• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication of electrostatic safety copper azide film with in situ growing MOF

    2023-10-09 04:29:22ShungWngLiYngZhenzhnYnJiminHnXiotingRenWeiLi
    Defence Technology 2023年9期

    Shung Wng ,Li Yng ,* ,Zhenzhn Yn ,Jimin Hn ,Xioting Ren ,Wei Li

    a State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing,100081,China

    b Science and Technology on Aerospace Chemical Power Laboratory,Hubei Institute of Aerospace Chemotechnology,Xiangyang,441003,Hubei,China

    Keywords:Carbon nanofilm Metal-organic framework Copper azide (CA)Electrostatic sensitivity Electrospinning

    ABSTRACT Due to its extremely low electrostatic sensitivity,copper azide primary explosive is greatly limited in practical applications.In this study,a composite film with Cu-MOF in-situ growth on carbon nanofilm was prepared by electrospinning and solvothermal methods,and CNF@Cu-N3 film with electrostatic safety was obtained by carbonization and azide later.Its electrostatic sensitivity (E50) was greatly increased from 0.05 mJ of raw materials to 4.06 mJ,and still maintained a good detonation performance which could successfully detonate the CL-20 secondary explosive.This is mainly due to the synergistic effect of the carbon film and the MOF structure,which greatly improves the conductivity of the entire system and the uniform distribution of copper particles,providing a new preparation strategy for metal azide film that is suitable for the micro-initiator device.

    1.Introduction

    With the development of new ammunition,fuze and other weapon systems for miniaturization,integration and intelligence,technologies related to microelectromechanical systems (MEMS)have also been widely used in the field of energy.Due to the miniaturization of ignition devices,lead-based primary explosives have gradually been unable to meet the energy requirements of MEMS micro-detonation devices.Instead,copper-based primary explosives with higher energy and more environmental protection are used.Among them,the detonation ability of copper azide(CA)is 8 times that of lead azide(LA),and the limit charge of detonating PETN is only 1/6 of that of LA.In addition,it is also environmentfriendly,and is the best candidate to replace traditional primers such as lead azide in recent years[1-5].If CA is used as a primary in MEMS fireworks,it can not only reduce the volume occupied by energetic materials,but also effectively increase the output energy of energetic devices,while reducing the required input energy to achieve high reliable detonation of quality.Unfortunately,CA has an extremely high sensitivity,and only 0.05 mJ of static electricity can cause its explosion,which greatly limits its practical application.

    To solve this problem of CA,many scholars tried adding carbon nanotubes,graphene,and other carbon-based materials to it to enhance the internal conductivity [6-12],thereby reducing the static accumulation and reducing its electrostatic sensitivity.Such as using electrodeposition technology to deposit nano-copper dendrites in carbon nanotubes,and then constructing copper azide-based energetic materials bound by carbon nanotubes through azide [13].Or prepared spherical copper azide/carbon/reduced graphene oxide (CA/C/rGO) composites [14].The CA nanoparticles were uniformly distributed on the carbon framework and got good electrostatic stability and ignition ability.Besides,researchers also used some template agents to prepare uniformly distributed porous copper precursors [15-18],Yu [17] used CuO nanorod arrays and porous copper films as precursors to in-situ synthesize copper azide films in NaN3solution by electricassisted azide method,which reduced the electrostatic sensitivity to a certain extent.Wang[18]has further strengthened the uniform distribution of copper particles by introducing MOF materials,and obtained copper azide encapsulated inside the MOF skeleton through the in-situ azide process,effectively reducing its electrostatic sensitivity.Most of the above reports received better sensitivity properties copper azide-based composites by introducing carbon skeletons with good electrical conductivity;or preparing uniformly distributed porous copper.However,these methods reduced the electrostatic sensitivity of CA to a certain extent,the effective combination of carbon materials and copper particles is still a big problem,and it is also not conducive to subsequent microcharge in the MEMS system.Therefore,it is imperative to develop a new strategy that is more suitable for MEMS and can more efficiently solve the problem of excessive electrostatic sensitivity caused by particle agglomeration.

    Carbon nanofilm (CNF),one-dimensional carbon supports prepared by electrospinning technology,has begun to receive great attention in the field of photoelectric catalysis [19-23].Especially when it is combined with metal-organic frameworks materials with high specific surface area,MOF-driven carbon-based composites exhibit excellent catalytic performance [24,25].These studies showed that the use of CNF in combination with MOF materials can not only play the role of the high specific surface area of MOFs,but also effectively and uniformly load metal particles in MOFs,further enhancing the electrical and thermal conductivity of the composites and the uniformly distributed of nanoparticles[26-33].What's more,the film material prepared by electrospinning is flexible and can be cut into any shape,which is conducive to matching with the MEMS charging cavity,and is safer than the filling of powder primary explosive.

    Herein,a novel MOF-driven carbon nanofilm (CNF@Cu-MOF)was fabricated by a simple electrospinning technique and solvothermal method.The copper azide-based primary explosive with good thermal stability and electrostatic safety was prepared by further carbonization and in-situ azide technology.The final prepared CNF@Cu-N3benefits from the uniform distribution of copper particles,and the excellent thermal and electrical conductivity of the carbon skeleton,with good thermal stability and significantly reduced electrostatic sensitivity.

    2.Experimental

    2.1.Materials

    PAN,stearic acid,copper acetate monohydrate(Cu(OOCCH3)2?H2O,Cu(OAc)2)and Sodium hydroxide(NaOH)were purchased from Beijing Chemical Industry with analytically pure.Sodium azide of analytical grade was purchased from Xiya Reagent.Trimesic acid (H3BTC),N,N-dimethylformamide (DMF) and absolute ethanol were purchased from Aladdin.

    2.2.Preparation of PAN and CNF

    The preparation process of the sample was shown in Fig.1.Firstly,1 g PAN was dissolved in 10 mL DMF with vigorous stirring at 80 ℃ for 2 h and obtained the precursor solution of electrospinning.Then,transferred the solution to a syringe equipped with a G20 needle (din=0.6 mm,dout=0.9 mm) and adjusted the electrospinning parameters:the output positive voltage was 15 kV,collection distance was 15 cm,and the spinning jet speed was 0.1 mm/min under room temperature.After the electrospinning was completed,the PAN-based membrane was gently peeled off,and the film was raised from room temperature to 800 ℃ at a heating rate of 5 ℃/min under a nitrogen atmosphere,carbonized at high temperature for 15 min,and then slowly lowered to room temperature,the black CNF sample was obtained.

    Fig.1.Schematic representation of the preparation of CNF@Cu-N3.

    2.3.Preparation of CNF@Cu-MOF and CNF@Cu

    CNF@Cu-MOF was prepared by a facile solvothermal method.Dissolved 0.25 g Cu(NO3)2?3H2O and 0.14 g of H3BTC in 20 mL deionized water and 20 mL DMF,respectively,and sonicate for 10 min.Then added 20 mL ethanol and the previously prepared CNF to continue sonication for 20 min.After that,the above solution was placed in a high-temperature reaction kettle made of polytetrafluoroethylene for reaction at 120℃ for 12 h.After cooling to room temperature,it was repeatedly washed with deionized water and DMF,and the remaining residues outside the film were filtered off,and finally a blue film material grown by Cu-MOF in situ was obtained.

    The CNF@Cu-MOF sample grown with Cu-MOF was carbonized at a high temperature of 600 ℃ for 15 min under a nitrogen atmosphere,and finally obtained the CNF@Cu.

    2.4.Preparation of CNF@Cu-N3

    The gaseous HN3generated by the reaction of stearic acid and sodium azide continuously and slowly passed through the CNF@Cu sample for 24 h,and NaOH was dissolved in water as a tail gas collection device to collect the remaining azide gas from the reaction,and finally CNF@Cu-N3was obtained.Caution!The prepared azide has high energy and is very sensitive,the whole reaction device should be carried out behind the explosion-proof device in the fume hood,and the prepared azide material should avoid shaking and friction as much as possible.

    2.5.Characterization

    The surface morphology,mean size,and size distribution of the prepared samples was characterized using scanning electronic microscopy(SEM,S-4800,HITACHI,Japan)at 15 kV equipped with an EDS system.Powder X-ray diffraction(XRD)pattern and Fourier transform infrared spectra (FT-IR) were used to analyze the composition of samples.And the thermal property of CNF@Cu-N3was analyzed using the differential scanning calorimeter(DSC),and the conditions of DSC were as follows: sample mass,0.5 mg;heating rate,10 ℃/min;nitrogen atmosphere,30 mL/min.

    Electrostatic sensitivity test: Test conditions: the electrode gap length is 0.12 mm and the charge capacitance is 250 μF.Primary explosives prepared were tested using the up and down method for each condition,and the electrostatic sensitivity (E50) for 50% probability of ignition was calculated.Flame sensitivity test: Place 20 mg of primary explosive prepared in a copper cap,and ignite it with a black powder column.Primary explosives prepared were tested using the up and down method for each condition,and the flame sensitivity (H50) for 50% probability of ignition was calculated.

    3.Results and discussion

    3.1.Characterization of CNF@Cu-MOF and CNF@Cu

    The sample maintained the original film shape during the whole preparation process.At first,a white PAN film was obtained by electrospinning,and its SEM showed a uniform fibrous shape(Fig.2).After high-temperature annealing,it became a black film with some wrinkles on the surface,and the carbonized sample became a layered carbon skeleton film from a micro perspective.After the solvothermal reaction,the surface of the CNF@Cu-MOF film gradually turned blue,and the Cu-MOF bulk with a particle size of about 5 μm-10 μm grew on the surface of the carbon film.After further carbonization,the surface of the sample turned black again,the MOF skeleton was carbonized,and the copper particles of 100 nm-200 nm are uniformly distributed on the carbonized MOF skeleton.

    Fig.2.Digital photograph of the (a) PAN,and SEM images of (b) and (c) PAN,(d) CNF,(e) CNF@Cu-MOF and (f) CNF@Cu.

    In addition,the CNF@Cu-MOF and CNF@Cu were further analyzed by elemental scanning using EDS equipped with SEM(Fig.3).It can be seen from the figure that the two samples are mainly composed of C,O,and Cu elements.After high-temperature carbonization,the MOF framework was carbonized,and more copper particles were exposed.It can be clearly seen that the copper distribution of CNF@Cu is much higher and evenly distributed.

    Fig.3.Energy dispersive X-ray spectroscopy (EDS) mapping of (a) CNF@Cu-MOF and CNF@Cu.

    To further elucidate the transformation relationship between these membranes,additional in-depth studies with XRD and FTIR were carried out.Fig.(4)a showed the XRD patterns of three samples of CNF,CNF@Cu-MOF and CNF@Cu.The peaks at 25.6°observed on the pattern of CNF was reflected the typical peak of graphitic materials,and both CNF@Cu-MOF and CNF@Cu samples retained this characteristic peak,indicating that the carbon skeleton has always existed.For the XRD pattern of the CNF@Cu-MOF,the main diffraction peaks were located at (2θ=) 6.6°,9.5°,11.7°,13.5°,14.8°,17.6°,19.1°,24.1°,26.1°,29.4°and 35.2°,which correspond to the diffraction characteristic peaks of Cu-MOF on the(200),(220),(222),(401),(331),(440),(600)(731),(751)(773)and(882),indicating the successful in-situ synthesis of MOF materials on carbon films.At the same time,there are still two obvious diffraction peaks at 43.4°and 53.5°,which correspond to the two characteristic peaks of copper respectively.After further carbonization,the characteristic fronts of Cu-MOF basically disappeared,leaving the characteristic peaks of copper and copper oxide,indicating that CNF@Cu mainly contains copper oxide and copper,which corresponds to the result of EDS element scanning.

    As presented in Fig.4(b),typical FTIR spectra were obtained for these three samples.The vicinity of 2200 cm-1corresponds to the absorption band of the nitrile group in CNF,and the 700 cm-1-750 cm-1corresponds to the C-H bending vibration of the benzene ring.After in situ growth of MOF,it can be clearly seen that asymmetric and symmetric stretching peaks of BTC carboxylic acid groups appear at 1372 cm-1-1444 cm-1and 1553 cm-1-1658 cm-1,and the stretching vibration peaks of Cu-O appeared at 521 cm-1and 600 cm-1indicating the success of in-situ synthesis of Cu-MOF on CNF film.After carbonization,the stretching peak of the BTC carboxylic acid group basically disappeared,while the vibration peaks of Cu-O at 624 cm-1and 668 cm-1were more obvious,indicating that CuO and other substances were left after the MOF framework was carbonized,which was consistent with the XRD results.

    Fig.4.(a) XRD patterns and (b) FTIR spectra of samples.

    3.2.Characterization of CNF@Cu-N3

    As shown in Fig.5(a)and Fig.5(b),after HN3gas was introduced into the CNF@Cu-N3sample,short columnar materials with a diameter of about 500 μm were formed in situ on the original carbon film and carbon framework,which still retained the pore structure of the MOF framework.The XRD spectra (Fig.5(c)) of CNF@Cu-N3exhibited typical Cu(N3)2patterns,suggesting the successful azide reaction process for CNF@Cu-N3.In addition,DSC thermal analysis technique was used to characterize the thermal properties of CNF@Cu-N3,and the heating rate of 10 ℃/min was used for testing.CNF@Cu-N3has a sharper downward exothermic peak at 210.4 ℃,which is the exothermic peak of CA,proving the success of the azide process again.It also indicated a very fast reaction of CA in the CNF@Cu-N3.And CNF@Cu-N3didn't show any decomposition even heated at 180 ℃,which means CNF@Cu-N3has a good long-term thermal stability that is critical during the transportation and storage of explosives.

    Fig.5.(a),(b) SEM images;(c) XRD pattern,and (d) DSC curve of CNF@Cu-N3.

    3.3.Sensitivity properties of CNF@Cu-N3

    To evaluate the stability and ignition performance,the electrostatic and flame sensitivities of CNF@Cu-N3were investigated(Fig.6).For comparison,the commonly used primary explosives and other modifications of copper azide samples were also shown in the figure.It can be clearly seen from Fig.6(b)that the prepared CNF@Cu-N3has good electrostatic sensitivity and moderate flame sensitivity.The electrostatic sensitivity was increased from 0.05 mJ of the raw material to 4.06 mJ,which is about 80 times that of the raw material,and is generally better than that of the modified samples in some studies,while the flame sensitivity of 46 cm,remained moderate.Compared with the other copper azide-based composites modified by carbon-based materials and MOF materials,CNF@Cu-N3can still stand out and have better sensitivity performance.This is mainly due to the synergistic use of carbon nanofilms and MOF materials.The CNF@Cu-N3not only has the excellent thermal conductivity and electrical conductivity of carbon nanofilms,but also has the characteristics of a large specific surface area of MOF.The copper particles are evenly distributed in the carbon skeleton,which effectively avoids the classic accumulation caused by agglomeration and greatly reduces the sensitivity.

    Fig.6.(a) Electrostatic sensitivities of CA-based samples and (b) the map of their electrostatic and flame sensitivities of them.

    3.4.Sensitivity change mechanism of CNF@Cu-N3

    As shown in Fig.7,the mechanism of electrostatic sensitivity change in CNF@Cu-N3and other modified samples by carbonbased materials (CA/C) was proposed.When the needle-like CA is gathered,the electrostatic charge cannot be taken away in time,and when the accumulated electrostatic charge is large enough,the CA will explode,which is the main reason for the extremely high electrostatic sensitivity of CA.When carbon nanotubes,graphene and other carbon-based materials are doped into CA raw materials,due to the excellent electrical conductivity of carbon materials,when electrostatic accumulation occurs in CA/C,most of the charges are exported by carbon-based materials,which reduces its electrostatic sensitivity and is not easy to be easily detonated,and greatly enhances the safety performance.However,during the combined process of CA and carbon materials,there will be agglomeration,and the Cu particles in the CA/C composites have uneven distribution,which will still lead to the local accumulation of electrostatic charges,and eventually lead to an explosion.CNF@Cu-N3was prepared by in-situ growth of Cu-MOF on carbon thin films,followed by carbonization and in-situ azide.The existence of the MOF framework ensures the uniform distribution of copper particles on the one hand,and on the other hand,it can also form a faraday cage to effectively avoid the accumulation of charges on the CA.In addition,the existence of the carbon film is equivalent to adding a layer of double insurance to the CNF@Cu-N3,fixing the MOF and effectively reducing the electrostatic potential energy generated by friction,it also further increases the effective current flow in the entire system.The accumulation of electrostatic charges is greatly reduced,which also greatly reduces the electrostatic sensitivity of the composites.Moreover,the sample CNF@Cu-N3remained a film eventually,which is of great significance for the subsequent application to MEMS microcharges.

    Fig.7.Schematics illustration of the mechanism of electrostatic sensitivity of (a) CA,(b) CA/C and (c) CNF@Cu-N3.

    3.5.Detonation performance of CNF@Cu-N3

    To further study the detonation performance of CNF@Cu-N3film,a micro-initiator device(Fig.8(a))using Ni-Cr bridge wire for electrical ignition was used to demonstrate its detonation performance.The CNF@Cu-N3film was cut into a suitable shape(?=1 m×1 m,m=0.0048 g),and loaded into the charge cavity in a micro-initiator device.Electric ignition is carried out using Ni-Cr bridge wire under the ignition capacitor of 35 μF and the ignition voltage of 30 V.After CNF@Cu-N3was ignited,it quickly changed from deflagration to detonation and detonated the CL-20 secondary explosive (m=0.006 g) in an instant,leaving obviously explosion traces on the charging plate (Fig.8(b)).The greater power of the explosion could also be seen from the dents and circular explosion marks on the identification block at the bottom.The explosion test demonstrated that CNF@Cu-N3film is a flexible energetic film that can maintain good detonation properties,and is also an attractive candidate for primary explosive.

    Fig.8.(a) The micro-initiator device and (b) the charge plate before and after detonation.

    4.Conclusions

    In summary,a flexible thin film material was prepared for use in MEMS micro-initiators.Carbon nanofilms with excellent thermal and electrical conductivity were used as flexible substrate materials,which can effectively enhance the thermal stability of CNF@Cu-N3and facilitate electron transport.At the same time,the existence of porous MOF structure in the precursor also effectively avoided the agglomeration of copper particles and charge reduction.Their synergistic effect of them effectively improved CNF@Cu-N3film's electrostatic safety (0.05 mJ-4.06 mJ).And the flexible substrate has the advantages of better safety,easy processing and molding than powder materials.In addition,the film material(0.0048 g)can successfully detonate the CL-20 secondary explosive,which not only improves the safety,but also maintains a good detonation performance.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant No.12102051),the State Key Laboratory of Explosion Science and Technology (Grant No.QNKT2022-04).

    丰满乱子伦码专区| 蜜桃久久精品国产亚洲av| av在线播放精品| 1024手机看黄色片| 男女那种视频在线观看| 99久久九九国产精品国产免费| 一进一出抽搐gif免费好疼| 1000部很黄的大片| 女同久久另类99精品国产91| 成人亚洲精品av一区二区| 老司机午夜福利在线观看视频| 国产日本99.免费观看| 天堂网av新在线| 九九在线视频观看精品| 国产私拍福利视频在线观看| 国产精品久久视频播放| 国产大屁股一区二区在线视频| 日韩,欧美,国产一区二区三区 | 男女那种视频在线观看| 国产午夜福利久久久久久| 亚洲成人中文字幕在线播放| 欧美zozozo另类| 欧美色欧美亚洲另类二区| 国产精品野战在线观看| 亚洲精品日韩在线中文字幕 | 久久九九热精品免费| 别揉我奶头 嗯啊视频| 天天一区二区日本电影三级| 国产精品无大码| 哪里可以看免费的av片| 久久精品影院6| 国产精品免费一区二区三区在线| 男人舔奶头视频| 欧美激情国产日韩精品一区| 日韩一区二区视频免费看| 亚洲国产日韩欧美精品在线观看| 国产精品电影一区二区三区| 少妇高潮的动态图| 成人毛片a级毛片在线播放| 国内精品美女久久久久久| 亚洲激情五月婷婷啪啪| 欧美日韩在线观看h| 精华霜和精华液先用哪个| 热99在线观看视频| 成人国产麻豆网| 97超视频在线观看视频| a级毛片免费高清观看在线播放| 久久九九热精品免费| 国产精品一区二区免费欧美| 人妻夜夜爽99麻豆av| 亚洲国产欧洲综合997久久,| 一进一出抽搐动态| 啦啦啦观看免费观看视频高清| 久久鲁丝午夜福利片| 免费av观看视频| 免费av观看视频| 99精品在免费线老司机午夜| 久久久久久久久中文| 国产av一区在线观看免费| av黄色大香蕉| 校园春色视频在线观看| 真实男女啪啪啪动态图| 欧美潮喷喷水| 亚洲最大成人中文| 色综合色国产| 黄色日韩在线| 身体一侧抽搐| av天堂在线播放| 免费看a级黄色片| 97超视频在线观看视频| 午夜激情福利司机影院| 欧美绝顶高潮抽搐喷水| 久久婷婷人人爽人人干人人爱| 久久韩国三级中文字幕| 97超级碰碰碰精品色视频在线观看| 能在线免费观看的黄片| 99久国产av精品国产电影| 美女 人体艺术 gogo| 国产久久久一区二区三区| 99热6这里只有精品| 久久国内精品自在自线图片| 熟女人妻精品中文字幕| 美女高潮的动态| 国产v大片淫在线免费观看| 亚洲在线观看片| 欧美+日韩+精品| 欧美高清成人免费视频www| 黄色配什么色好看| 国产黄片美女视频| 日本免费一区二区三区高清不卡| 熟妇人妻久久中文字幕3abv| 国产精品亚洲一级av第二区| 精品人妻偷拍中文字幕| 一个人免费在线观看电影| 老司机午夜福利在线观看视频| 黄色配什么色好看| 日韩大尺度精品在线看网址| 黄色配什么色好看| 亚洲国产欧洲综合997久久,| a级毛色黄片| 特级一级黄色大片| 色吧在线观看| 99久久精品国产国产毛片| 啦啦啦啦在线视频资源| 成人综合一区亚洲| 此物有八面人人有两片| 91久久精品国产一区二区成人| 免费黄网站久久成人精品| 国产高清不卡午夜福利| 亚洲国产欧美人成| 免费看日本二区| 久久久久国产网址| 国产蜜桃级精品一区二区三区| 午夜老司机福利剧场| 又黄又爽又刺激的免费视频.| 日本黄色视频三级网站网址| 嫩草影院精品99| 成人二区视频| 欧美三级亚洲精品| 黄色视频,在线免费观看| 国产v大片淫在线免费观看| 国产白丝娇喘喷水9色精品| 99热网站在线观看| 久久久久性生活片| 看十八女毛片水多多多| 亚洲内射少妇av| 久久精品国产亚洲网站| 亚洲色图av天堂| 国内揄拍国产精品人妻在线| 一级毛片久久久久久久久女| 久久久久久久午夜电影| 嫩草影院新地址| 毛片一级片免费看久久久久| 能在线免费观看的黄片| 久久人人爽人人片av| 欧美色视频一区免费| 精品人妻熟女av久视频| 日本一二三区视频观看| 国产人妻一区二区三区在| 免费在线观看成人毛片| 国产又黄又爽又无遮挡在线| av在线亚洲专区| 成人亚洲欧美一区二区av| 午夜福利在线在线| av国产免费在线观看| 日韩av在线大香蕉| 淫妇啪啪啪对白视频| 国产精品久久久久久亚洲av鲁大| 色播亚洲综合网| 一本精品99久久精品77| 午夜福利18| 免费搜索国产男女视频| 看片在线看免费视频| 日本五十路高清| 亚洲av熟女| 日本一本二区三区精品| 色哟哟哟哟哟哟| 久久久精品欧美日韩精品| 91精品国产九色| 变态另类成人亚洲欧美熟女| 少妇丰满av| 丰满的人妻完整版| 九色成人免费人妻av| 男女之事视频高清在线观看| 亚洲精品影视一区二区三区av| 久久久国产成人免费| 国产精品伦人一区二区| 欧美最黄视频在线播放免费| 看免费成人av毛片| 欧美日本视频| 中文字幕免费在线视频6| 真实男女啪啪啪动态图| 少妇熟女aⅴ在线视频| 身体一侧抽搐| 亚洲国产欧洲综合997久久,| 久久99热6这里只有精品| 欧美不卡视频在线免费观看| 色哟哟·www| 久久草成人影院| 女同久久另类99精品国产91| 日本免费a在线| 欧美另类亚洲清纯唯美| av在线蜜桃| 我要搜黄色片| 真实男女啪啪啪动态图| 一级a爱片免费观看的视频| 亚洲va在线va天堂va国产| 波多野结衣巨乳人妻| 欧美日韩精品成人综合77777| 禁无遮挡网站| 日本熟妇午夜| 男女做爰动态图高潮gif福利片| 舔av片在线| 免费人成视频x8x8入口观看| 成人无遮挡网站| 精品人妻熟女av久视频| 日本三级黄在线观看| 天堂av国产一区二区熟女人妻| 又黄又爽又免费观看的视频| 神马国产精品三级电影在线观看| 99热只有精品国产| 欧美性感艳星| 可以在线观看的亚洲视频| 九九爱精品视频在线观看| 国产精品国产高清国产av| 自拍偷自拍亚洲精品老妇| 深夜精品福利| 六月丁香七月| 最近2019中文字幕mv第一页| 国产色婷婷99| 国产爱豆传媒在线观看| 欧美成人一区二区免费高清观看| 免费一级毛片在线播放高清视频| 亚洲综合色惰| 中出人妻视频一区二区| 日韩一本色道免费dvd| av视频在线观看入口| 99精品在免费线老司机午夜| 免费av毛片视频| 少妇熟女欧美另类| 99久久久亚洲精品蜜臀av| 日本爱情动作片www.在线观看 | 2021天堂中文幕一二区在线观| 欧美xxxx黑人xx丫x性爽| 内射极品少妇av片p| 亚洲av中文av极速乱| 亚洲婷婷狠狠爱综合网| 日韩制服骚丝袜av| 亚洲欧美中文字幕日韩二区| 熟女电影av网| 美女xxoo啪啪120秒动态图| 国产在视频线在精品| 国产男靠女视频免费网站| 午夜免费激情av| 亚洲,欧美,日韩| 黑人高潮一二区| 女的被弄到高潮叫床怎么办| av天堂在线播放| 午夜福利视频1000在线观看| 精品福利观看| 一个人免费在线观看电影| 中文字幕久久专区| 男女下面进入的视频免费午夜| 亚洲人与动物交配视频| 国产一级毛片七仙女欲春2| 日本免费a在线| 免费人成在线观看视频色| 一级a爱片免费观看的视频| 简卡轻食公司| 国产亚洲精品久久久久久毛片| 美女xxoo啪啪120秒动态图| 亚洲在线观看片| 看非洲黑人一级黄片| 日韩 亚洲 欧美在线| 亚洲经典国产精华液单| 亚洲七黄色美女视频| 国产av麻豆久久久久久久| 热99在线观看视频| 99久国产av精品| 国产精品综合久久久久久久免费| 俺也久久电影网| 日韩,欧美,国产一区二区三区 | 亚洲精品日韩av片在线观看| 久久精品夜色国产| av在线蜜桃| 亚洲精品影视一区二区三区av| 国产精品不卡视频一区二区| 麻豆国产97在线/欧美| 亚洲美女搞黄在线观看 | 内地一区二区视频在线| 日本色播在线视频| 桃色一区二区三区在线观看| 日韩人妻高清精品专区| 麻豆成人午夜福利视频| 成年女人看的毛片在线观看| 插阴视频在线观看视频| h日本视频在线播放| 舔av片在线| 亚洲在线观看片| 成人国产麻豆网| 夜夜夜夜夜久久久久| 高清午夜精品一区二区三区 | 如何舔出高潮| 人人妻人人澡欧美一区二区| 精品欧美国产一区二区三| 99久久九九国产精品国产免费| 国产精品爽爽va在线观看网站| 久久久a久久爽久久v久久| 亚洲成人中文字幕在线播放| 色视频www国产| 精品一区二区三区人妻视频| 国模一区二区三区四区视频| 少妇熟女aⅴ在线视频| 我要看日韩黄色一级片| 中文字幕av在线有码专区| 国产男人的电影天堂91| 一本精品99久久精品77| 午夜a级毛片| 国产黄色视频一区二区在线观看 | 成人二区视频| 人人妻人人澡欧美一区二区| 麻豆精品久久久久久蜜桃| 12—13女人毛片做爰片一| 亚洲精品久久国产高清桃花| av天堂中文字幕网| videossex国产| a级一级毛片免费在线观看| 久久久成人免费电影| 精品一区二区三区视频在线| 国产极品精品免费视频能看的| 91久久精品国产一区二区成人| 成人永久免费在线观看视频| 黄色视频,在线免费观看| 中文字幕久久专区| 99在线人妻在线中文字幕| 中文字幕人妻熟人妻熟丝袜美| 男女下面进入的视频免费午夜| 久久久久性生活片| 午夜福利在线在线| 日韩亚洲欧美综合| 天堂网av新在线| 麻豆久久精品国产亚洲av| 波多野结衣高清作品| 两个人视频免费观看高清| 日韩中字成人| 精品久久久久久久末码| 欧美潮喷喷水| 日本与韩国留学比较| 欧美zozozo另类| 午夜久久久久精精品| 国产乱人视频| 我要搜黄色片| 精品人妻一区二区三区麻豆 | 97超视频在线观看视频| 久99久视频精品免费| 18+在线观看网站| 一区福利在线观看| 麻豆成人午夜福利视频| 亚洲欧美成人精品一区二区| 久久精品夜夜夜夜夜久久蜜豆| 国产精品美女特级片免费视频播放器| 又黄又爽又免费观看的视频| 久久人人爽人人爽人人片va| 欧美高清性xxxxhd video| 成年女人看的毛片在线观看| 亚洲精品国产成人久久av| 国产 一区 欧美 日韩| 男女啪啪激烈高潮av片| 欧美性感艳星| 欧美极品一区二区三区四区| 国产毛片a区久久久久| 亚洲av.av天堂| 精品人妻熟女av久视频| 熟妇人妻久久中文字幕3abv| 日韩精品有码人妻一区| 简卡轻食公司| 日本熟妇午夜| 久久久久久伊人网av| 亚洲国产色片| 免费av观看视频| 国产午夜精品久久久久久一区二区三区 | 久久精品国产自在天天线| 插阴视频在线观看视频| 精品久久久久久久人妻蜜臀av| 日本 av在线| 性欧美人与动物交配| 身体一侧抽搐| 91在线精品国自产拍蜜月| 国产色爽女视频免费观看| 国产午夜精品久久久久久一区二区三区 | 色播亚洲综合网| 99久久精品一区二区三区| 3wmmmm亚洲av在线观看| 麻豆国产av国片精品| 大香蕉久久网| 狂野欧美激情性xxxx在线观看| 久久精品国产亚洲av天美| 免费在线观看影片大全网站| 深爱激情五月婷婷| 又爽又黄a免费视频| 亚洲美女视频黄频| 午夜激情欧美在线| 国产精品亚洲美女久久久| 精品乱码久久久久久99久播| 成人综合一区亚洲| 久久久精品94久久精品| 97超碰精品成人国产| 噜噜噜噜噜久久久久久91| 看黄色毛片网站| 中文字幕熟女人妻在线| 欧美人与善性xxx| 亚洲av第一区精品v没综合| 不卡视频在线观看欧美| 国产精品久久久久久av不卡| 国产精品久久久久久久电影| 午夜精品在线福利| 91午夜精品亚洲一区二区三区| 最近的中文字幕免费完整| 又粗又爽又猛毛片免费看| 非洲黑人性xxxx精品又粗又长| 亚洲精品在线观看二区| 成人鲁丝片一二三区免费| 少妇人妻一区二区三区视频| 亚洲人成网站在线播| 久久99热这里只有精品18| 精品人妻一区二区三区麻豆 | 老司机午夜福利在线观看视频| 久久国产乱子免费精品| 九九爱精品视频在线观看| 日韩制服骚丝袜av| 老师上课跳d突然被开到最大视频| 色吧在线观看| 日韩大尺度精品在线看网址| 综合色av麻豆| 国产成人一区二区在线| 一夜夜www| 白带黄色成豆腐渣| 一本久久中文字幕| 1000部很黄的大片| 在线看三级毛片| 日韩欧美精品v在线| 校园春色视频在线观看| 99久久中文字幕三级久久日本| av在线老鸭窝| 久久久久久国产a免费观看| 国产亚洲精品综合一区在线观看| 精品免费久久久久久久清纯| 少妇高潮的动态图| 国产精华一区二区三区| ponron亚洲| 中文字幕精品亚洲无线码一区| 午夜福利18| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美成人综合另类久久久 | 免费看日本二区| avwww免费| 国产又黄又爽又无遮挡在线| 国产黄a三级三级三级人| 人人妻人人看人人澡| 免费看美女性在线毛片视频| 少妇熟女aⅴ在线视频| 欧美成人a在线观看| 欧美三级亚洲精品| 乱系列少妇在线播放| 婷婷精品国产亚洲av在线| 成人鲁丝片一二三区免费| 国内揄拍国产精品人妻在线| 亚洲人成网站高清观看| 久久久精品欧美日韩精品| 少妇熟女aⅴ在线视频| 亚洲高清免费不卡视频| 国内精品美女久久久久久| 在线免费观看不下载黄p国产| 日韩精品青青久久久久久| 老司机午夜福利在线观看视频| 亚洲欧美成人综合另类久久久 | 极品教师在线视频| 国产私拍福利视频在线观看| 精品久久久久久久人妻蜜臀av| 国产精品女同一区二区软件| 如何舔出高潮| 男女做爰动态图高潮gif福利片| 久久久久久久亚洲中文字幕| 欧美性猛交黑人性爽| 国产探花极品一区二区| 一级毛片我不卡| 成人av一区二区三区在线看| 国产精品一二三区在线看| avwww免费| av在线老鸭窝| 国产精品精品国产色婷婷| 成人高潮视频无遮挡免费网站| 欧美成人a在线观看| 国产一级毛片七仙女欲春2| 99热全是精品| 亚洲欧美成人综合另类久久久 | 色av中文字幕| 国产一区亚洲一区在线观看| 久久久久免费精品人妻一区二区| 卡戴珊不雅视频在线播放| 夜夜看夜夜爽夜夜摸| 乱系列少妇在线播放| 亚洲自拍偷在线| 久久精品国产亚洲av天美| 天堂√8在线中文| 日日摸夜夜添夜夜添av毛片| 嫩草影院入口| 亚洲成人久久性| 成人鲁丝片一二三区免费| 丰满的人妻完整版| 看片在线看免费视频| 亚洲av熟女| 日本-黄色视频高清免费观看| 99热6这里只有精品| 国产不卡一卡二| 99热这里只有是精品50| 久久久精品欧美日韩精品| 国产白丝娇喘喷水9色精品| 男人和女人高潮做爰伦理| 国产三级在线视频| 中文字幕人妻熟人妻熟丝袜美| 色综合站精品国产| h日本视频在线播放| 最近在线观看免费完整版| 精品人妻视频免费看| 天堂影院成人在线观看| 露出奶头的视频| 老熟妇乱子伦视频在线观看| 成人av在线播放网站| 国产午夜精品久久久久久一区二区三区 | 伦理电影大哥的女人| 亚洲四区av| 日韩欧美精品v在线| 国产大屁股一区二区在线视频| 麻豆国产97在线/欧美| 人妻制服诱惑在线中文字幕| 在现免费观看毛片| 97人妻精品一区二区三区麻豆| 亚洲天堂国产精品一区在线| 舔av片在线| 三级男女做爰猛烈吃奶摸视频| 51国产日韩欧美| 久久精品夜夜夜夜夜久久蜜豆| 欧美潮喷喷水| 免费搜索国产男女视频| 91久久精品电影网| 成年av动漫网址| 国产亚洲91精品色在线| 人妻制服诱惑在线中文字幕| 亚洲欧美日韩高清专用| www日本黄色视频网| 国产色爽女视频免费观看| 亚洲性夜色夜夜综合| 国产老妇女一区| 午夜激情欧美在线| 丰满的人妻完整版| 97超碰精品成人国产| 亚洲精品久久国产高清桃花| 日日啪夜夜撸| 国产大屁股一区二区在线视频| 亚洲性夜色夜夜综合| 在线观看免费视频日本深夜| 日本撒尿小便嘘嘘汇集6| 99热网站在线观看| 亚洲国产日韩欧美精品在线观看| 午夜老司机福利剧场| 自拍偷自拍亚洲精品老妇| 午夜久久久久精精品| av在线天堂中文字幕| 在线天堂最新版资源| 久久99热6这里只有精品| 在线免费观看的www视频| 国产成人一区二区在线| 在现免费观看毛片| 少妇丰满av| 免费一级毛片在线播放高清视频| 性插视频无遮挡在线免费观看| 日韩一本色道免费dvd| 日本在线视频免费播放| 亚洲最大成人av| 色综合色国产| 亚洲欧美清纯卡通| 日本黄大片高清| 国产日本99.免费观看| 一级a爱片免费观看的视频| 国产精品永久免费网站| 91av网一区二区| 亚洲精品乱码久久久v下载方式| 久久久久久伊人网av| 十八禁国产超污无遮挡网站| 免费av毛片视频| 免费观看精品视频网站| 国产精品爽爽va在线观看网站| 三级男女做爰猛烈吃奶摸视频| 麻豆乱淫一区二区| 亚洲精品色激情综合| 免费av观看视频| 免费观看的影片在线观看| 国产精品无大码| 成人一区二区视频在线观看| 毛片一级片免费看久久久久| 午夜福利在线在线| 精品一区二区三区av网在线观看| 一夜夜www| 中文字幕av成人在线电影| 日本三级黄在线观看| 黄色视频,在线免费观看| av.在线天堂| 欧美中文日本在线观看视频| 亚洲内射少妇av| 亚洲精品一卡2卡三卡4卡5卡| 久久99热6这里只有精品| 日本精品一区二区三区蜜桃| 国产精品一区二区三区四区免费观看 | 久久鲁丝午夜福利片| 91麻豆精品激情在线观看国产| 日日摸夜夜添夜夜添av毛片| 在现免费观看毛片| 国产高清激情床上av| 91狼人影院| 99在线视频只有这里精品首页| 久久精品国产亚洲av香蕉五月| 亚洲性久久影院| 精品一区二区三区视频在线| 国产蜜桃级精品一区二区三区| 国产精品亚洲美女久久久| 国产片特级美女逼逼视频| 精品一区二区免费观看| 欧美激情国产日韩精品一区| 乱系列少妇在线播放| 国产精品,欧美在线| 日韩精品中文字幕看吧| 久久久久性生活片| 国产欧美日韩精品亚洲av| 精品福利观看|