• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Regularization Method for a Parameter Identification Problem in a Non-linear Partial Differential Equation

    2023-09-23 12:04:36NAIRThambanandROYSampritaDas

    NAIR M.Thamban and ROY Samprita Das

    1 Department of Mathematics,BITS Pilani,K K Birla Goa Campus,Zuarinager,Goa 403726,India.

    2 Department of Mathematics and Statistics,IISER Kokota,Nadia,West Bengal 741246,India.

    Abstract. We consider a parameter identification problem associated with a quasilinear elliptic Neumann boundary value problem involving a parameter function a(·) and the solution u(·),where the problem is to identify a(·) on an interval I:=g(Γ) from the knowledge of the solution u(·) as g on Γ,where Γ is a given curve on the boundary of the domain Ω?R3 of the problem and g is a continuous function.The inverse problem is formulated as a problem of solving an operator equation involving a compact operator depending on the data,and for obtaining stable approximate solutions under noisy data,a new regularization method is considered.The derived error estimates are similar to,and in certain cases better than,the classical Tikhonov regularization considered in the literature in recent past.

    Key Words: Ill-posed;regularization;parameter identification.

    1 Introduction

    Let Ω be a bounded domain in R3withC1,1boundary.Consider the problem of finding a weak solutionu∈H1(Ω) of the partial differential equation

    with boundary condition

    wherea∈H1(R) andj∈L2(?Ω).One can come across this type of problems in the steady state heat transfer problem withubeing the temperature,athe thermal conductivity which is a function of the temperature,andjthe heat flux applied to the surface.In this regard,the following result is known (see[1-3]):

    Theorem 1.1.Let a≥κ0>0a.e.for some constant κ0andThen there exists u∈H1(Ω)such that(1.1)and(1.2)are satisfied.If,in addition,with p>3,then u ∈

    In view of the above theorem,we assume that,

    Supposeγ:[0,1]→?Ω is aC1-curve on?Ω andg:?!鶵 such thatg?γ∈C1([0,1]),where Γ is the range ofγ.One of the inverse problems associated with (1.1)-(1.2) is:

    Problem (P):To identify an a∈H1(R)on I:=g(Γ)such that the corresponding u satisfies(1.1)-(1.2)along with the requirement

    In the following we shall use the same notation fora∈H1(R) and for its restriction onIas a function inH1(I).

    We shall see that the Problem (P) is ill-posed,in the sense that the solutiona|Idoes not depend continuously on the datagandj(see Section 2).To obtain a stable approximate solution for the Problem (P),we use a new regularization method which is different from some of the standard ones in the literature.We discuss this method in Section 3.

    The existence and uniqueness of solution for the Problem (P) is known under some additional conditions onγandg,as specified in Section 2 (see,e.g.,[3,4]).In [2] and[3] the problem of finding a stable approximate solution of the problem is studied by employing Tikhonov regularization with noisy data.In [2],with the noisy datagδ,in place ofg,satisfying‖g-gδ‖L2(Γ)≤δ,convergence rateis obtained whenevera∈H4(I) and its trace is Lipschitz on?Ω,whereaδis the approximate solution obtained via Tikhonov regularization.In [3],the rateis obtained without the additional assumption ona,where noise injas well asgis also considered as

    It is stated in[3]that“the rateis possible with respect toH1-norm,provided some additional smoothness conditions are satisfied”;however,the details of the analysis is missing.

    Under our newly introduced method,we obtain the above type of error estimates using appropriate smoothness assumptions.In particular we prove that,ifg0∈R is such thatI=[g0,g1]and ifa(g0) is known or is approximately known,and the perturbed datajδandgδbelong toW1-1/p,p(?Ω) forp>3 andC1(Γ),respectively,satisfying (1.5),then the convergence rate iswith respect toL2-norm.With additional assumption that the exact solution is inH3(I) we obtain a convergence rateO(δ2/3) with respect toL2-norm.Again,in particular,ifg?γis inH4([0,1]),the rateO(δ2/3) with respect toL2-norm is obtained under a weaker condition on perturbed datagδ,namely,gδ∈L2(Γ) with‖g-gδ‖L2(Γ)≤δ.Also,in the new method we do not need the assumption ongδmade in [3] which isgδ(Γ)?g(Γ).Thus some of the estimates obtained in this paper are improvements over the known estimates,and are also better than the expected best possible estimate,namelyO(δ3/5),in the context of Tikhonov regularization,as mentioned in[3].

    The paper is organized as follows:In Section 2 we present a theorem which characterize the solution of the inverse Problem (P) in terms of the solution of the Laplace equation with an appropriate Neumann condition.Also,the inverse problem is represented as the problem of solving a linear operator equation,where the operator is written as a composition of three injective bounded operators,one of which is a compact operator,and prove some properties of these operators.The new regularization method is defined in Section 3,and error estimates with noisy as well as exact data are derived.In Section 4 we present error analysis with some relaxed conditions on the perturbed data.In Section 5 a procedure is described to relax a condition on the exact data and corresponding error estimate is derived.In Section 6 we illustrate the procedure of obtaining a stable approximate solution to the Problem (P).

    2 Operator theoretic formulation

    Throughout the paper we denote the range of the functiong:?!鶵 asI:=[g0,g1],that isg0andg1are the left and right end-points of the closed intervalg(γ([0,1])).

    The following theorem,proved in[4],helps us to identify the solution of the Problem (P).

    Theorem 2.1.The Problem (P) has a unique solution,and it is the unique a∈H1(I)such that

    where M is a constant andsatisfies

    It is known that ifj ∈W1-1/p,p(?Ω) forp>3,thenvsatisfying (2.2)-(2.3) belongs toW2,p(Ω),and

    for some constantC>0(see Theorems 2.3.3.2 and 2.4.2.7 in[5]).

    In view of Theorem 2.1,the inverse Problem (P) can be restated as follows:Givenjandgas in the Problem (P),letsatisfy (2.2) and (2.3) along with the condition

    Then,a∈H1(I) is the solution of the Problem (P) if and only if

    The above equation can be represented as an operator equation

    wherevjis the solution of (2.2)-(2.5) and the operatorT:L2(I)→L2[0,1]is defined by

    Theorem 2.2.The operator T:L2(I)→L2[0,1]defined in(2.7)is an injective compact operator of infinite rank.

    Proof.Note that for everyw∈L2(I) and for everys,τ ∈[0,1],we have

    Sinceg?γis continuous,the set{Tw:‖w‖L2(I)≤1}is equicontinuous and uniformly bounded inC[0,1].Hence,Tis a compact operator fromL2(I) toC[0,1].Since,the inclusionC[0,1]?L2[0,1]is continuous,it follows thatT:L2(I)→L2[0,1]is also a compact operator.We note thatTis injective.Hence,Tis of infinite rank.

    It is to be observed that the compact operatorTdefined in (2.7) depends on theg.Thus,problem of solving the operator equation (2.6) based on the data (g,j) is non-linear as well as ill-posed.In order to propose a new regularization method for obtaining stable approximate solutions,we represent the operatorTas a composition of three operators,that is,

    where,forr∈{0,1},

    are defined as follows:

    Clearly,T1,T2,T3are linear operators and

    Here,we used the convention thatH0(I):=L2(I).

    By the above representation ofT,the operator equation (2.6) can be split into three equations:

    To prove some properties of the operatorsT1,T2,T3,we specify the requirements onj,gandγ,namely the following.

    Assumption 2.1.Let j∈W(1-1/p),p(?Ω)with p>3and=0.Let γ:[0,1]→?Ωbe a C1-curve on ?Ωand g:Γ→Rbe such that g∈C1(Γ),

    for some positive constants Cγ,,Cg and.

    Next we state a result from analysis which will be used in the next result and also in many other results that follow.

    Lemma 2.1.Let h1and h2be two continuous functions on intervals J1and J2respectively,such that h2(J2)=J1.Also,letbe continuous with.Then,

    We shall also make use of the following proposition.

    Proposition 2.1.Let Cg,Cγ,be as in Assumption2.1.Then for any w∈L2(I),

    Proof.By Lemma 2.1 and the inequalities (2.14) and (2.15) in Assumption 2.1,we have

    From the above,we obtain the required inequalities in (2.16).

    Theorem 2.3.Let r∈{0,1},and let

    be defined as in(2.8),(2.9)and(2.10),respectively.Then,T2is a compact operator,and for every w∈L2(I),

    In particular,T1and T3are bounded operators with bounded inverse from their ranges.

    Proof.SinceH1(I) andH2(I) are compactly embedded inL2(I) (see,e.g.,[6]),T2is a compact operator of infinite rank.Now,letw∈H1(I) andτ ∈I.Then

    Hence,using the fact that (T1(w))′=wand (T1(w))′′=w′,we have

    Thus,(2.17) is proved.By the inequalities in (2.16) we obtain

    for everyw ∈L2(I).The inequalities in (2.17) and (2.19) also show thatT1andT3are bounded operator with bounded inverse from their ranges.

    3 The new regularization

    We know that the Problem (P) is ill-posed.We may also recall that the operator equation (2.6) is equivalent to the system of operator equations (2.11)-(2.13),wherein Eq.(2.12) is ill-posed,sinceT2is a compact operator of infinite rank.Thus,in order to regularize (2.6),we shall replace Eq.(2.12) by a regularized form of it using a family of bounded operators,α>0.

    Note thatT2:H2(I)→L2(I) is defined by

    for eachα>0.

    Theorem 3.1.For α>0,let:H2(I)→L2(I)be defined as in(3.1)Then,

    In particular,is a bounded operator with.Further,

    Proof.We observe that,for anyw∈H2(I),

    In order to define a regularization family forT2,we introduce the space

    Note that,forw∈H2(I),w∈Wif and only if

    for someξ ∈H1(I) satisfyingξ(g1)=0.

    Now,we prove some results associated withW.

    Proposition 3.1.The space W defined in(3.2)is a closed subspace of H2(I)and

    where Q:H2(I)→H2(I)is the orthogonal projection onto W.

    Proof.Let (wn) inWbe such thatwn →w0inH2(I) for somew0∈H2(I).By a Sobolev imbedding Theorem [6],H2(I) is continuously imbedded in the spaceC1(I) withC1-norm.Therefore,w0∈C1(I),and

    Thus,sincewn ∈W,in particular

    Hencew0∈W.ThusWis closed.Now,letQ:H2(I)→H2(I) be the orthogonal projection ontoW.Then,fory∈L2(I) andw∈Wwe have,

    Proposition 3.2.Let α>0.Let L:H2(I)→H2(I)be defined by

    for every x∈H2(I),t∈I.Then we have the following.

    (i) For anyx∈H2(I),Lx∈C∞(I)?H2(I),α(Lx)′′=Lxand.

    (ii)Lis a bounded linear operator.

    (iii) The mapid-Lis a projection ontoW,whereidis the identity map onH2(I).

    Proof.Clearly,Lis a linear operator,and for anyx ∈H2(I),we haveLx ∈C∞(I)?H2(I) andα(Lx)′′=Lx.To show thatLis continuous,let (xn) be a sequence inH2(I) such that‖xn-x‖H2(I)→0 for somex∈H2(I).By a Sobolev imbedding Theorem[6],H2(I) is continuously imbedded in the spaceC1(I) withC1-norm,and so we have|xn(g0)-x(g0)|→0 and|x′n(g1)-x′(g1)|→0 asn→∞.Using this,it can be shown thatLis continuous.Now again by definition ofL,for anyx∈H2(I) we have

    so that (id-L)(x-Lx)=x-Lx-L(x-Lx)=x-Lx.Hence,using the definition of the spaceW,we haveid-Lis a projection ontoW.

    We shall use the notation

    whereLis the bounded operator as in Proposition 3.2.

    Theorem 3.2.Let0<α<1.Then,for every w∈W,

    Proof.First we observe,by integration by parts,that forw1,w2∈W,Hence,for everyw∈W,

    Since 0<α<1,for everyw∈W,

    This completes the proof.

    At this point let us note that,by (3.4),is bounded below onW.Henceforth,we shall use the same notation forand its restriction toW,that is,

    and the adjoint of this operator will be denoted.The following lemma is used to prove some important properties of,which plays an important role in formulating the new regularization method.Its proof follows from properties of closed range operators,using some standard tools of functional analysis (e.g.,for (3.7) below,see Theorem 11.1.10 in[7]).

    Lemma 3.1.Let H1and H2be Hilbert spaces and let S:H1→H2be a bounded linear operator with closed range.Then,

    Suppose,in addition,that there exist c>0such that‖Sx‖≥c‖x‖for all x∈H1.Then

    Further,if‖·‖0is any norm on H1and if c0>0is such that‖Sx‖≥c0‖x‖0for all x∈H1,then

    where S?:=(S*S)-1S*,the generalized inverse of S.Here,R(S)and N(S)respectively,denote the range and null space of the operator S.

    Corollary 3.1.Let0<α<1andbe as in(3.6).Then for every y∈L2(I),

    Proof.TakingH1=WandH2=L2(I) in Lemma 3.1,the inequalities in (3.10) and (3.11) follow from (3.9) by taking the norm‖·‖0as‖·‖H2(I)and‖·‖H1(I)respectively,onWand by using (3.4) and (3.5),respectively.

    LetRα:L2(I)→Wforα>0 be defined by

    We note that,by Corollary 3.1,Rαis a bounded operator fromL2(I) toW(with respect to the norm‖·‖H2(I)),for eachα>0.Since,we have

    Next,we prove that{Rα}α>0,defined as in (3.12),is a regularization family forT2:W →L2(I).Towards this aim,we first prove the following theorem.

    Theorem 3.3.For α>0,let Rα be as in(3.12),and let CL be as in(3.3).Then the following results hold.

    Proof.(i) Letw∈W.By (3.13),we have

    Hence,using (3.10),

    Thus,‖RαT2w‖H2(I)≤2‖w‖H2(I)for everyw∈W.

    (ii) Letw∈W∩H4(I).Let us note thatw′′is in the domain ofT2and hence is inH2(I)(may not be inW).By Proposition 3.2,w′′-Lw′′∈Wand.Thus,using the above fact,along with the fact thatis in the domain ofT2,by (3.13) and (i) above,we have

    we obtain the required inequality.

    (iii) Forw∈W,using (3.11),we have.Thus,the proof is complete.

    Lemma 3.2.The space W ∩H4(I)is dense in W.

    Proof.Letw ∈W.SinceH4(I) is dense inH2(I) as a subspace ofH2(I) (see,e.g.,[6]),there exists a sequence (wn) inH4(I) such that

    Now,defineP:H2(I)→Wby

    SinceH2(I) is continuously imbedded inC1(I)[6],(3.14) implies that|wn(g0)-w(g0)|→0 andasn→0.Thus,asIis bounded we have

    Again by definition ofPandWwe havePwn∈W∩H4(I) andPw=w.Hence from (3.14) and (3.15) we have the proof.

    Theorem 3.4.Let w∈W,and let{Rα}α>0be as in(3.12).Then

    In particular,{Rα}α>0is a regularization family for T2.

    Proof.By Theorem 3.3,(RαT2) is a uniformly bounded family of operators fromWtoWand‖RαT2w-w‖H2(I)→0 asα→∞for everyx ∈W ∩H4(I).SinceW ∩H4(I) is dense inW(see Lemma 3.2),by a result in functional analysis (see Theorem 3.11 in[7]),we obtain‖RαT2w-w‖H2(I)→0 asα→∞for everyw∈W.Thus{Rα}α>0is a regularization family forT2.

    Throughout,we assume thata0∈H1(I) is the unique solution of the Problem (P).Thus,Eqs.(2.11)-(2.13) have solutions namely,ζ0,b0anda0,respectively.That is,

    Having obtained the regularization family{Rα}α>0forT2as in (3.12),we may replace the solutionb0of Eq.(2.12) by

    The regularized solutionaαfor the Problem (P) is defined along the following lines:

    Sincebα ∈W ?R(T1),each of the above equations has unique solution.In fact,ζ0=T2b0withb0=T1a0,wherea0is the unique solution of (2.6).Note that,the operator equation (3.20) has a unique solution,becauseis bounded below,and (3.21) has a unique solution asT1is injective with rangeW,andbα ∈W.Hence we have,aα(g1)=0.Thus to obtain convergence of{aα}toa0asα→0,it is necessary thata0(g1)=0.Therefore,in this section,we assume that,

    We shall relax this condition in Section 5,by appropriately redefining regularized solutions.

    3.1 Error estimates under exact data

    Forα>0,letaαbe defined via Eqs.(3.19)-(3.21).Also,Leta0be the unique solution to the Problem (P) satisfying (3.22).Then,we look at the estimates for the error term (a0-aα) in bothL2(I) andH1(I) norms in the following theorem.

    Theorem 3.5.The following results hold.

    3.If a0∈H3(I),then with CL is as in(3.3),

    Proof.By our assumption,a0(g1)=0.Therefore,by definition ofT1and the spaceW,we haveb0=T1(a0)∈W.Now let us first observe that,by the definition ofbα

    Hence,by the inequality (2.17),forr∈{0,1},we have,

    and hence,by Theorem 3.4,‖a0-aα‖H1(I)→0 asα→0.Thus we have proved (1).

    Also,sinceb0∈W,from (3.23) and Theorem 3.3(iii),we have

    which proves (2).Now,leta0∈H3(I).Thenb0∈H4(I).Sinceb0∈W,we haveb0∈W ∩H4(I).Hence proof of (3) follows from (3.23) and Theorem 3.3(ii).

    3.2 Error estimates under noisy data

    In practical situations the observations of the datajandgmay not be known accurately and we may have some noisy data instead.In this section we assume that the noisy datagεandjδare such that

    for some known noise levelεandδ,respectively.At this point,let us note that a weaker condition on perturbed datajδ,for examplejδ ∈L2(?Ω),is not very feasible to work with.This is because,in that case the corresponding solutionvjδof (2.3)-(2.5) withjδin place ofj,is not continuous and hence its restriction on Γ does not make sense.In practical situations,if such a perturbed data arise,one may work with an appropriate approximation which is inW1-1/p,p(?Ω) withp>3.For the perturbed datagε,in the next section we consider the case when it is in a more general space which isL2(Γ).

    Corresponding to the dataj,jδas above,we denote

    Lemma 3.3.Let γ0be a C1curve onR2and letΓ0={(x,γ0(x))∈R2:d0≤x ≤d1} for some d0,d1inRwith d0<d1.Then

    Proof.Let.Then,using H¨older’s inequality we have

    Lemma 3.4.Let w∈H1(?Ω)and γ be a curve on ?Ωsuch that|γ′(t)|is bounded away from0as in(2.14).Then there exists C0>0such that

    Proof.Letw∈H1(?Ω).Since Ω is withC1boundary,

    for some elementsω1,···,ωm ∈H1(R2)(see,e.g.,[5,6]).Also,there exists a set{σ1,···,σm}of diffeomorphisms from some neighbourhoods in?Ω to R2,which satisfies

    For anyi ∈{1,···,m},sinceσiis a diffeomorphismσi?γis a curve in R2.Asis compact andσiis one-one there exists constantCσ>0 such thatfor allx ∈γ([0,1]) and 1≤i ≤m.Hence,by Lemma 2.1,(3.30) and property ofγalong with (2.14),we obtain

    Hence,using (3.28) and (3.29),we get

    This completes the proof.

    Proposition 3.3.Let.Let(Ω)be the solution of(2.3)-(2.5)within place of j,such that it satisfies(2.1).Then there existssuch that

    Proof.Sinceis inW1-1/p,p(?Ω),we know thatand

    for some constantC5>0 (see inequality (2.4)).By trace theorem for Sobolev spaces[5],and by continuous imbedding ofW(2-1/p),p(?Ω) intoW1,p(?Ω),we haveW2-1/p,p(?Ω)?W1,p(?Ω) and

    for some constantsC6,C7>0.

    Thus,using (3.31),(3.32) and withvin place ofwin Lemma 3.4,we have,

    Corollary 3.2.Let j be as in Assumption2.1and jδ satisfy(3.24)and(3.26).Let f and fδ be as in(3.27).Then

    whereis as in Proposition3.3.

    Proof.By Proposition 3.3 we have

    Lemma 3.5.For ε>0,

    where Cg andare as in(2.15).In particular,if0<ε≤Cg/2then

    Proof.For anysin[0,1],we have

    by (2.15),we obtain (3.34).The relations in (3.35) are obvious by the assumption onε.

    Remark 3.1.Since,γ′satisfies (2.14),and,(gε)′satisfies (3.35) forε<Cg/2,it follows thatgε(Γ) is a non-degenerate closed interval,that is,Iε:=gε(Γ)=for somewith.

    The following lemma will help us in showing thatI∩Iεis a closed and bounded (nondegenerate) interval.

    Lemma 3.6.Let ?1,?2be in C([ξ1,ξ2])for some ξ1and ξ2inR,and let η>0be such that

    Let I1:=?1([ξ1,ξ2])=[a1,b1]and I2:=?2([ξ1,ξ2])=[a2,b2]for some a1,b1,a2and b2inR.If a1<b1and a2<b2and η>0is such that

    and I1∩I2=[a,b]is a non-degenerate interval,that is,a<b.

    Proof.Supposea1<b1anda2<b2.Since,for some,and since,we obtain

    Thus,(3.38) is proved.

    To prove the remaining,let us first consider the casea1≤a2.Then,,where=min{b2,b1}.Note that,by (3.37) and (3.39),we have

    Thus,b1>a2,and also,asb2>a2we have,

    Next,leta1>a2.In this case,,where.Note,again by (3.37) and (3.39),that

    Thus,b2>a1,and also,asb1>a1we have,

    Hence,combining both the cases,we have the proof.

    Remark 3.2.Lets1ands0in [0,1] be such thatg0=g(γ(s0)) andg1=g(γ(s1)).Let us recall thatI:=[g0,g1]andIε:=.Sincegandgεare inC1(Γ),we haveg?γandgε?γare inC1([0,1]).Also,

    Thus,by Lemma 3.6,we have

    Hence,takingε<(g1-g0)/4,we have

    and thus,2ε<min{(g1-g0),.Hence by Lemma 3.6,I∩Iεis a closed and bounded non-degenerate interval.Let us denote this interval by.Thus,

    Next,we shall make use of the following lemma which can be proved using the Sobolev imbeding theorem[6].

    Lemma 3.7.There exists a constant C>0such that for any closed interval J,

    where CJ:=Cmax{4,(2|J|+1)}.In particular,for any interval J0such that J0?J,

    Ify∈W1,∞(J1) then using (3.42) we obtain

    and additionally ify′′∈L∞(J1),then

    Lemma 3.8.Let J1and J2be closed intervals such that J2?J1and let CJ1be as in Lemma3.7.Let y∈H2(J1),then we have the following.

    Proof.LetJ1=[a,b]andJ2=[c,d]for somea≤bandc≤d.IfJ1=J2thenJ1J2=?,and in that case the result holds trivially.So let us consider the cases when eithera<cord<b,or both holds.Without loss of generality let us assume thata<candd<b.Lety∈H2(J1).Then by (3.42)yandy′are inL∞(J1).Thus takingJ0=[a,c]in (3.43) we have

    and takingJ0=[d,b]in (3.43) we have

    Hence we have (i).Next,additionally if,y′′∈L∞(J1),havingJ0=[a,c]in (3.44) we obtain

    and havingJ0=[d,b]in (3.44) we obtain

    Hence we have (ii).

    Lemma 3.9.Let ?1,?2,I1,I2and η be as in Lemma3.6satisfying all the assumptions there.Then,for any interval I3?I1∩I2and y∈C1(I1)

    Assume,further,that ?1,?2∈C1([ξ1,ξ2])satisfyingfor some constants C?1,C?2>0.Then,for y∈H2(I1)

    withand CI is as in Lemma3.7.

    Proof.By Lemma 3.6,we haveI1∩I2to be a closed non-degenerate interval.LetI3be an interval inI1∩I2.Then fory∈C1(I1) using fundamental theorem of calculus and H¨older’s inequality we have

    Hence,using (3.42) we have (3.46).

    Now,additionally letε ≤Cg/2.Then,by (2.14) and (3.35)gεandγare bijective,and so (gε?γ)-1is continuous.Thusis a closed non-degenerate interval.In other words

    Theorem 3.6.Letbe as defined in(3.52).Then,for ζ ∈W,

    Proof.Letζ ∈W.For anys∈[0,1],by (2.14) and (2.15),we have

    By (3.50) and (3.51),we have

    respectively.Nowζ ∈W ?H2(I).Then,by definition ofT3and,we have

    Hence,taking?1asg?γand?2asgε?γin Lemma 3.9,we have

    This completes the proof.

    Theorem 3.7.The map,defined as in(3.52),is bounded linear and bounded below.In fact,for every,

    where Cγ,and Cg,are as in(2.14)and(2.15),respectively.

    Proof.Clearly,is a linear map.Since (2.14) and (3.35) hold,using Lemma 2.1,and (3.52) we obtain

    Hence we have the proof.

    Now,by Theorem 3.7,we know thatis a bounded linear operator which is bounded below.Thus using Lemma 3.1,the operator

    is a bounded linear operator and is the generalized inverse of.The following theorem,which also follows from Lemma 3.1,shows that the family

    is in fact uniformly bounded.

    Theorem 3.8.For every ζ ∈L2([0,1]),

    whereare as in(2.14)and(2.15).

    In order to obtain an approximate solution of (2.6) under the nosy data (jδ,gε) satisfying (3.25) and (3.26),we adopt the following operator procedure:First we consider the following operator equation

    belongs toL2(I).Next,we consider the operator equation

    Letbα,ε,δbe the unique solution of Eq.(3.56).Thus by solving the operator equations (3.55) and (3.56) we obtainbα,ε,δ.Sincebα,ε,δ∈W ?R(T1),is the solution of the equation

    We show thataα,ε,δis a candidate for an approximate solution to the Problem (P).

    Lemma 3.10.Under the assumptions in Assumption2.1on(j,g),let a0∈H1(I)be the solution of T(a)=fj.Assume further that a0(g1)=0.For ζ ∈L2(I),let bα,ζ ∈H2(I)be such that

    and let.Then

    where Cα>0is such that Cα →0as α→0.In addition,if a0∈H3(I),then

    Here CL is as(3.3).

    Proof.Letb0=T1(a0).Then,asa0(g1)=0,we haveb0∈W.Now,by definition ofaα,ζand,H1(I) andH2(I) norms,forr∈{0,1}

    Hence,forr∈{0,1},

    By Theorem 3.4 we have

    Also,by Theorem 3.3-(iii) we have

    Again,using (3.10) and (3.11),we have

    Thus combining (3.61),(3.62) and (3.64) we have (3.57) with

    and combining (3.61),(3.63) and (3.65) we have (3.58).

    Next,leta0∈H3(I),b0=T1(a0)∈W ∩H4(I).Then,using theorem 3.3-(ii) we have,forr∈{0,1},

    Thus combining (3.61),(3.64) and (3.66) we have (3.59),and combining (3.61),(3.65) and (3.66) we have (3.60).

    Now,we prove one of the main theorems of this paper.

    Theorem 3.9.Let ε <min{(g1-g0)/4,Cg/2}.Let a0,g and j be as in Lemma3.10.Let gε ∈C1(Γ),jδ ∈W1-1/p,p(?Ω)with p>3,ζε,δ be the solution of(3.55),andwhere bα,ε,δ is the solution of(3.56).Also,let gε and jδ satisfy(3.25)and(3.26),respectively.Then

    where Cα>0is such that Cα →0as α→0.

    In addition if a0∈H3(I),then

    Now by definition,bα,ε,δis the unique solution of Eq.(3.56).Thus,withζε,δin place ofζin Lemma 3.10,we have the proof.

    Remark 3.3.Leta0andaα,ε,δbe as defined in Theorem 3.9.Then (3.67) and (3.68) take the forms

    respectively,whereCα>0 is such thatCα→0 asα→0,and if,in addition,a0∈H3(I),then (3.69) and (3.70) take the forms

    respectively,whereK1,K2,K3,K4are positive constants independent ofα,ε,δandCL ≥‖id-L‖,whereLis the bounded operator as in Proposition 3.2.Then,choosingandε=δin (3.67) we have

    Thus using the new regularization method we obtain a result better than the orderO(1) in[3]obtained using Tikhonov regularization.On choosingα=δ=εin (3.68) we have

    which is same as the estimate obtained in[3].Next,under the source conditiona0∈H3(I) and forandε=δ,(3.69) gives the order as

    This estimate is similar to a result obtained in [2] with source conditiona0∈H4(I) and trace ofa0being Lipschitz which is stronger than the source condition needed in our result,whereas under the same source conditiona0∈H3(I),the choice ofα=δ2/3andε=δin (3.70) gives the rate as

    This is better than the rateO(δ3/5) mentioned in[3]as the best possible estimate underL2(I) norm (under realistic boundary condition) using Tikhonov regularization.

    4 Relaxation of assumption on perturbed data

    In the previous section we have carried out our analysis assuming that the perturbed datagεis inC1(Γ),along with (3.25).This assumption can turn out to be too strong for implementation in practical problems.Hence,here we consider a weaker and practically relevant assumption on our perturbed datagε,namelygε ∈L2(Γ) with

    What we essentially used in our analysis in Section 3 to derive the error estimates is thatgε?γis close tog?γin appropriate norms.Here,we considerin place ofgε?γ,where Πh:L2([0,1])→L2([0,1]) is the orthogonal projection onto a subspace ofW1,∞([0,1]),and we show thatis close tog?γin appropriate norms,and then obtain associated error estimates.For this purpose,we shall also assume more regularity ong?γ,namely,g?γ∈H4([0,1]).

    Let Πh:L2([0,1])→L2([0,1]) be the orthogonal projection onto the spaceLhwhich is the space of all continuous real valued piecewise linear functionswon[0,1]defined on a uniform partition 0=t0<t1<···tN=1 of mesh sizeh,that is,ti:=(i-1)hfori=1,···(N+1) andh=1/N.Thus,w ∈Lhif and only ifw ∈C[0,1] such thatw|[ti-1,ti]is a polynomial of degree at most 1.Let.

    In the following,forw ∈L2([0,1]) andτh ∈Th,we use the notationandwheneverw|τhbelong toHm(τh) andWm,∞(τh),respectively.As a particular case of inverse inequality stated in Lemma 4.5.3 in[8],form∈{0,1},we have

    whereis a positive constant.

    Proposition 4.1.Let w ∈L2([0,1]),m ∈N∪{0} and τh ∈Th.Then the following inequalities hold.

    where C0:=2C[0,1]with C[0,1]as in(3.42)andis as in(4.2).

    Proof.Iffor somej∈N∪{0},then using (3.42) and the fact thatτhis of lengthh,we obtain

    whereI0:=[0,1].Hence,we have

    Thus,takingC0=2CI0,we have (4.3).

    By repeatedly using (3.42) and then by (4.3),we obtain

    As we have takenC0=2CI0,we have the proof of (4.4).

    Since Πhis an orthogonal projection,from (4.2) we obtain,

    and,by repeatedly using (4.3) we have

    Hence we have the proof of (4.5).

    For simplifying the notation,we shall denote

    Theorem 4.1.Let τh ∈Th and(4.6)be satisfied.Then,the following inequalities hold.

    Proof.Using triangle inequality we have

    Assumption (2.14),Lemma 2.1 and (4.1) imply

    so that,using (4.2) and the fact that Πhis an orthogonal projection,we have

    By (4.4) and (4.5),

    Thus,using (4.7),(4.10) and (4.12),and taking,we have (i).By (4.4) and (4.5),

    Hence,using (4.8) and (4.11),and takingwe have (ii).

    To prove (iii) and (iv),lets∈[0,1].Note that

    Using (2.14) and (2.15) the above implies

    Hence using (ii) we have (iii) and (iv).

    From (iii) and (iv) in Theorem 4.1 we obtain the following corollary.

    Corollary 4.1.Let h be such that

    Hence,combining (4.26) and (4.27) we have (4.21),and combining (4.26) and (4.28) we have (4.22).Hence,is bounded linear and bounded below.Since,satisfies (4.21) and (4.22),from Lemma 3.1,we obtain (4.23).

    Using the fact that Πhis a projection,and Lemma 2.1 and (2.14),we obtain,

    and,using the fact that Πhis an orthogonal projection,and (4.5),

    Now,ζ ∈Wimplies.Hence,taking?1and?2asandrespectively,in the first part of Lemma 3.9,(3.42) and (4.31),we have,

    Now,by (3.42),ζ ∈Wimpliesζ ∈W1,∞(I).Hence,as (4.33) and (4.34) hold,by Lemma 3.8-(i) and then by (3.42),we have

    Thus,from (4.35) we have (4.24).

    Ifζ ∈H3(I),then,since (4.33) and (4.34) hold,by Lemma 3.8-(ii) and then by (3.42),

    Thus,from (4.35) we have (4.25).

    Proposition 4.3.Let a0and g be as defined in Lemma3.10.Let h and ε satisfy the relations in(4.13)and(4.16).Let gε ∈L2(I)be such that(4.1)is satisfied.Then,b0=T1(a0)satisfies,

    and,in addition,if a0∈H2(I),then,

    Proof.Since,handεsatisfy (4.13),for anyτh ∈Th,as (4.17) holds,by Lemma 3.8-(i) and then by (3.42),we have

    and,ifa0∈H2(I),b0∈H3(I) and so,by Lemma 3.8-(ii) and then by (3.42),

    Theorem 4.3.Let a0,g and j be as in Lemma3.10.Let gε∈L2(I),jδ∈W1-1/p,p(?Ω)with p>3.Also,let gε and jδ satisfy(3.26)and(4.1),respectively,and h and ε satisfy the relations in(4.13)and(4.16),and.Then the following results hold.

    In the above Cα>0is such that Cα →0as α→0,b0=T1(a0),

    and C0,CL,Cγ are constants as defined in(2.14), (2.15), (3.42), (4.3),Proposition3.2,Theorem4.1-(ii) respectively.

    Proof.By definition ofζε,δ,h,

    Hence,from (4.46) and (4.47) we have

    Thus,from (4.38),(4.45) and (4.48) we have

    Ifa0∈H2(I) thenb0∈H3(I),and thus from (4.39),(4.45) and (4.48) we have,

    Our aim is to find an estimate for the error term (a0-aα,ε,δ,h) inL2(I) andH1(I) norms.Nowbα,ε,δ,his the unique solution of equation (4.37).Thus,by Lemma 3.10 we need an estimate of‖ζε,δ,h-b0‖L2(I)in order to find our required estimates.Inequalities (4.49) and (5.19) give us estimates of‖ζε,δ,h-b0‖L2(I)under different conditions onb0.Hence,takingζε,δ,hin place ofζin Lemma 3.10 we have the proof.

    Remark 4.1.Suppose

    Then,forε=δandh=δ1/2,(4.13) and (4.16) are satisfied.Hence,by Theorem 4.3,we have the following:

    2.Ifa0∈H3(I) andα=δ2/3,then

    3.Choosingα=δ,we have

    4.Ifa0∈H2(I),then

    Resultsin (1) and (2) above are analogous to the corresponding results fora0-aα,ε,δin Remark 3.3.The estimate in (4) is same as the corresponding estimate in Remark 3.3,except for the fact that here we need an additional condition thata0∈H2(I).

    5 With exact solution having non-zero value at g1

    In the previous two sections we have considered the exact solution with assumption thata0(g1)=0.Here we consider the case whenbut is assumed to be known.Leta0(g1)=c.Sincea0is the solution to the Problem (P),by (2.6) we havefj=T(a0) which implies

    Now by definition ofTwe have

    Thus,combining (5.1) and (5.2) we have

    Hencea0-cis the solution of the following operator equation,

    where clearlyfj-c(gγ-g0)∈L2([0,1]).Also,(a0-c)(g1)=0.Now,let us define

    Thenb0,c ∈W.Thus,the analysis of the previous two sections can be applied here to obtain a stable approximate solution of Eq.(5.4).Let,wherebc,αis the solution to the following equation.

    whereζcis the solution of the equation

    Now,letgεandjδbe the perturbed data as defined in Theorem 4.3.Also,letgbe such thatg?γ∈H4([0,1]).Letbe the solution of the following equation

    Then we have the following theorem.

    Theorem 5.1.Let a0,c and b0,c be as defined in the beginning of the section.Let g and j be as defined in Lemma3.10,and gγ∈H4([0,1]).Let h and ε satisfy(4.13)and(4.16),respectively.Also,let gε ∈L2(Γ),jδ ∈W1-1/p,p(?Ω)with p>3,and gε and jδ satisfy(3.26)and(4.1)respectively.Let,and let

    where Cα>0is such that Cα →0as α→0.Further,we have the following.

    Ifa0,c ∈H2(I),from (4.39),(5.14) and (5.17) we have,

    By definition,bc,α,ε,δ,his the unique solution of Eq.(5.8).Also,a0,c ∈H2(I)∩Wimpliesb0,c ∈H3(I)∩W.Thus,puttingζc,ε,δ,hin place ofζin Lemma 3.10,we have the proof using (4.49) and (5.19).

    From Theorem 5.1,we see thatc+ac,α,ε,δ,his a stable approximate solution of the Problem (P),with error estimates obtained from Theorem 5.1.

    Remark 5.1.Let us relax the assumption on the exact solutiona0even more.Let us assume thata0(g1) is not equal to the known numbercbut is known to be“close”to it,i.e,

    Thus,using similar arguments as in the proof of Theorem 5.1,we obtain estimates for

    Using the fact that

    we obtain (ac,α,ε,δ,h+c) as a stable approximate solution to the Problem (P),and obtain the corresponding error estimates.

    6 Illustration of the procedure

    In order to find a stable approximate solution of the Problem (P) using the new regularization method we have to undertake the following.

    Letjδ ∈W1-1/p,p(?Ω) withp>3,gε ∈L2(?Ω) be the perturbed data satisfying (3.26) and (4.1) respectively,and letAlso let us assumeg?γ ∈H4([0,1]).Then,by the following steps we obtain the regularized solutionaα,ε,δ.

    Acknowledgement

    The work on this paper was completed while the authors were at Department of Mathematics,I.I.T.Madras.The authors thank the referee (s) for positive comments and for many useful suggestions which helped to improve the presentation of the first draft of the paper.

    看片在线看免费视频| 国产成人免费无遮挡视频| 欧美大码av| 高潮久久久久久久久久久不卡| 多毛熟女@视频| 亚洲第一电影网av| 最近最新中文字幕大全电影3 | 日韩有码中文字幕| 操美女的视频在线观看| 色综合欧美亚洲国产小说| 黄片播放在线免费| 国产熟女xx| 国产精品1区2区在线观看.| 欧美精品亚洲一区二区| 侵犯人妻中文字幕一二三四区| 制服人妻中文乱码| 一级作爱视频免费观看| 嫩草影院精品99| 麻豆av在线久日| 大陆偷拍与自拍| 亚洲无线在线观看| 午夜福利欧美成人| av在线播放免费不卡| 波多野结衣av一区二区av| 美女高潮喷水抽搐中文字幕| 久久人妻熟女aⅴ| 18禁黄网站禁片午夜丰满| 亚洲在线自拍视频| 老熟妇乱子伦视频在线观看| 免费看a级黄色片| 亚洲久久久国产精品| 久久天躁狠狠躁夜夜2o2o| 老司机午夜福利在线观看视频| 男男h啪啪无遮挡| 亚洲人成网站在线播放欧美日韩| 中文字幕人成人乱码亚洲影| 19禁男女啪啪无遮挡网站| 这个男人来自地球电影免费观看| 99久久综合精品五月天人人| 黑人操中国人逼视频| 在线观看www视频免费| 精品一品国产午夜福利视频| 黄色视频,在线免费观看| 一区在线观看完整版| svipshipincom国产片| netflix在线观看网站| 久久香蕉精品热| 亚洲精品一区av在线观看| 亚洲成人国产一区在线观看| 精品国产乱码久久久久久男人| 黄片大片在线免费观看| 精品欧美一区二区三区在线| 亚洲色图综合在线观看| 在线十欧美十亚洲十日本专区| 免费看a级黄色片| 国产av精品麻豆| 极品人妻少妇av视频| 精品高清国产在线一区| 亚洲成人精品中文字幕电影| 亚洲aⅴ乱码一区二区在线播放 | 一级作爱视频免费观看| 美国免费a级毛片| 亚洲少妇的诱惑av| 夜夜爽天天搞| 精品一区二区三区av网在线观看| 亚洲专区中文字幕在线| 中文字幕另类日韩欧美亚洲嫩草| 日本在线视频免费播放| 欧美日韩黄片免| 国产成年人精品一区二区| 成人手机av| 黄片播放在线免费| 午夜免费成人在线视频| 欧美成人性av电影在线观看| 久久久久精品国产欧美久久久| 亚洲欧美精品综合一区二区三区| 十八禁网站免费在线| 91国产中文字幕| 精品久久久久久久久久免费视频| 亚洲精品中文字幕在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 欧美人与性动交α欧美精品济南到| 怎么达到女性高潮| 纯流量卡能插随身wifi吗| 亚洲精品国产精品久久久不卡| av福利片在线| 亚洲第一电影网av| 国产主播在线观看一区二区| 日韩大码丰满熟妇| 黄片播放在线免费| 精品人妻1区二区| 极品教师在线免费播放| 免费久久久久久久精品成人欧美视频| 亚洲欧美日韩另类电影网站| 变态另类丝袜制服| 性少妇av在线| 日韩精品中文字幕看吧| 日本精品一区二区三区蜜桃| 久久久精品国产亚洲av高清涩受| 国产精品乱码一区二三区的特点 | 亚洲在线自拍视频| 女人高潮潮喷娇喘18禁视频| 久久亚洲真实| 免费观看精品视频网站| 亚洲国产毛片av蜜桃av| av超薄肉色丝袜交足视频| 欧美中文综合在线视频| 欧美亚洲日本最大视频资源| 久久久国产精品麻豆| aaaaa片日本免费| 国产精品亚洲美女久久久| 国产真人三级小视频在线观看| 亚洲黑人精品在线| 午夜免费鲁丝| 91成人精品电影| 亚洲七黄色美女视频| 美女扒开内裤让男人捅视频| 精品国产亚洲在线| 国产三级黄色录像| 欧美日韩亚洲国产一区二区在线观看| 精品国产超薄肉色丝袜足j| 国产黄a三级三级三级人| 三级毛片av免费| 美国免费a级毛片| 男女下面进入的视频免费午夜 | 99久久国产精品久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美乱色亚洲激情| 欧美老熟妇乱子伦牲交| 精品国产一区二区久久| www日本在线高清视频| 日韩欧美一区视频在线观看| 久99久视频精品免费| 亚洲av片天天在线观看| 两个人免费观看高清视频| 给我免费播放毛片高清在线观看| 国产伦一二天堂av在线观看| 欧美午夜高清在线| 精品无人区乱码1区二区| 亚洲自偷自拍图片 自拍| 黄色女人牲交| 美女 人体艺术 gogo| 少妇熟女aⅴ在线视频| 在线观看免费视频网站a站| 嫁个100分男人电影在线观看| 日日爽夜夜爽网站| 国产不卡一卡二| 在线观看免费日韩欧美大片| 9191精品国产免费久久| 精品国产美女av久久久久小说| 波多野结衣一区麻豆| 一区二区三区国产精品乱码| 久久婷婷人人爽人人干人人爱 | 午夜福利18| 亚洲五月天丁香| 亚洲欧美日韩高清在线视频| 午夜福利18| 一级,二级,三级黄色视频| 夜夜躁狠狠躁天天躁| 此物有八面人人有两片| 欧美成人一区二区免费高清观看 | а√天堂www在线а√下载| 午夜成年电影在线免费观看| 国产精品影院久久| www.www免费av| 成人欧美大片| 巨乳人妻的诱惑在线观看| 国产成人影院久久av| 日日夜夜操网爽| 村上凉子中文字幕在线| 久久午夜亚洲精品久久| 日韩国内少妇激情av| 国产精品久久久久久精品电影 | 99国产精品99久久久久| 美女免费视频网站| 欧美日韩福利视频一区二区| 日韩精品中文字幕看吧| 9191精品国产免费久久| 伊人久久大香线蕉亚洲五| 91av网站免费观看| 99精品在免费线老司机午夜| 黄色女人牲交| 亚洲一区高清亚洲精品| 精品不卡国产一区二区三区| 免费观看人在逋| 级片在线观看| 婷婷精品国产亚洲av在线| 最近最新免费中文字幕在线| 欧美日本视频| 99国产精品免费福利视频| 亚洲免费av在线视频| 侵犯人妻中文字幕一二三四区| 国产亚洲欧美在线一区二区| 婷婷丁香在线五月| www.自偷自拍.com| 大香蕉久久成人网| 少妇熟女aⅴ在线视频| 99精品欧美一区二区三区四区| 久久久久久亚洲精品国产蜜桃av| 99久久久亚洲精品蜜臀av| 日本免费a在线| 久久人妻av系列| 国产亚洲精品第一综合不卡| 久久久国产成人免费| 搞女人的毛片| 成人亚洲精品一区在线观看| 美女扒开内裤让男人捅视频| 最好的美女福利视频网| 久久久国产成人免费| 色婷婷久久久亚洲欧美| 久久久水蜜桃国产精品网| www国产在线视频色| 亚洲电影在线观看av| 91av网站免费观看| 男男h啪啪无遮挡| 午夜福利一区二区在线看| 欧美日韩一级在线毛片| 麻豆成人av在线观看| 色综合站精品国产| xxx96com| 久久精品aⅴ一区二区三区四区| 操出白浆在线播放| 国语自产精品视频在线第100页| 日韩三级视频一区二区三区| 中文字幕最新亚洲高清| 巨乳人妻的诱惑在线观看| 精品欧美国产一区二区三| 欧美绝顶高潮抽搐喷水| 琪琪午夜伦伦电影理论片6080| 欧美另类亚洲清纯唯美| av视频免费观看在线观看| 操出白浆在线播放| 国产午夜福利久久久久久| 日本a在线网址| 亚洲欧美日韩高清在线视频| 两个人免费观看高清视频| 国产成人av教育| 一级a爱视频在线免费观看| 91成年电影在线观看| 在线播放国产精品三级| 国产又色又爽无遮挡免费看| 日本撒尿小便嘘嘘汇集6| 欧美成人午夜精品| 日日干狠狠操夜夜爽| 欧美最黄视频在线播放免费| 国产欧美日韩一区二区三| e午夜精品久久久久久久| 亚洲电影在线观看av| а√天堂www在线а√下载| 丁香六月欧美| 99精品欧美一区二区三区四区| 成人三级做爰电影| 国产男靠女视频免费网站| 亚洲五月天丁香| av电影中文网址| 美女高潮喷水抽搐中文字幕| 伦理电影免费视频| 日本 av在线| 老司机午夜十八禁免费视频| 成人av一区二区三区在线看| 亚洲成av人片免费观看| 麻豆成人av在线观看| 亚洲无线在线观看| 丁香六月欧美| АⅤ资源中文在线天堂| 久久久久久久久免费视频了| 少妇被粗大的猛进出69影院| 精品久久久久久成人av| 丁香欧美五月| 性少妇av在线| 亚洲av成人不卡在线观看播放网| 99香蕉大伊视频| 女同久久另类99精品国产91| 一个人观看的视频www高清免费观看 | ponron亚洲| 这个男人来自地球电影免费观看| 国产乱人伦免费视频| 亚洲九九香蕉| 国产成人精品久久二区二区免费| 国产精品九九99| 亚洲天堂国产精品一区在线| 久久婷婷人人爽人人干人人爱 | 亚洲,欧美精品.| 中出人妻视频一区二区| 在线视频色国产色| 日韩有码中文字幕| 一进一出抽搐gif免费好疼| 最近最新免费中文字幕在线| 精品福利观看| 欧美激情高清一区二区三区| 9191精品国产免费久久| 一个人免费在线观看的高清视频| 一区二区三区国产精品乱码| 琪琪午夜伦伦电影理论片6080| xxx96com| 亚洲av美国av| 国产精品一区二区免费欧美| 欧美午夜高清在线| 正在播放国产对白刺激| 精品国产美女av久久久久小说| 成人三级做爰电影| 中文字幕人成人乱码亚洲影| 精品午夜福利视频在线观看一区| 色在线成人网| e午夜精品久久久久久久| 老熟妇仑乱视频hdxx| 一本久久中文字幕| 又紧又爽又黄一区二区| 一级片免费观看大全| 国产精品亚洲美女久久久| 午夜福利免费观看在线| 国产1区2区3区精品| 国产精品免费一区二区三区在线| 久久伊人香网站| 欧美av亚洲av综合av国产av| 国产亚洲欧美98| 日本免费一区二区三区高清不卡 | 亚洲少妇的诱惑av| 人人妻人人澡人人看| 不卡一级毛片| 久久久久国内视频| 变态另类成人亚洲欧美熟女 | 999精品在线视频| 免费看十八禁软件| 国产视频一区二区在线看| 人成视频在线观看免费观看| 成年版毛片免费区| 69av精品久久久久久| 国产成+人综合+亚洲专区| videosex国产| 亚洲午夜理论影院| 成在线人永久免费视频| av电影中文网址| 天天添夜夜摸| 91九色精品人成在线观看| 国产三级黄色录像| 中文字幕高清在线视频| 国产精品爽爽va在线观看网站 | 757午夜福利合集在线观看| 欧美激情高清一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 久久欧美精品欧美久久欧美| 99久久国产精品久久久| 99国产极品粉嫩在线观看| 亚洲人成电影免费在线| 91字幕亚洲| 久99久视频精品免费| 女人被躁到高潮嗷嗷叫费观| bbb黄色大片| 一区二区三区高清视频在线| 一级作爱视频免费观看| 亚洲全国av大片| 99香蕉大伊视频| 悠悠久久av| 真人一进一出gif抽搐免费| 亚洲 欧美 日韩 在线 免费| 成年人黄色毛片网站| 午夜两性在线视频| 禁无遮挡网站| 国产高清视频在线播放一区| 黄色片一级片一级黄色片| 老熟妇仑乱视频hdxx| 99香蕉大伊视频| 午夜视频精品福利| 国产麻豆69| 91字幕亚洲| 无人区码免费观看不卡| 婷婷精品国产亚洲av在线| 免费在线观看亚洲国产| 亚洲美女黄片视频| 老司机福利观看| 一a级毛片在线观看| 熟女少妇亚洲综合色aaa.| 久久国产精品男人的天堂亚洲| 成年女人毛片免费观看观看9| 亚洲国产毛片av蜜桃av| 亚洲男人的天堂狠狠| avwww免费| 亚洲av电影不卡..在线观看| 色综合亚洲欧美另类图片| 国产高清videossex| 久热这里只有精品99| 日本在线视频免费播放| 日韩欧美三级三区| 亚洲欧美日韩高清在线视频| 国产亚洲欧美在线一区二区| 好看av亚洲va欧美ⅴa在| 国产精品自产拍在线观看55亚洲| 免费在线观看视频国产中文字幕亚洲| 免费搜索国产男女视频| 国产精品亚洲一级av第二区| 香蕉国产在线看| 欧美亚洲日本最大视频资源| 美女 人体艺术 gogo| 久久久久亚洲av毛片大全| 精品一区二区三区四区五区乱码| 久久久国产欧美日韩av| 亚洲男人的天堂狠狠| 午夜福利一区二区在线看| 亚洲欧洲精品一区二区精品久久久| 欧美老熟妇乱子伦牲交| 窝窝影院91人妻| 久久久国产精品麻豆| netflix在线观看网站| 久久人妻福利社区极品人妻图片| 欧美日韩瑟瑟在线播放| 中亚洲国语对白在线视频| 亚洲人成网站在线播放欧美日韩| 久9热在线精品视频| 亚洲专区中文字幕在线| 亚洲一区高清亚洲精品| 日本 av在线| 亚洲欧洲精品一区二区精品久久久| 欧美激情 高清一区二区三区| 9色porny在线观看| 成人免费观看视频高清| 丝袜在线中文字幕| 精品一区二区三区四区五区乱码| 搡老岳熟女国产| 午夜久久久在线观看| 免费av毛片视频| 9色porny在线观看| 视频区欧美日本亚洲| 国产亚洲精品综合一区在线观看 | 国产一区二区激情短视频| 热re99久久国产66热| 久久人妻福利社区极品人妻图片| 午夜激情av网站| 亚洲人成电影观看| 99久久久亚洲精品蜜臀av| 三级毛片av免费| 精品久久久久久,| 亚洲男人的天堂狠狠| 91麻豆精品激情在线观看国产| 国产精品一区二区免费欧美| 久久久国产精品麻豆| 一本大道久久a久久精品| 久久久久久久精品吃奶| 日韩中文字幕欧美一区二区| 99香蕉大伊视频| 国产av在哪里看| e午夜精品久久久久久久| 波多野结衣av一区二区av| 亚洲国产中文字幕在线视频| 亚洲第一青青草原| 一级毛片精品| 欧美日韩乱码在线| 国产精品免费视频内射| 亚洲一卡2卡3卡4卡5卡精品中文| 男女午夜视频在线观看| 多毛熟女@视频| 99精品欧美一区二区三区四区| 精品久久久久久久人妻蜜臀av | 日韩欧美一区二区三区在线观看| 日本在线视频免费播放| АⅤ资源中文在线天堂| 国产精品亚洲美女久久久| 国产精品久久久久久人妻精品电影| 欧美日韩精品网址| 成年人黄色毛片网站| 黑人巨大精品欧美一区二区蜜桃| 欧美成人免费av一区二区三区| 亚洲激情在线av| 看免费av毛片| 国产亚洲精品久久久久5区| 老司机在亚洲福利影院| 麻豆国产av国片精品| 乱人伦中国视频| 欧美丝袜亚洲另类 | 两个人看的免费小视频| 女生性感内裤真人,穿戴方法视频| av电影中文网址| 母亲3免费完整高清在线观看| 精品国产超薄肉色丝袜足j| 美女 人体艺术 gogo| 啦啦啦免费观看视频1| 制服人妻中文乱码| 一个人免费在线观看的高清视频| 手机成人av网站| 如日韩欧美国产精品一区二区三区| 伊人久久大香线蕉亚洲五| 婷婷丁香在线五月| 男女床上黄色一级片免费看| 久久精品国产综合久久久| 人成视频在线观看免费观看| 色哟哟哟哟哟哟| 国产97色在线日韩免费| 久久精品国产清高在天天线| 麻豆一二三区av精品| 两个人视频免费观看高清| 亚洲中文字幕日韩| 精品一区二区三区四区五区乱码| 日韩欧美一区视频在线观看| 中文字幕av电影在线播放| 午夜亚洲福利在线播放| 亚洲 欧美 日韩 在线 免费| 夜夜夜夜夜久久久久| 国产免费av片在线观看野外av| 亚洲精品av麻豆狂野| 国产伦人伦偷精品视频| 日本黄色视频三级网站网址| 女人精品久久久久毛片| 亚洲激情在线av| 久久久久久久久中文| 国产成人精品无人区| 久久久久久免费高清国产稀缺| 精品无人区乱码1区二区| 日本 av在线| 国产精品电影一区二区三区| av视频在线观看入口| 不卡一级毛片| 大码成人一级视频| 亚洲成av片中文字幕在线观看| 国产伦一二天堂av在线观看| 亚洲五月婷婷丁香| 国产亚洲精品第一综合不卡| 久久影院123| 国产精品自产拍在线观看55亚洲| 亚洲五月色婷婷综合| 国产成人一区二区三区免费视频网站| 欧美黑人精品巨大| 日日夜夜操网爽| 国产成人精品无人区| 亚洲国产欧美日韩在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲久久久国产精品| 熟妇人妻久久中文字幕3abv| 在线观看免费日韩欧美大片| 精品久久久久久,| 9色porny在线观看| 午夜亚洲福利在线播放| 国产一区二区三区视频了| 国产精品亚洲av一区麻豆| 亚洲,欧美精品.| 亚洲一区二区三区不卡视频| a在线观看视频网站| 亚洲精品一区av在线观看| 日韩欧美国产在线观看| 黄色视频,在线免费观看| 麻豆成人av在线观看| 免费在线观看亚洲国产| 国产91精品成人一区二区三区| 韩国av一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 日韩欧美国产一区二区入口| 正在播放国产对白刺激| 久久中文字幕人妻熟女| 精品一区二区三区视频在线观看免费| 国产区一区二久久| 在线免费观看的www视频| 在线观看舔阴道视频| 久久久久九九精品影院| 亚洲精品一区av在线观看| 久久影院123| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩黄片免| 精品日产1卡2卡| 国产三级黄色录像| 久热爱精品视频在线9| 日本vs欧美在线观看视频| 欧美老熟妇乱子伦牲交| 又黄又粗又硬又大视频| tocl精华| av欧美777| 色播在线永久视频| 黄片大片在线免费观看| 97人妻精品一区二区三区麻豆 | 欧美绝顶高潮抽搐喷水| 久9热在线精品视频| 在线观看免费视频网站a站| 热re99久久国产66热| www.www免费av| 日韩成人在线观看一区二区三区| 一级毛片女人18水好多| 夜夜爽天天搞| av天堂在线播放| 久久人人爽av亚洲精品天堂| 51午夜福利影视在线观看| 久久久久久人人人人人| 成人18禁在线播放| 久久中文字幕一级| 中文亚洲av片在线观看爽| 中文字幕色久视频| 一二三四社区在线视频社区8| 手机成人av网站| 亚洲人成伊人成综合网2020| 免费在线观看完整版高清| 在线十欧美十亚洲十日本专区| 操出白浆在线播放| 午夜免费观看网址| 两性午夜刺激爽爽歪歪视频在线观看 | 国产一区二区三区综合在线观看| 777久久人妻少妇嫩草av网站| aaaaa片日本免费| 99精品欧美一区二区三区四区| 国产精品国产高清国产av| 国产成人av教育| 精品乱码久久久久久99久播| 搞女人的毛片| 18禁黄网站禁片午夜丰满| 国产91精品成人一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 99香蕉大伊视频| 国产精品久久久久久精品电影 | 午夜福利欧美成人| 在线国产一区二区在线| 在线观看免费日韩欧美大片| 一a级毛片在线观看| 99久久99久久久精品蜜桃| 久久午夜亚洲精品久久| 日韩欧美一区视频在线观看| 一本综合久久免费| 精品熟女少妇八av免费久了| 1024香蕉在线观看| 欧美激情久久久久久爽电影 |