• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction of Quantum Dot-modified Ln-ZIF Hybrid Materials and Fluorescence Detection of Tannic Acid

    2023-10-08 02:39:04FANGZhouJIADongshengLITianmingLIYingZHANGDongliang
    發(fā)光學(xué)報(bào) 2023年9期

    FANG Zhou, JIA Dongsheng, LI Tianming, LI Ying, ZHANG Dongliang

    (School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China)

    Abstract: Lanthanide Eu3+-doped metal-organic backbone material Eu/ZIF-67 was prepared by a one-step hydrothermal method with a novel pleated sphere structure. A dual-emission fluorescent hybrid material Eu/ZIF-67@ZnO QDs with a zeolite imidazolium ester backbone was obtained by loading ZnO quantum dots onto the surface of Eu/ZIF-67 via coordination bonding. The structure, morphology and fluorescence sensing properties of the material were characterized in detail. Furthermore, the fluorescent material was found to display the dual fluorescence emission of ZnO quantum dots and lanthanide red europium ions. The fluorescence sensing performance of Eu/ZIF-67@ZnO QDs to tannic acid was further investigated, and the results indicated that tannic acid can effectively burst the characteristic fluorescence emission of Eu/ZIF-67@ZnO QDs at ZnO QDs with a detection limit of 0.029 9 μmol/L. Meanwhile,Eu/ZIF-67@ZnO QDs have the fluorescence response to tannic acid with anti-interference ability, which can be used as a cost-effective fluorescence sensor to specifically identify tannic acid.

    Key words: metal organic skeleton; quantum dots; dual-emission probes; tannic acid; fluorescent detection

    1 Introduction

    Tannins, or ellagic acid, is a multiphase phenolic compound widely distributed in nature and can be mainly classified into three categories: hydrolyzed tannins (HT), condensed tannins (CT) and fucoidan polyphenols (PT)[1-3]. The polyphenolic hydroxyl structure of tannins gives them a unique set of chemical properties and physiological activities, making them valuable in food, pharmaceutical and industrial production applications. The polyphenolic structure of tannins allows them to combine with proteins and alkaloids, as well as to complex and electrostatically interact with many metal ions, and to possess antioxidant and anti-inflammatory properties[4-9]. Therefore,tannins can be used as food antioxidants, detoxifying agents, sunscreen skin brighteners, topical coagulants, clarifying agents for beer and wine, coagulants for rubber,etc.[10]. In beer brewing, tannic acid can form precipitates with proteins in the wort, clarifying and making the beer transparent. However, excessive intake of tannic acid also has certain adverse effects on the human body, therefore, as a widely used food additive, the concentration level of tannic acid not only affects the flavor of food, but also plays a standard role in evaluating the quality of food[11-12].Currently, the detection of tannins mainly includes spectrophotometric[13], electrochemical[14-15], chromatographic[16]and colorimetric[17]methods. Although there are various detection methods, most of them exist poor selection specificity, complicated pre-processing or operation, expensive machine cost, and other problems, hence, it is of practical significance to explore a method for the accurate, rapid, and effective detection of tannins.

    Quantum dots are quasi-zero-dimensional nanomaterials with a semiconducting nanostructure in which electrons are bound in all three directions.With the ability to modify the emission spectrum by modulating the size and chemical composition, quantum dots also have excellent photostability, large Stokes shifts, low cytotoxicity, and high stability[18-20].Therefore, they have a wide range of applications in recent decades in the fields of biofluorescent labeling, luminescent devices, and fluorescence detection[21-25]. Among them, ZnO quantum dots are a novel semiconductor nanomaterial with a forbidden band width of 3.37 eV[26], which have great potential for applications in fluorescence detection and matter sensing due to their good biocompatibility and excellent optoelectronic properties[27-29]. Metal organic framework materials (MOFs) are a class of porous crystalline materials with a regular network structure formed by metal ions or clusters as the central binding ligands. MOFs have in-depth investigations and applications in sensing and storage separation of gases, catalysis, and drug mitigation due to their high specific surface area, low crystal density, tunable pore size, and easily modified functional structures[30-33]. Due to metal-organic framework materials have the features of designable pore surface functional sites and adjustable ligands, novel framework structures can be continuously designed to expand the application fields of lanthanide MOFs by introducing different central metal ions, loading, or embedding nanomaterials and designing novel ligands.

    Herein, we designed a simple & green strategy to construct a dual-emitting metal organic skeleton material. The yellow-emitting ZnO quantum dots were prepared by a chemical solution method and capped with amino groups to obtain amino-functionalized ZnO quantum dots; then a novel zeolite-like imidazolium ester backbone was constructed by doping with Co and lanthanide metal Eu to obtain a novel pleated sphere structured metal-organic framework. By loading ZnO quantum dots, a fluorescent hybrid material with double emission is finally obtained, which can realize the sensing detection of tannic acid and provide a simple and feasible method for the rapid and effective detection of tannic acid concentration.

    2 Experiment

    2.1 Preparation of Eu/ZIF-67@ZnO QDs

    2.1.1 Experimental Reagents

    Eu(NO3)3?6H2O, Zn(OAc)2?2H2O, L-arginine,L-alanine, glycine, L-aspartic acid, gallic acid, ellagic acid,(3-aminopropyl) tri-ethoxysilane(APTES),2-Methylimidazole, KBr and tannic acid(TA) were purchased from Adamas-beta Co., Ltd.(Shanghai,China). Methyl alcohol, L-ascorbic acid(AA), Mg-Cl2, NaCl, CuCl2, FeCl3?6H2O, FeCl2?4H2O, ZnCl2,KOH and CoCl2?6H2O were purchased from Sinopharm Chemical Reagent Co., Ltd.(Shanghai, China). Toluene, anhydrous ethanol, glucose, and sucrose were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.(Shanghai, China).

    2.1.2 Preparation Process

    (1)Preparation of amino-functionalized ZnO QDs

    The 2.79 mmol of Zn(OAc)2?2H2O was added to 15 mL of anhydrous ethanol in a water bath at 78 ℃ and refluxed under vigorous stirring until completely dissolved. The 6 mol of KOH was dissolved in anhydrous ethanol and refrigerated to 4 ℃, then slowly add dropwise to the ethanol solution of Zn-(OAc)2?2H2O. After stirring for 60 min at room temperature, 0.5 mmol of APTES was added to anhydrous ethanol/water (anhydrous ethanol∶water =10∶1), mixed well and added to the above reaction system, and continued to stir at room temperature for 6 h. After the reaction was completed, the precipitate was washed several times by centrifugation with toluene and anhydrous ethanol and dried, and the white translucent solid was obtained as ZnO QDs.

    (2) Synthesis of Eu-doped ZIF-67

    The mixture of 0.95 mmol of CoCl2?6H2O and 0.05 mmol of Eu(NO3)3?6H2O was dissolved in 10 mL of deionized water as solution A. The 20 mmol of 2-methylimidazole was dissolved in 10 mL of deionized water as solution B. After adding B to A and sonicating for 5 min, the mixed system was placed in a 50 mL reactor at 120 ℃ for 1 h. When reaction was finished, the mixture was washed several times by centrifugation using methyl alcohol and water, respectively, and dried to obtain the purple solid as Eu/ZIF-67.

    (3) Construction of Eu/ZIF-67@ZnO QDs

    The 20 mg of Eu/ZIF-67 was ultrasonically dispersed in 10 mL of deionized water, and 30 mg of ZnO QDs was dispersed in 10 mL of deionized water. The ZnO QDs solution was added dropwise to the aqueous solution of Eu/ZIF-67, stirred for 12 h at room temperature, and then centrifuged to obtain Eu/ZIF-67@ZnO QDs(Fig.1) .

    Fig.1 Experimental process and schematic diagram of Eu/ZIF-67@ZnO QDs

    (4) Sensing detection of tannic acid (TA)

    Eu/ZIF-67@ZnO QDs were configured into a homogeneous solution, to which a series of TA solutions with different concentrations were added dropwise, and the fluorescence intensity changes were measured using a fluorescence spectrometer. The concentration range of the added TA solution was 0.01-1 μmol/L. The fluorescence emission spectrum was measured at the excitation wavelength of 356 nm, where the emission wavelength was 505 nm for ZnO QDs and 615 nm for Eu/ZIF-67@ZnO QDs.The slit of the instrument was 5 nm in all fluorescence tests.

    2.2 Performance and Characterization of Samples

    The chemical structure of the samples was characterized by potassium bromide compression and scanned on a Fourier transform infrared spectroscopy (FT-IR) SPECTRUM 100 FT-IR spectrophotometer (Perkin Elmer, USA) at 4 000-400 cm-1. Scanning electron microscopy (SEM) was performed on a ZEISS Sigma 300 (Germany) with acceleration voltageEHT= 3.0 kV. Powder X-ray diffraction (XRD)was determined on a D8 ADVANCE X-ray diffractometer. The UV-Vis absorption spectra of the samples were obtained by analysis on a UV-Vis spectrometer(Lambda FEG450). The samples were analyzed for elemental content and functional group types using X-ray photoelectron spectroscopy (XPS)with a Thermo Scientific K-Alpha+, monochromatic AI Kα X-ray source(1 486.6 eV) at 12 kV and 72 W, respectively, instrument model and parameters.Fluorescence spectroscopy tests were obtained on a Shimadzu S220 V fluorescence spectrophotometer and an Edinburgh FLS920 fluorescence spectrometer with excitation sources of 450 W xenon lamp, μF 920H pulsed light source and EPL-375 nanosecond light source.

    3 Results and Discussion

    3.1 Structural Characterization of ZnO QDs,Eu/ZIF-67 and Eu/ZIF-67@ZnO QDs

    The surface morphology before and after the Eu/ZIF-67 composite ZnO QDs was characterized by scanning electron microscopy (EHT=3.00 kV,Mag=50.00 KX, SignalA=SE2,WD=7.9 mm). As the Fig.2(a) describes, the surface of the Eu-doped ZIF-67 is richly folded and has an overall spherical shape with a diameter of about 1.2 μm. The introduction of ZnO QDs resulted in fewer folds on the surface of the irregular spheres and many particles loaded on the surface, leading to a slight increase in the particle size of the spheres. The above results suggest that the ZnO QDs are probably loaded on the surface of the Eu/ZIF-67 skeleton by chemical bonding, and their introduction would not cause the collapse of the skeleton structure.

    Fig.2 The SEM images of Eu/ZIF-67(a) and Eu/ZIF-67@ZnO QDs(b)

    The chemical structures of ZnO QDs (a), ZIF-67 (b), Eu/ZIF-67 (c) and Eu/ZIF-67@ZnO QDs(d) were characterized by FT-IR. As Fig.3 suggests, where the broadband at 3 469 cm-1is attributed to the O—H stretching vibration and the absorption peaks at 2 925 cm-1and 3 134 cm-1are attributed to the C—H stretching vibration. Line a corresponds to ZnO QDs, where the absorption peak at 1 595 cm-1is attributed to N—H and the absorption band near 1 000 cm-1is attributed to the Si—O band from APTES. These characteristic peaks indicate that APTES was successfully encapsulated on the surface of ZnO QDs and ZnO QDs were successfully amino-functionalized[34-36]. Among the lines b, c and d, the peak clusters in the range of 680-1 500 cm-1are attributed to the stretching and bending vibrations of the imidazole ring, the absorption peak at 1 598 cm-1is attributed to the stretching vibrations of C—N, and the broad absorption band at 1 044 cm-1in d is attributed to Si—O in ZnO QDs[37-38]. The above results indicate the successful preparation of ZnO QDs and zeolite-like imidazole ester frameworks, and the introduction of ZnO QDs didn't destroy the skeleton structure of Eu/ZIF-67.

    Fig.3 FT-IR spectrum of ZnO QDs(a), ZIF-67(b), Eu/ZIF-67(c) and Eu/ZIF-67@ZnO QDs(d).

    The crystal structures of ZnO QDs, ZIF-67,Eu/ZIF-67 and Eu/ZIF-67@ZnO QDs were characterized by X-ray powder diffraction. As described in Fig.4, Eu/ZIF-67 and Eu/ZIF-67@ZnO QDs exhibit the same crystal structure at 2θ=7.39°(011),10.38°(002), 12.75°(112), 14.70°(022), 16.47°(013), 18.06°(222), 22.14°(114), 24.50°(233),26.70°(134) , which corresponds exactly to the ZIF-67 in the literature[37-38]. They demonstrate that the introduction of ZnO QDs did not cause the collapse of the crystal structure of Eu/ZIF-67. The ZnO QDs exhibit broad peaks at 31.78°(001),34.47°(002), 36.15°(101), demonstrating the successful preparation of ZnO QDs. Furthermore,the characteristic peaks at 36.46° and 34.54° for Eu/ZIF-67@ZnO QDs are attributed to the combination of ZnO QDs with Eu/ZIF-67, further demonstrating the successful preparation of europium iondoped zeolite-like imidazolium-based frameworks and Eu/ZIF-67 with ZnO QDs.

    Fig.4 XRD spectrum of ZnO QDs, ZIF-67, Eu/ZIF-67, Eu/ZIF-67@ZnO QDs and stimulated ZIF-67.

    The elemental composition of the prepared Eu/ZIF-67@ZnO QDs was analyzed by XPS. This material shows the characteristic peaks of C, O, N,Co, and Eu at 284.73, 530.95, 398.82, 781.03,1 134.71 eV, respectively. The contents of these five elements are 46.93%(C), 21.94%(O), 13.81%(N), 4.33%(Co), and 0.79%(Eu). Fig.5(b)-(f) represents the fine spectrum of C 1s, O 1s, N 1s, Co 2p, and Eu 3d, respectively. For the C 1s spectrum, three peaks appear at 284.3, 284.9,285.6 eV, which correspond to the characteristic peaks of C—C/C=C, N—C=N and C—O, respectively; for the O 1s spectrum, there are three peaks at 530.1, 531.1, 531.9 eV, indicating the presence ofM—O(Mfor Zn, Co, Eu), Si—O and materials in the sample that indicate the possible adsorption of presence of water, and also demonstrates the successful introduction of ZnO QDs[36,39]. For the N 1s spectrum, the peaks at 398.4, 398.9, 399.4,400.4 eV can be attributed to C=N—C, Co—N,C—NH—C and N—O, respectively. the Co 2p spectrum is composed of two energy levels concentrated at 780.9 eV and 796.9 eV, respectively, attributed to Co 2p3/2and Co 2p1/2. The peaks at 780.7, 782.3, 786.5 eV can be attributed to Co2+,Co3+and a satellite peak, respectively[37-38]. For the Eu 3d spectrum, 1 134.7 eV and 1 164.9 eV correspond to the Eu 3d5/2and Eu 3d3/2energy levels, respectively[40]. For the Zn 2p spectrum, 1 021.6 eV and 1 044.6 eV correspond to two energy levels, Zn 2p3/2and Zn 2p2/1, respectively. The above results are consistent with the FT-IR spectral results, further indicating the successful synthesis of Eu/ZIF-67@ZnO QDs.

    Fig.5 (a)XPS spectrum of Eu/ZIF-67@ZnO QDs. (b)C 1s spectrum of Eu/ZIF-67@ZnO QDs. (c)O 1s spectrum of Eu/ZIF-67@ZnO QDs. (d)N 1s spectrum of Eu/ZIF-67@ZnO QDs. (e)Co 2p spectrum of Eu/ZIF-67@ZnO QDs. (f)Eu 3d spectrum of Eu/ZIF-67@ZnO QDs.

    Tab.1 The XPS survey of Eu/ZIF-67@ZnO QDs of each element

    3.2 Fluorescent Properties of Eu/ZIF-67@ZnO QDs

    The excitation and generation spectra of the prepared ZnO QDs and Eu/ZIF-67@ZnO QDs were measured using a fluorescence spectrometer at room temperature. As shown in Fig.6(a), the optimal emission spectrum, and the optimal excitation spectrum of the ZnO QDs were determined at the excitation wavelength of 356 nm and the emission wavelength of 572 nm, respectively. Fig.6(b) indicates that the optimal emission spectra and the optimal excitation spectra of Eu/ZIF-67@ZnO QDs were determined at 356 nm excitation wavelength and 615 nm emission wavelength, respectively, where the emission peak at 554 nm was attributed to the yellow emission of ZnO QDs and the emission peak at 615 nm was attributed to the characteristic jump of Eu at5D0-7F2. The two emission peaks surface the successful doping of Eu and the successful introduction of ZnO QDs.

    Fig.6 (a)The optimal excitation and emission spectrum of ZnO QDs(inset is a photograph of aqueous ZnO QDs under a 365 nm UV lamp). (b)The optimal excitation and emission spectrum of Eu/ZIF-67@ZnO QDs.

    To investigate the sensitivity of Eu/ZIF-67@ZnO QDs for the detection of TA, the fluorescence response of this fluorescent probe to different concentrations of TA was carried out. Firstly, time and temperature conditions optimization experiments were carried out for the detection of TA. Fig.7(c)-(d) illustrate that, when TA was added, the fluorescence response value of Eu/ZIF-67@ZnO QDs completed the response within 1 min with little subsequent change as the time increased. Then the response of Eu/ZIF-67@ZnO QDs to TA was investigated at different incubation temperatures. The fluorescence response decreases continuously as the temperature increases. Considering the environmental temperature of 20-28 ℃ for TA in beer brewing,25 ℃ was chosen as the real-time detection temperature. Fig.7(a) reveals that the fluorescence intensity of Eu/ZIF-67@ZnO QDs at both quantum dots and rare earth ions gradually decreases with the increase of TA concentration, we selected the fluorescence intensity change at ZnO QDs as the response signal.As shown in Fig.7(b), it can be analyzed that the probe has a good fluorescence response to TA in the concentration range of 0-0.2 μmol/L, and its weakening trend is well in line with the first order exponential decay, and the fluorescence response value(F/F0) shows a good linear relationship with the concentration of TA. A linear fit was performed to obtain a linear regression equation ofy= -0.8471x+0.9699(R2= 0.996). The fit was calculated using the Stern-Volmer equation as follows.

    Fig.7 The fluorescence response values(F/F0) of Eu/ZIF-67@ZnO QDs to TA with respect to temperature(a) and reaction times(b). The fluorescence emission spectrum of Eu/ZIF-67@ZnO QDs after the addition of different concentrations of TA(λex=356 nm)(c) and fluorescence response values(F/F0) versus TA concentration(inset is a linear plot)(d).

    whereCis the concentration of tannic acid (TA),KSVis the Stern-Volmer constant,Fis the fluorescence intensity at ZnO QDs after the addition of TA,andF0is the fluorescence intensity of blank Eu/ZIF-67@ZnO QDs at ZnO QDs. The detection limit(LOD)Dof the probe for TA can be calculated from the 3σequation as 0.029 9 μmol/L:

    σis the standard deviation obtained from 20 consecutive scans of the probe blank solution, andSis the slope of the linear regression equation.

    We compared the Eu/ZIF-67@ZnO constructed in this work with the recent related work. As shown in Tab.2, it is observed that the Eu/ZIF-67@ZnO fluorescent probe prepared in this work possesses better sensitivity and lower detection limit for the detection of TA. From the above results, it is concluded that the Eu/ZIF-67@ZnO QDs probe has good fluorescence sensing properties for TA and can be used as an excellent sensor to measure the concentration level of TA.

    Tab.2 The comparison table of Eu/ZIF-67@ZnO for detecting TA with other works

    To further investigate the specificity and selectivity of Eu/ZIF-67@ZnO QDs probes for the detection of TA, anti-interference tests were performed for common substances, including Mg2+, Na+, Cu2+, Ca2+,Zn2+, Fe2+, Fe3+, Cl-; the common amino acids L-arginine, L-ascorbic acid (AA), L-alanine, glycine, L-aspartic acid, gallic acid, and ellagic acid; sugars such as glucose, sucrose. The concentration of TA was 0.01 μmol/L and the concentration of all other interfering substances was 1 μmol/L. We examined the fluorescence response changes of the Eu/ZIF-67@ZnO QDs probes for these substances. Compared with other anti-interference substances, tannic acid can effectively burst the fluorescence of Eu/ZIF-67@ZnO QDs(Fig.8). These results demonstrate that Eu/ZIF-67@ZnO QDs can be used as a fluorescent sensor with good sensitivity and specificity for the selective detection of TA.

    Fig.8 The fluorescence emission spectrum of Eu/ZIF-67@ZnO QDs after dropwise addition of different antiinterference substances at 356 nm(F is the fluorescence intensity at ZnO QDs after the addition of different anti-interference substances, and F0 is the fluorescence intensity of blank Eu/ZIF-67@ZnO QDs at ZnO QDs).

    3.3 Possible Mechanism of Fluorescence Quenching of Eu/ZIF-67@ZnO QDs

    The UV absorption spectra of Eu/ZIF-67@ZnO QDs and the detection substance tannic acid (TA)were scanned by UV-Vis spectrophotometer. From the absorption spectrum of TA, it can be clearly seen that TA has a broad absorption peak within 200-350 nm, while the fluorescence emission characteristic peak of ZnO QDs of Eu/ZIF-67@ZnO QDs is at 505 nm, and its absorption spectrum does not match with the luminescence spectrum of Eu/ZIF-67@ZnO QDs. According to the above results, we speculate that the fluorescence quenching of ZnO QDs is not caused by TA absorption, which excluding the fluorescence quenching caused by the fluorescence resonance energy transfer. In addition, the position of the UV absorption peak almost did not change before and after adding TA(Fig.9(a)). As illustrated in Fig.9(b), the UV absorption peak of Eu/ZIF-67@ZnO QDs occurs a blue-shift trend with the increase of the concentration of TA. So, it can be inferred that the formation of zincate complexes between TA and quantum dots due to the charge transfer. And it can be attributed to the dynamic collision between quantum dots and TA, resulting in electron transfer between quantum dots and aromatic groups of TA.As shown in Fig.9(c), there is a good overlap between the UV absorption spectra and the fluorescence excitation and emission spectra of Eu/ZIF-67@ZnO QDs, therefore, we speculate that the internal filtration effect is also one of the possible causes of the fluorescence burst. In summary, the fluorescence quenching of Eu/ZIF-67@ZnO QDs by TA may be generated based on the synergistic effects of both charge transfer and internal filtration effects[47].

    Fig.9 (a)UV-Vis spectroscopic of TA, Eu/ZIF-67@ZnO QDs, and Eu/ZIF-67@ZnO QDs +TA. (b)UV-Vis spectroscopic of Eu/ZIF-67@ZnO QDs with different concentrations of TA added. (c)The UV-Vis spectroscopic, excitation and emission spectrum of Eu/ZIF-67@ZnO QDs. (d)The mechanism of tannic acid detection by Eu/ZIF-67@ZnO QDs.

    4 Conclusion

    In summary, a new pleated spherical zeolitelike imidazole ester skeleton material Eu/ZIF-67 was prepared by doping with lanthanide Eu, and aminofunctionalized quantum dots ZnO QDs were successfully loaded on the surface to obtain a fluorescent hybrid material Eu/ZIF-67@ZnO QDs with double emission. It was found that this fluorescent hybrid material could achieve fluorescence detection of TA with good selective specificity and detection sensitivity, and the detection limit was as low as 0.029 9 μmol/L, and the fluorescence response could occur rapidly within 1 min. It provides a new idea for the economical and efficient measurement of TA concentration levels.

    Response Letter is available for this paper at:http://cjl.lightpublishing.cn/thesisDetails#10.37188/CJL.20230048.

    久久99蜜桃精品久久| 男人和女人高潮做爰伦理| 免费观看a级毛片全部| 国产成人a区在线观看| 搡老妇女老女人老熟妇| 亚洲欧美一区二区三区黑人 | 国产成人91sexporn| 亚洲精品日韩在线中文字幕| 黄片无遮挡物在线观看| 婷婷六月久久综合丁香| 午夜福利网站1000一区二区三区| 久久鲁丝午夜福利片| 国产成人精品一,二区| 亚洲精品一区蜜桃| 精品久久久久久久人妻蜜臀av| 亚洲国产日韩欧美精品在线观看| 亚洲在久久综合| 亚洲人成网站在线观看播放| 少妇熟女aⅴ在线视频| 色网站视频免费| 亚洲在线观看片| 天堂√8在线中文| 国产国拍精品亚洲av在线观看| 精品久久久久久电影网| 最近最新中文字幕免费大全7| 日韩av免费高清视频| 国产成人免费观看mmmm| 日本与韩国留学比较| 国产一区有黄有色的免费视频 | 亚洲精华国产精华液的使用体验| 天堂网av新在线| 99热这里只有是精品在线观看| 国产精品久久视频播放| 我要看日韩黄色一级片| 99久久精品热视频| 日韩精品青青久久久久久| 99久久九九国产精品国产免费| 日韩电影二区| 久久久久久久大尺度免费视频| 久久久色成人| 最近中文字幕高清免费大全6| 亚洲18禁久久av| 亚洲国产精品sss在线观看| 欧美xxⅹ黑人| 少妇熟女aⅴ在线视频| 秋霞伦理黄片| 日日啪夜夜爽| 熟女人妻精品中文字幕| 国产亚洲一区二区精品| 国产中年淑女户外野战色| 蜜桃亚洲精品一区二区三区| 人妻系列 视频| 最近2019中文字幕mv第一页| 亚洲欧美日韩无卡精品| 老司机影院毛片| a级一级毛片免费在线观看| 91精品国产九色| 亚洲国产精品成人久久小说| 一二三四中文在线观看免费高清| 高清av免费在线| 热99在线观看视频| 日韩精品青青久久久久久| 九九在线视频观看精品| 欧美+日韩+精品| 免费人成在线观看视频色| 晚上一个人看的免费电影| 久久久久网色| 一二三四中文在线观看免费高清| 国产亚洲最大av| 国产一区亚洲一区在线观看| 国产不卡一卡二| 亚洲精品乱码久久久久久按摩| 日本-黄色视频高清免费观看| 亚洲电影在线观看av| 99久久精品一区二区三区| 简卡轻食公司| 久久久久久久久久黄片| 老司机影院毛片| 久久精品国产亚洲av天美| 成人午夜高清在线视频| 日韩欧美精品v在线| 中国美白少妇内射xxxbb| 欧美xxxx性猛交bbbb| 国产成人福利小说| 成人毛片60女人毛片免费| 亚洲人成网站高清观看| 免费在线观看成人毛片| 女人被狂操c到高潮| 久久精品久久精品一区二区三区| 免费高清在线观看视频在线观看| 联通29元200g的流量卡| 18禁裸乳无遮挡免费网站照片| 老女人水多毛片| 日本爱情动作片www.在线观看| 蜜臀久久99精品久久宅男| 青春草视频在线免费观看| 最后的刺客免费高清国语| 久久久久久伊人网av| 国产男女超爽视频在线观看| 蜜桃久久精品国产亚洲av| 嫩草影院新地址| 国产一区二区三区av在线| 亚洲国产日韩欧美精品在线观看| 久久精品国产亚洲av天美| 久久97久久精品| av免费观看日本| 伊人久久精品亚洲午夜| 成年免费大片在线观看| 青青草视频在线视频观看| 欧美日韩在线观看h| 欧美人与善性xxx| 蜜桃亚洲精品一区二区三区| 91在线精品国自产拍蜜月| 国产精品福利在线免费观看| 中文资源天堂在线| 国产精品伦人一区二区| 最近中文字幕高清免费大全6| 国产一区二区在线观看日韩| 白带黄色成豆腐渣| 色尼玛亚洲综合影院| 精品久久久精品久久久| 七月丁香在线播放| 国产免费福利视频在线观看| 国产免费又黄又爽又色| av女优亚洲男人天堂| 少妇裸体淫交视频免费看高清| 亚洲国产av新网站| 一个人看的www免费观看视频| 熟妇人妻久久中文字幕3abv| ponron亚洲| 欧美激情国产日韩精品一区| 中文字幕制服av| 欧美成人一区二区免费高清观看| av免费在线看不卡| 亚洲av日韩在线播放| 天堂av国产一区二区熟女人妻| 午夜激情欧美在线| 一级毛片久久久久久久久女| 日韩中字成人| 九九在线视频观看精品| 亚洲丝袜综合中文字幕| 青春草国产在线视频| 亚洲欧美日韩卡通动漫| 亚洲美女视频黄频| 亚洲欧美日韩卡通动漫| 亚洲欧美成人综合另类久久久| av天堂中文字幕网| 联通29元200g的流量卡| 色视频www国产| 国产成人a∨麻豆精品| 国产欧美另类精品又又久久亚洲欧美| 久久热精品热| 伦精品一区二区三区| av线在线观看网站| 亚洲国产色片| 欧美日韩视频高清一区二区三区二| 精品国产三级普通话版| 日本黄大片高清| 欧美高清成人免费视频www| 亚洲av电影不卡..在线观看| 亚洲综合精品二区| 久久久精品94久久精品| 91av网一区二区| 一级毛片黄色毛片免费观看视频| 亚洲人成网站在线观看播放| 亚洲国产成人一精品久久久| 人妻系列 视频| 女的被弄到高潮叫床怎么办| 一区二区三区乱码不卡18| 一级a做视频免费观看| 午夜亚洲福利在线播放| 国产片特级美女逼逼视频| 欧美成人精品欧美一级黄| 麻豆成人av视频| 色网站视频免费| 亚洲综合色惰| videossex国产| 伊人久久国产一区二区| 欧美最新免费一区二区三区| 身体一侧抽搐| 丰满人妻一区二区三区视频av| 日本爱情动作片www.在线观看| 97精品久久久久久久久久精品| 日韩欧美一区视频在线观看 | 国产不卡一卡二| 一区二区三区四区激情视频| 久久久久久久国产电影| 成人亚洲精品一区在线观看 | 好男人在线观看高清免费视频| 欧美3d第一页| 欧美97在线视频| 国产亚洲精品av在线| 精品酒店卫生间| 2021天堂中文幕一二区在线观| 26uuu在线亚洲综合色| 亚洲av成人精品一二三区| 91久久精品国产一区二区成人| 51国产日韩欧美| 老师上课跳d突然被开到最大视频| 亚洲经典国产精华液单| 亚洲欧美成人综合另类久久久| 一区二区三区免费毛片| 国产精品久久久久久久久免| 免费av观看视频| 久久热精品热| 国产亚洲午夜精品一区二区久久 | 国产成人aa在线观看| 一级毛片aaaaaa免费看小| 精品一区二区三区人妻视频| 爱豆传媒免费全集在线观看| 亚洲va在线va天堂va国产| 直男gayav资源| 国产精品1区2区在线观看.| 日韩精品有码人妻一区| 国产黄色小视频在线观看| 成人二区视频| 国产毛片a区久久久久| 成人国产麻豆网| 高清欧美精品videossex| 亚洲性久久影院| xxx大片免费视频| 欧美成人精品欧美一级黄| 亚洲精品aⅴ在线观看| 在线观看免费高清a一片| 午夜视频国产福利| 777米奇影视久久| 成人亚洲精品av一区二区| 免费观看在线日韩| 亚洲国产精品成人综合色| 天堂av国产一区二区熟女人妻| 草草在线视频免费看| 最近手机中文字幕大全| 国产色婷婷99| 人妻夜夜爽99麻豆av| 99热网站在线观看| 在线观看免费高清a一片| 蜜桃久久精品国产亚洲av| 九草在线视频观看| 哪个播放器可以免费观看大片| 国产精品女同一区二区软件| 少妇熟女欧美另类| 中国美白少妇内射xxxbb| 亚洲自拍偷在线| 一个人免费在线观看电影| 91精品国产九色| www.av在线官网国产| 菩萨蛮人人尽说江南好唐韦庄| 能在线免费看毛片的网站| 十八禁国产超污无遮挡网站| 日本黄大片高清| 精品久久国产蜜桃| 成年免费大片在线观看| 看免费成人av毛片| 菩萨蛮人人尽说江南好唐韦庄| 水蜜桃什么品种好| 亚洲,欧美,日韩| 国产亚洲91精品色在线| 中文字幕人妻熟人妻熟丝袜美| 黄片无遮挡物在线观看| 少妇熟女欧美另类| 日本黄大片高清| 午夜福利视频精品| 伊人久久精品亚洲午夜| 久久综合国产亚洲精品| 免费人成在线观看视频色| 国产一区二区在线观看日韩| 亚洲精品中文字幕在线视频 | 男人舔奶头视频| 国产精品精品国产色婷婷| 日本一本二区三区精品| 国内揄拍国产精品人妻在线| 亚洲av不卡在线观看| ponron亚洲| 国语对白做爰xxxⅹ性视频网站| 久久精品国产亚洲av涩爱| 夫妻午夜视频| 国产高清三级在线| 久久久久久久久大av| 极品教师在线视频| 亚洲精品日韩av片在线观看| 啦啦啦啦在线视频资源| 自拍偷自拍亚洲精品老妇| 在线免费十八禁| 精品国产一区二区三区久久久樱花 | 亚洲人成网站在线播| 午夜福利在线在线| 少妇熟女欧美另类| 亚洲精品日韩在线中文字幕| 狂野欧美白嫩少妇大欣赏| 永久网站在线| 大香蕉97超碰在线| 精品熟女少妇av免费看| 日韩欧美精品免费久久| 色网站视频免费| 日日摸夜夜添夜夜爱| 高清视频免费观看一区二区 | 黄色配什么色好看| 亚洲精品久久午夜乱码| 99re6热这里在线精品视频| 男女国产视频网站| 天堂av国产一区二区熟女人妻| 日韩三级伦理在线观看| 国产色爽女视频免费观看| 国产精品av视频在线免费观看| 久久精品久久久久久久性| 国内少妇人妻偷人精品xxx网站| 18禁裸乳无遮挡免费网站照片| 女人久久www免费人成看片| 欧美日韩视频高清一区二区三区二| 波多野结衣巨乳人妻| 午夜激情久久久久久久| 日韩视频在线欧美| 国产精品蜜桃在线观看| 只有这里有精品99| 美女高潮的动态| 男女啪啪激烈高潮av片| 午夜激情欧美在线| 婷婷色麻豆天堂久久| 国产人妻一区二区三区在| 午夜福利在线观看免费完整高清在| 成人无遮挡网站| 久久精品国产亚洲av涩爱| 青春草亚洲视频在线观看| 日韩电影二区| 有码 亚洲区| 男女那种视频在线观看| 亚洲av男天堂| 直男gayav资源| 久久精品久久久久久噜噜老黄| 亚洲成人一二三区av| 亚洲av中文av极速乱| 亚洲欧美中文字幕日韩二区| 日韩欧美 国产精品| 在线观看免费高清a一片| 91狼人影院| 国产精品爽爽va在线观看网站| 可以在线观看毛片的网站| 亚洲自偷自拍三级| 大又大粗又爽又黄少妇毛片口| 最近最新中文字幕免费大全7| 日日啪夜夜爽| 在线免费观看的www视频| 日韩欧美国产在线观看| 日韩欧美三级三区| 欧美97在线视频| 亚洲国产欧美在线一区| 午夜精品一区二区三区免费看| 在线免费观看的www视频| videos熟女内射| 亚洲av男天堂| 日本一本二区三区精品| 国产av不卡久久| 天堂网av新在线| 日韩大片免费观看网站| 成人二区视频| 日韩av不卡免费在线播放| 久久久久精品性色| 欧美日韩一区二区视频在线观看视频在线 | 国产精品福利在线免费观看| 一级av片app| 精品人妻视频免费看| 色视频www国产| 日本与韩国留学比较| 久久99热6这里只有精品| 免费看a级黄色片| a级毛色黄片| 汤姆久久久久久久影院中文字幕 | 三级国产精品欧美在线观看| 亚洲欧美中文字幕日韩二区| 亚洲av国产av综合av卡| 国产视频内射| 免费观看a级毛片全部| 99久国产av精品| eeuss影院久久| 国产91av在线免费观看| 美女国产视频在线观看| 男女那种视频在线观看| 床上黄色一级片| 久久精品熟女亚洲av麻豆精品 | 乱码一卡2卡4卡精品| 99久久中文字幕三级久久日本| 久久久a久久爽久久v久久| 亚洲av免费在线观看| 精品久久久噜噜| 久久久国产一区二区| 午夜免费观看性视频| 久久久久久久午夜电影| 国产伦一二天堂av在线观看| 欧美激情在线99| 国产黄片美女视频| 美女cb高潮喷水在线观看| 国产免费福利视频在线观看| 熟女人妻精品中文字幕| 日本与韩国留学比较| 一级av片app| 国产不卡一卡二| 丝瓜视频免费看黄片| 国产成人免费观看mmmm| 国产淫语在线视频| 中国国产av一级| 欧美激情国产日韩精品一区| 综合色av麻豆| 精品一区二区三卡| 国产伦精品一区二区三区视频9| 韩国av在线不卡| 国产老妇女一区| 免费看美女性在线毛片视频| 日韩视频在线欧美| 最新中文字幕久久久久| 成年人午夜在线观看视频 | 国产精品福利在线免费观看| 亚洲国产色片| 插逼视频在线观看| 深爱激情五月婷婷| 天堂网av新在线| 男女下面进入的视频免费午夜| 久久人人爽人人片av| 国产一级毛片七仙女欲春2| 亚洲国产精品成人综合色| 国产伦理片在线播放av一区| 一边亲一边摸免费视频| 高清毛片免费看| 亚洲国产精品sss在线观看| 免费黄色在线免费观看| 国产午夜福利久久久久久| 好男人视频免费观看在线| 人人妻人人澡人人爽人人夜夜 | 在线观看人妻少妇| 国产成人精品婷婷| 久久久欧美国产精品| 欧美日韩视频高清一区二区三区二| 国产成人精品福利久久| 婷婷色综合www| av网站免费在线观看视频 | 成人毛片a级毛片在线播放| 亚洲精品第二区| 亚洲欧美精品专区久久| 丝瓜视频免费看黄片| 亚洲精品色激情综合| 亚洲av中文字字幕乱码综合| 日本爱情动作片www.在线观看| h日本视频在线播放| 久久国内精品自在自线图片| 在线观看av片永久免费下载| 美女高潮的动态| 日韩精品有码人妻一区| 黄色欧美视频在线观看| 青春草亚洲视频在线观看| 黄色配什么色好看| 2021少妇久久久久久久久久久| 日韩人妻高清精品专区| 免费看日本二区| 精品一区二区免费观看| 亚洲三级黄色毛片| 在线观看美女被高潮喷水网站| 三级经典国产精品| 亚洲av免费高清在线观看| 亚洲av中文av极速乱| 晚上一个人看的免费电影| 日日撸夜夜添| 少妇的逼水好多| 日本免费a在线| 夫妻性生交免费视频一级片| 能在线免费观看的黄片| 国产一区二区三区av在线| 色尼玛亚洲综合影院| 天堂√8在线中文| av在线亚洲专区| 嫩草影院入口| 22中文网久久字幕| 国产一级毛片在线| 免费不卡的大黄色大毛片视频在线观看 | 亚洲欧美成人综合另类久久久| 日本一本二区三区精品| 成人漫画全彩无遮挡| 一本一本综合久久| 国产一级毛片七仙女欲春2| 国产精品久久久久久精品电影小说 | 一级毛片aaaaaa免费看小| 狂野欧美激情性xxxx在线观看| 日韩国内少妇激情av| 插阴视频在线观看视频| 亚洲av中文av极速乱| 狠狠精品人妻久久久久久综合| 亚洲18禁久久av| 国产伦理片在线播放av一区| 亚洲国产最新在线播放| 岛国毛片在线播放| 亚洲最大成人手机在线| 亚洲自拍偷在线| 直男gayav资源| 久久久久精品久久久久真实原创| 日韩视频在线欧美| 嫩草影院新地址| 你懂的网址亚洲精品在线观看| 久久精品夜色国产| 热99在线观看视频| 国产伦精品一区二区三区四那| 69人妻影院| 日本-黄色视频高清免费观看| 人妻系列 视频| 久久久久精品久久久久真实原创| 午夜精品一区二区三区免费看| 欧美一区二区亚洲| 夜夜看夜夜爽夜夜摸| av女优亚洲男人天堂| 久久国产乱子免费精品| 一级爰片在线观看| 日本免费a在线| 亚洲国产高清在线一区二区三| 午夜激情福利司机影院| 亚洲怡红院男人天堂| 99久久精品一区二区三区| 久久6这里有精品| 日本黄大片高清| 男人狂女人下面高潮的视频| 国产精品人妻久久久影院| 麻豆成人av视频| 日本一二三区视频观看| 国产黄色免费在线视频| 亚洲不卡免费看| 亚洲欧洲日产国产| 国产黄片美女视频| 51国产日韩欧美| 亚洲美女视频黄频| 赤兔流量卡办理| 六月丁香七月| 亚洲精品乱码久久久久久按摩| 国产久久久一区二区三区| 国产精品三级大全| 免费无遮挡裸体视频| 熟女人妻精品中文字幕| 日韩不卡一区二区三区视频在线| 精品久久久久久久人妻蜜臀av| 日本av手机在线免费观看| 亚洲欧美一区二区三区黑人 | 精品一区二区免费观看| 国产又色又爽无遮挡免| videossex国产| 国产极品天堂在线| av黄色大香蕉| 偷拍熟女少妇极品色| 成年女人看的毛片在线观看| 久久草成人影院| 国产av不卡久久| 国产精品一区二区三区四区免费观看| 熟女人妻精品中文字幕| 99久久精品热视频| 日韩成人伦理影院| 免费观看的影片在线观看| 精品人妻视频免费看| 成人综合一区亚洲| 免费观看无遮挡的男女| 日韩一本色道免费dvd| 亚洲精品乱码久久久v下载方式| 亚洲国产欧美人成| 国产高清不卡午夜福利| 欧美丝袜亚洲另类| 国产 亚洲一区二区三区 | 中文字幕av在线有码专区| 午夜福利在线观看吧| 亚洲精品久久久久久婷婷小说| 国产亚洲av片在线观看秒播厂 | 波多野结衣巨乳人妻| av国产久精品久网站免费入址| 汤姆久久久久久久影院中文字幕 | 国内揄拍国产精品人妻在线| 人人妻人人看人人澡| 久久久久九九精品影院| 久久国产乱子免费精品| 欧美潮喷喷水| 一区二区三区免费毛片| av播播在线观看一区| 精品久久久噜噜| 91久久精品国产一区二区成人| 日韩av在线免费看完整版不卡| 亚洲精品一区蜜桃| 国产综合精华液| 1000部很黄的大片| 丝瓜视频免费看黄片| 国产精品精品国产色婷婷| 亚洲欧美精品自产自拍| 女的被弄到高潮叫床怎么办| 男女国产视频网站| av.在线天堂| 欧美极品一区二区三区四区| 国产亚洲最大av| 免费观看av网站的网址| 亚洲av不卡在线观看| 激情五月婷婷亚洲| 亚洲电影在线观看av| 中文字幕亚洲精品专区| 精品一区在线观看国产| 亚洲国产精品专区欧美| 亚洲无线观看免费| 精品一区二区三区视频在线| 婷婷六月久久综合丁香| 久久亚洲国产成人精品v| 五月天丁香电影| 久久99热这里只有精品18| 欧美+日韩+精品| 水蜜桃什么品种好| 一级毛片 在线播放| 日韩,欧美,国产一区二区三区| 老司机影院成人| 自拍偷自拍亚洲精品老妇| 蜜桃久久精品国产亚洲av| 久久久久九九精品影院| 日本黄大片高清| 啦啦啦啦在线视频资源| 亚洲怡红院男人天堂| 成人一区二区视频在线观看| 亚洲av一区综合| 插逼视频在线观看| 97精品久久久久久久久久精品|