日韩黄色一级片| 女人久久www免费人成看片| 欧美xxxx黑人xx丫x性爽| 身体一侧抽搐| 日韩一区二区三区影片| 免费播放大片免费观看视频在线观看| 又黄又爽又刺激的免费视频.| 色哟哟·www| 国产伦一二天堂av在线观看| 天天躁日日操中文字幕| 欧美区成人在线视频| 国产淫片久久久久久久久| 男女边摸边吃奶| 日韩在线高清观看一区二区三区| 成人毛片60女人毛片免费| 国产黄片视频在线免费观看| 91狼人影院| 91久久精品国产一区二区三区| 免费观看精品视频网站| 国产成年人精品一区二区| 亚洲精品乱码久久久v下载方式| 国产 一区精品| 久久99热6这里只有精品| av网站免费在线观看视频 | 国产成人精品一,二区| 国产成人免费观看mmmm| 午夜久久久久精精品| 日韩精品有码人妻一区| 免费黄网站久久成人精品| 少妇人妻一区二区三区视频| 国产单亲对白刺激| 免费观看a级毛片全部| 亚洲一区高清亚洲精品| 欧美日韩精品成人综合77777| 精品久久久久久久久久久久久| 少妇的逼好多水| 亚洲在久久综合| 国语对白做爰xxxⅹ性视频网站| 天天躁夜夜躁狠狠久久av| 久热久热在线精品观看| 国产成年人精品一区二区| 国产精品不卡视频一区二区| 美女内射精品一级片tv| 精品人妻偷拍中文字幕| 亚洲精品国产av蜜桃| 在线免费观看的www视频| 18+在线观看网站| 91久久精品国产一区二区成人| 身体一侧抽搐| 国产单亲对白刺激| 亚洲自偷自拍三级| 熟妇人妻久久中文字幕3abv| 18禁裸乳无遮挡免费网站照片| 日韩av在线免费看完整版不卡| 成人亚洲精品av一区二区| 亚洲国产欧美在线一区| 国产成人一区二区在线| 18禁裸乳无遮挡免费网站照片| 日韩精品青青久久久久久| 亚洲av不卡在线观看| 亚州av有码| 日韩成人伦理影院| 最后的刺客免费高清国语| 午夜日本视频在线| 亚洲精品一区蜜桃| 色综合站精品国产| 亚洲色图av天堂| 国产精品久久久久久精品电影小说 | 亚洲av在线观看美女高潮| 国产一区二区亚洲精品在线观看| 女人久久www免费人成看片| 国产精品久久久久久精品电影小说 | 亚洲内射少妇av| 日韩国内少妇激情av| 国产亚洲av嫩草精品影院| 汤姆久久久久久久影院中文字幕 | 美女大奶头视频| 真实男女啪啪啪动态图| 青青草视频在线视频观看| 九九在线视频观看精品| 韩国av在线不卡| 美女国产视频在线观看| kizo精华| 一本久久精品| 日本与韩国留学比较| 丝袜喷水一区| 久久综合国产亚洲精品| 九九在线视频观看精品| 麻豆av噜噜一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 麻豆成人av视频| 高清欧美精品videossex| 中文欧美无线码| 亚洲人成网站高清观看| 嫩草影院新地址| 精品一区二区三区人妻视频| 久久久久久久大尺度免费视频| 亚洲内射少妇av| 成年版毛片免费区| 久久精品夜色国产| 久久久久久伊人网av| 又大又黄又爽视频免费| 日韩欧美国产在线观看| 国产成人精品婷婷| 亚洲va在线va天堂va国产| 一级爰片在线观看| av免费在线看不卡| 久久久精品免费免费高清| 在线观看美女被高潮喷水网站| 97超碰精品成人国产| 国产免费视频播放在线视频 | 亚洲内射少妇av| 国产成人一区二区在线| 久久午夜福利片| 我的老师免费观看完整版| 秋霞在线观看毛片| 婷婷色综合大香蕉| 亚洲av在线观看美女高潮| 亚洲18禁久久av| 精品久久久久久久人妻蜜臀av| 97在线视频观看| 尾随美女入室| 国产成人a∨麻豆精品| 大话2 男鬼变身卡| 建设人人有责人人尽责人人享有的 | 丝袜美腿在线中文| 欧美xxⅹ黑人| 三级国产精品片| 91av网一区二区| 99热这里只有是精品50| 国产亚洲最大av| 成人高潮视频无遮挡免费网站| 婷婷色综合www| 亚洲激情五月婷婷啪啪| 亚洲精品第二区| 在线观看一区二区三区| 日日啪夜夜爽| 一级a做视频免费观看| 十八禁网站网址无遮挡 | 特大巨黑吊av在线直播| 菩萨蛮人人尽说江南好唐韦庄| 国产探花在线观看一区二区| av又黄又爽大尺度在线免费看| 免费看不卡的av| 啦啦啦中文免费视频观看日本| 精品不卡国产一区二区三区| 久久久久精品性色| 国产黄频视频在线观看| 国产精品久久久久久久久免| 菩萨蛮人人尽说江南好唐韦庄| 免费观看精品视频网站| 乱人视频在线观看| 国产成人精品福利久久| 午夜福利视频1000在线观看| 日韩一本色道免费dvd| 亚洲av不卡在线观看| 黑人高潮一二区| 久久久欧美国产精品| 女人十人毛片免费观看3o分钟| 欧美日韩一区二区视频在线观看视频在线 | 久久久午夜欧美精品| 丝瓜视频免费看黄片| 丰满乱子伦码专区| 国产白丝娇喘喷水9色精品|