• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    六元瓜環(huán)和Keggin型雜多酸自組裝及催化合成乙酸乙酯

    2023-09-15 16:04:14曾俐玲李曉迪方蘭王沙張朝張云黔
    貴州大學學報(自然科學版) 2023年5期
    關鍵詞:乙酸乙酯催化劑利用

    曾俐玲 李曉迪 方蘭 王沙 張朝 張云黔

    Synthesis of Ethyl Acetate Catalyzed by Self-assembled Hybrids Derived from Cucurbit[6]uril and Keggin-type Heteropolyacids

    ZENG Liling, LI Xiaodi, FANG Lan, WANG Sha, ZHANG Chao, ZHANG Yunqian*

    (College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China)

    Abstract:

    Heteropolyacids (HPAs) are a class of multifunctional material with excellent catalytic properties in esterification reaction. Because of their good solubility, HPAs are difficult to separate from the product and hard to recycle and reuse when used as a homogeneous catalyst. In this paper, a series of insoluble Q[6]-HPAs catalysts are prepared by self-assembly of cucurbit[6]uril (Q[6]) and Keggin-type heteropolyacids, which have the characteristics of stable properties, large specific surface area, high recovery rate and recyclability. The heterogeneous Q[6]-HPAs catalysts exhibit high catalytic activity and recycling efficiency in the synthesis of ethyl acetate (EA), which have the potential application prospects.

    Key words:

    cucurbit[6]uril (Q[6]); Keggin-type heteropolyacids; supramolecular self-assembly; catalysts; ethyl acetate(EA)

    CLC number:O641.3

    Document code:A

    Heteropolyacids (HPAs)[1]are a class of polymetallic oxyacids that comprise heteroatoms (such as P, Si, Ge etc.) and transition metal atoms (such as Mo, W, V etc.) and adopt certain structures based on oxygen coordination. HPAs with the Keggin-type structure are widely used as acid catalysts due to their novel structure and very strong Br?nsted acidity. Silicotungstic acid (H4SiW12O40, STA), phosphotungstic acid (H3PW12O40, PTA), and phosphomolybdic acid (H3PMo12O40, PMA) are readily available and most frequently used as acid catalysts[2]. The total acidity of these HPAs decrease in the order PTA>STA>PMA[3]. However, the main disadvantages of HPAs as catalysts are their relatively low surface areas (1-10 m2/g) and the difficulty in recovery from the reaction mixture[4-5]. Combining HPAs with a suitable carrier is expected to circumvent the abovementioned problems. As a result, many traditional HPAs have been immobilized on SiO2, Al2O3, TiO2, active carbon, anion-exchange resin[6-7], clay[8], ZrO[9]2and Nb2O[10]5.

    Cucurbit[n]urils[11](Q[n]s) are a family of molecular container hosts possessing a rigid hydrophobic cavity and two identical carbonyl-fringed portals. They have attracted much attention in supramolecular chemistry because of their superior molecular recognition properties in aqueous media[12-16]. In particular, the electrostatically positive outer surface of Q[n]s can provide a driving force, the so-called the outer-surface interaction of Q[n]s, which is capable of generating numerous novel Q[n]s-based supramolecular assemblies[17-18]. K?gerler and co-workers investigated interactions of the [H2O@V18O4212-anion with Q[6]and Q[8] molecules, respectively, and characterized two novel hybrid porous complexes[19]. Cao and colleagues prepared a series of Q[n]s-HPAs self-assembly hybrids, and investigated their structural characteristics, modes of interaction and functional properties[20-22]. These results indicate that the driving force of Q[n]s and HPAs self-assembly is also derived from the outer surface interaction of Q[n]s.Ethyl acetate (EA) is commercially produced by the esterification of acetic acid with ethanol catalyzed by mineral acids. Mineral acids, such as sulfuric and phosphoric acids, are conventionally used as catalysts in industrial esterification reactions. Although these mineral acid catalysts have many advantages, such as high catalytic activity and selectivity, they are corrosive, toxic, and difficult to separate from reaction solutions[23-24]. In our previous work, cucurbit[6]uril-silicotungstic acid (Q[6]-STA) and tetramethyl cucurbit[6]uril-phosphomolybdic acid (TMeQ[6]-PMA) catalysts showed good catalytic activity in esterification reactions[25-26]. These results motivated us to further investigate Q[6]-HPAs catalysts for esterification of acetic acid with ethanol. In the present work, a series of Q[6]-HPAs self-assembled hybrids have been prepared and examined as catalysts for the synthesis of EA.

    1 Experimental section

    1.1 Materials

    Reagent grade silicotungstic acid hydrate (H4SiW12O40·xH2O; STA), phosphotungstic acid hydrate (H3PW12O40·xH2O; PTA), phosphomoly-bdic acid hydrate (H3PMo12O40·xH2O; PMA), ethyl acetate, ethanol, and acetic acid were purchased from Shanghai Aladdin Biochem Technology Co. Ltd. They were used as received without further purification. Q[6] was synthesized according to the literature[27], and Q[6]-HPAs self-assembled hybrids were prepared according to the literature[26].

    1.2 Synthesis of ethyl acetate

    The catalytic activity of Q[6]-HPAs self-assembly hybrids was investigated for the synthesis of EA. The esterification reaction was conducted at 353 K in a three-necked flask (50 mL) fitted with a reflux condenser, containing 0.1-0.5 g (optimized amount 0.3 g) of freshly activated Q[6]-HPAs catalysts (dried at 353 K for 3 h in an oven), 0.12 mol of acetic acid, and 0.12-0.48 mol(optimized amount, 0.24 mol) of ethanol. The Q[6]-HPAs catalyst was recovered by filtration, washed with water, and reactivated for the next experiments. The reaction products were collected from the flask. The composition of the reaction mixture and yield of EA was analyzed on an Agilent 6820 gas chromatograph equipped with a flame-ionization detector (FID) and a capillary column (KB-FFAP, 30 m×0.31 mm×0.25 μm), with nitrogen as a carrier gas and a programmable temperature range from 313 K to 453 K. The temperatures of the column oven and the FID were set at 473 K and 523 K, respectively.

    2 Results and discussion

    2.1 Interaction between Q[6] and HPAs

    In our previous work, the Q[6]-HPAs self-assembled hybrids were prepared by simple dropwise addition of HPAs to an acidic aqueous solution of Q[6] to formed insoluble compounds[26]. The structure of the Q[6] and HPAs, and the outer-surface interaction of Q[6] with HPAs are shown in Fig.1.

    Fourier-transform infrared (FTIR) spectroscopy provides an insight into the interaction of Q[6] with HPAs. When compared to the spectra obtained for the two pure compounds (Q[6] and HPAs), the characteristic IR bands of Q[6] and HPAs can still be observed in the Q[6]-HPAs self-assembled hybrids (Fig.2). In particular, the bands due to the portal carbonyl groups showed no obvious changes, whereas the bands due to the bridging -CH2- showed different shapes, suggesting the Q[6] molecules formed interacts with HPAs anions, and without changed their initial structure. The XRD patterns of Q[6]-HPAs was completely different form that of a simple mixture of Q[6] and HPAs (Fig.3), indicating that a new phase was formed between Q[6] and HPAs in solution, that is, Q[6] molecules formed interactions with HPAs anions.

    FTIR spectra and XRD showed that Q[6] molecules interacts with HPAs anions in a solution, whereby the driving force is derived from the outer-surface interaction of the Q[6]. That is, the electrostatic interaction between the positive outer-surface of Q[6] and HPAs anion, including the ion dipole interaction between the oxygen atom protruding from HPAs anion and the carbonyl carbon atom at the port of Q[6], and the C-H…O hydrogen bonding interaction between the oxygen atom protruding or bridging oxygen atom from HPAs anion and methine or methylene of the Q[6] (Fig.1).

    Scanning electron microscope results showed that Q[6]-HPAs self-assembled hybrids were cubic particles of about 200-400 nm with uniform dispersion and rough surface which was conducive to increasing the contact area between catalysts and reactants. Fig.4 is the SEM images of Q[6]-STA and the morphology of Q[6]-PTA and Q[6]-PMA is similar to that of Q[6]-STA. EDS spectrum confirmed that the composition of the sample was consistent with the Q[6] and HPAs. The elemental analysis results showed that the Q[6]∶HPAs stoichio-metry was 2∶1 and the empirical chemical formula was C72H72N48O64XM12·n H2O (X=P, Si and M=W, Mo).

    The TG and DTA experimental results suggested that the presence of Q[6] increased the thermal stability of HPAs[26]. N2gas adsorption-desorption isotherms measurements were applied to characterize the porosities of the Q[6]-HPAs self-assembled hybrids. The pore sizes and the surfaces conditions of the three Q[6]-HPAs are shown in Tab.1. Evidently, the surface area of the Q[6]-HPAs was greater than that of the HPAs[4-5]. NH3-TPD and py-FTIR experimental results showed that Q[6]-HPAs exhibited strong Br?nsted acidity[25].

    2.2 Catalytic activity of Q[6]-HPAs

    In order to examine the catalytic activities of the Q[6]-HPAs self-assembled hybrids, the effects of reaction time, catalyst amount and molar ratio of acetic acid to ethanol on the synthesis of EA were investigated. The amount of fixed catalyst was 0.3 g, 0.12 mol acetic acid and the molar ratio of ethanol to acetic acid was 3∶1, and the reaction temperature was 353 K(reflux temperature). The effect of reaction time on the yield of EA was investigated. The experimental results revealed that the yield of EA increased with the prolongation of reaction time. The yield of EA (mass fraction, %) leveled off at above 88% for Q[6]-STA after 2.5 h, above 87% for Q[6]-PTA and above 86% for Q[6]-PMA (Tab.2 and Fig.5(a)).

    When the molar ratio of ethanol to acetic acid was 3∶1, the reaction time was 2.5 h, and the reaction temperature was 353 K, the influence of catalyst amount on the yield of EA was investigated. The obtained data revealed that the yield of EA increased with the amount of catalyst. The appropriate catalyst loading corresponding to a reasonable yield was 0.3 g for all three Q[6]-HPAs (Tab.3 and Fig.5(b)).

    In Tab.4 are the yields of EA under the condition of Q[6]-HPAs catalyst 0.3 g, reaction time 2.5 h, reaction temperature 353 K. When the optimal molar ratio of ethanol to acetic acid was identified as 3∶1, the yields were 88.5%, 88.1% and 87.8% for the Q[6]-STA, Q[6]-PTA, and Q[6]-PMA, respectively (Fig.5(c)).

    Q[6] has no catalytic activity in esterifcation reaction, and its role is to formed a stable solid catalyst through the self-assembly interaction of Q[6] and HPAs. The active species in Q[6]-HPAs catalysts are HPAs. Comparative experiments revealed the low effciency of unassembled HPAs, and the catalytic performance of Q[6]-HPAs is better than that of unassembled HPAs[25]. Q[n]s-HPAs self-assembled systems often have the characteristics of porous structure[18,28]. In addition, the morphology of Q[6]-HPAs nanoparticles also increases its surface area and active sites on the catalyst surface. The greater the specifc surface area of the catalyst, the more dispersed the active species, and the larger the number of active sites. The high porosity of the catalyst makes it easy to adsorb the reactants, thus enhancing its catalytic performance. The catalytic activities of the Q[6]-HPAs in the EA synthesis reaction decreased in the order Q[6]-STA>Q[6]-PTA>Q[6]-PMA. This is different from the acidity order of HPA, which may be related to the different BET surface area of Q[6]-HPAs. Since HPAs are Br?nsted acids[2], we speculate that the aforementioned reaction can be explained by acid-catalyzed Fischer esterifcation mechanism[29]. When the carbonyl oxygen atom of carboxylic group binds with a proton of HPAs, the density of positive charge on carbonyl carbon atom increases. The nucleophillic attack of the alcohol on the protonated carbonyl group gives a tetrahedral intermediate bearing two hydroxyl groups, hich undergoes a water and proton elimination process to produce the ester (Fig.6).

    2.3 Recyclability of the Q[6]-HPAs catalysts.

    We mentioned above that the Q[6]-HPAs catalysts can be easily prepared in high yields and show high stability because they are insoluble in either acidic aqueous solutions or organic solvents. As esterification reaction catalysts, they are characterized by high catalytic activities compared to their classical counterparts, and may be easily isolated from reaction media due to their insolubility. An additional important advantage of these Q[6]-HPAs catalysts is their stability with respect to leaching of the acid sites during the process of the esterification; thus, the catalysts can be collected by simple filtration after completion of the reaction. The catalysts can be regenerated by washing with water several times followed by drying at 373 K in an vacuum oven. Thereafter, they can be used again in esterification reactions. Tab.5 and Fig.5(d) shows the results of five consecutive runs under optimal conditions of ethanol to acetic acid molar ratio of 2∶1, 0.3 g catalyst, 353 K and 2.5 h for the Q[6]-STA, Q[6]-PTA, Q[6]-PMA catalysts, respectively. The normalized yields suggest that all three catalysts retained their original activities.

    3 Conclusion

    In this work, three Q[6]-HPAs catalysts showed good catalytic activities in the esterification reaction of acetic acid with ethanol. Their insolubility makes it easy to recover them from reaction mixture. The optimal reaction conditions are reflux temperature 353 K, catalyst amount 0.3 g, alcohol-acid ratio 3∶1 and reaction time 2.5 h. Furthermore, all the three Q[6]-HPAs catalysts showed high catalytic activity and the yield of EA was above 86% under the optimal reaction conditions. A reusability study showed the catalysts remain stable and active, suggesting that these inexpensive Q[6]-HPAs supramolecular self-assembly catalysts may potentially be applied in industry.

    References:

    [1]WANG E B, HU C W, XU L. Introduce in polyacid chemistry[M]. Beijing: Chemical Industry Press, 1997.

    [2] HABER J, PAMIN K, MATACHOWSKI L, et al. Catalytic performance of the dodecatungstophosphoric acid on different supports[J]. Applied Catalysis A: General, 2003, 256: 141-152.

    [3] KOZHEVNIKOV I V. Catalysts by heteropoly acids and multicomponent polyoxometalates in Liquid-phase reactions[J]. Chemical Reviews, 1998, 98: 171-198.

    [4] SAWANT D P, VINU A, JUSTUS J, et al. Catalytic performances of silicotungstic acid/zirconia supported SBA-15 in an esterification of benzyl alcohol with acetic acid[J]. Journal of Molecular Catalysis A: Chemical, 2007, 276: 150-157.

    [5] TIMOFEEEVA M N, MATROSOVA M M, RESHETENKO T V, et al. Filamentous carbons as a support for heteropoly acid[J]. Journal of Molecular Catalysis A: Chemical, 2004, 211: 131-137.

    [6] WU Y, YE X K, YANG X G, et al. Heterogenization of Heteropolyacids: a general discussion on the preparation of supported acid catalysts[J]. Industrial & Engineering Chemistry Research, 1996, 35: 2546-2560.

    [7] ROSA M L, MANUEL O, JOSE L G, et al. TiO2-supported heteropoly acid catalysts for dehydration of methanol to dimethyl ether: relevance of dispersion and support interaction[J]. Catalysis Science & Technology, 2015, 5: 484-491.

    [8] SIDDHARTHA K B, DIPAK K D. Activated clay supported heteropoly acid catalysts for esterification of acetic acid with butanol[J]. Applied Clay Science, 2011, 53: 347-352.

    [9] HERNANDEZ-CORTEZA J G, MANRIQUEZB M, LARTUNDO-ROJASC L. Study of acid-base properties of supported heteropoly acids in the reactions of secondary alcohols dehydration[J]. Catalysis Today, 2014, 220/222: 32-38.

    [10]AN S, SONG D Y, SUN Y N, et al. Design of highly ordered mesoporous Nb2O5-based hybrid catalysts bifunctionalized by the Keggin-type heteropoly acid and phenyl-bridged organosilica moieties for the synthesis of methyl levulinate[J]. Microporous and Mesoporous Materials, 2016, 226: 396-405.

    [11]FREEMAN W A, MOCK L, SHIH N Y. Cucurbituril [J]. Journal of the American Chemical Society, 1981, 103: 7367-7368.

    [12]KIM K, SELVAPALAM N, KO Y H, et al. Functionalized cucurbiturils and their applications[J]. Chemical Society Reviews, 2007, 36: 267-279.

    [13]ISAACS L. Stimuli responsive systems constructed using cucurbit[n]uril-type molecular containers[J]. Accounts of Chemical Research, 2014, 47: 2052-2062.

    [14]ASSAF K I, NAU W M. Cucurbiturils: from synthesis to high-affinity binding and catalysis[J]. Chemical Society Reviews, 2015, 44: 394-418.

    [15]NI X L, XIAO X, CONG H, et al. Cucurbit[n]uril-based coordination chemistry: from simple coordination complexes to novel poly-dimensional coordination polymers[J]. Chemical Society Reviews, 2013, 42: 9480-9508.

    [16]TAO Z, ZHU Q J. Recognition and response of metal cations by cucurbit[n]urils-based host-guest probes[J]. Journal of Guizhou University (Natural Sciences), 2018, 35(4): 1-7.

    [17]NI X L, XIAO X, CONG H, et al. Self-Assemblies based on the “outer-surface interactions” of cucurbit[n]urils: new opportunities for supramolecular architectures and materials[J]. Accounts of Chemical Research, 2014, 47: 1386-1395.

    [18]CHEN L X, HUANG Y, GAO R H, et al. Cucurbit[n]uril-based supramolecular frameworks assembled through outer surface interaction and their functional propertiies[J]. Journal of Guizhou University(Natural Sciences), 2020, 37(1): 31-40.

    [19]FANG X K, KGERLER P, ISAACS L, et al. Cucurbit[n]uril-Polyoxoanion hybrids[J]. Journal of the American Chemical Society, 2009, 131: 432-433.

    [20]LIN J X, LU J, YANG X, et al. Construction of train-like supramolecular structures from decamethylcucurbit[5]uril and Iso- or Hetero- Keggin-type polyoxotungstates[J]. Crystal Growth & Design, 2010, 10: 1966-1970.

    [21]CAO M, LIN J X, LU J. et al. Development of a polyoxometallate-based photocatalyst assembled with cucurbit[6]uril via hydrogen bonds for azo dyes degradation[J]. Journal of Hazardous Materials, 2011, 186: 948-951.

    [22]LU J, LIN J X, ZHAO X L, et al. Photochromic hybrid materials of cucurbituril and polyoxometalates as photocatalysts under visible light[J]. Chemical Communications, 2012, 48: 669-671.

    [23]PETERS T A, BENES N E, HOLMENT A, et al. Comparison of commercial solid acid catalysts for the esterification of acetic acid with butanol[J]. Appl Catal A: General, 2006, 297: 182-188.

    [24]DIAS J A, CALIMAN E, DIAS S C L, et al. Preparation and characterization of supported H3PW12O40on silica gel: a potential catalyst for green chemistry processes[J]. Catal Today, 2003, 85: 39-48.

    [25]LI S, XIA W, ZHANG Y Q, et al. Self-assembled tetramethyl cucurbit[6]uril-polyoxometalate nanocubes as efficient and recyclable catalysts for the preparation of propyl gallate[J]. New Journal Chemistry, 2020, 44: 11895-11900.

    [26]XIA W, NIE Y M, LEI N. et al. A recyclable cucurbit[6]uril-supported silicotungstic acid catalyst used in the esterification reaction[J]. Inorganica Chimica Acta, 2021, 523: 120418.1-120418.7.

    [27]LUO X Q, XUE S F, ZHU Q J, et al. A new method for synthesis and separate of a new family cage compounds- cucurbit[n=5-8]urils[J]. Journal of Guizhou University (Natural Sciences), 2003, 20(2): 184-186.

    [28]XIA X, GE W W, CHEN H Y, et al. Porous supramolecular assemblies and functional properties of perhydroxylated cucurbit[6]uril and polyoxometallates[J].New Journal of Chemistry, 2019, 43: 10297-10304.

    [29]WANG J T, WANG Y M, ZHANG B S, et al. Organic chemistry: 2th vol. [M]. 3rd ed., Tianjin: Nankai University Press, 2009: 516-517.

    (責任編輯:周曉南)

    六元瓜環(huán)和Keggin型雜多酸自組裝及催化合成乙酸乙酯

    曾俐玲,李曉迪,方蘭,王沙,張朝,張云黔*

    (貴州大學 化學與化工學院,貴州 貴陽 550025)

    摘 要:雜多酸(HPAs)是一類用途廣泛的多功能材料,在酯化反應中具有優(yōu)異的催化劑性能。由于HPAs良好的溶解性,作為均相催化劑使用時,不易與產(chǎn)物分離、難以回收和重復利用。利用六元瓜環(huán)(Q[6])與 Keggin型雜多酸的自組裝作用,制備了系列難溶性Q[6]-HPAs催化劑。該類催化劑具有性質穩(wěn)定、比表面積大、回收率高,可循環(huán)利用等特點,在乙酸乙酯(EA)合成中表現(xiàn)出較高的催化活性和循環(huán)利用率,具有潛在的應用前景。

    關鍵詞:六元瓜環(huán) (Q[6]);Keggin型雜多酸;超分子自組裝;催化劑;乙酸乙酯 (EA)

    猜你喜歡
    乙酸乙酯催化劑利用
    利用min{a,b}的積分表示解決一類絕對值不等式
    密蒙花乙酸乙酯萃取層化學成分的分離與鑒定
    利用一半進行移多補少
    直接轉化CO2和H2為甲醇的新催化劑
    利用數(shù)的分解來思考
    Roommate is necessary when far away from home
    廣西莪術乙酸乙酯部位的抗血栓作用
    中成藥(2018年6期)2018-07-11 03:01:04
    澤漆乙酸乙酯提取物對SGC7901/DDP多藥耐藥性的逆轉及機制
    中成藥(2017年8期)2017-11-22 03:19:25
    鎖陽乙酸乙酯提取物的雌激素樣作用研究
    新型釩基催化劑催化降解氣相二噁英
    亚洲欧美激情综合另类| 亚洲色图综合在线观看| 中出人妻视频一区二区| 老司机午夜福利在线观看视频| 欧美大码av| 国产aⅴ精品一区二区三区波| a在线观看视频网站| 黑丝袜美女国产一区| 一二三四社区在线视频社区8| 90打野战视频偷拍视频| 天天添夜夜摸| 欧美日韩中文字幕国产精品一区二区三区 | 黑丝袜美女国产一区| 91麻豆精品激情在线观看国产 | 久久久精品国产亚洲av高清涩受| 麻豆国产av国片精品| 日日干狠狠操夜夜爽| 黑丝袜美女国产一区| 日韩av在线大香蕉| 成人手机av| 黄色片一级片一级黄色片| 久久久久久亚洲精品国产蜜桃av| 老司机福利观看| 久久久久精品国产欧美久久久| 成人18禁高潮啪啪吃奶动态图| 日日摸夜夜添夜夜添小说| 亚洲专区字幕在线| 女同久久另类99精品国产91| 老司机亚洲免费影院| 久久香蕉精品热| 久久欧美精品欧美久久欧美| 国产精品香港三级国产av潘金莲| 美女高潮喷水抽搐中文字幕| 国产免费现黄频在线看| 三级毛片av免费| 高潮久久久久久久久久久不卡| 在线观看免费视频日本深夜| 激情视频va一区二区三区| 身体一侧抽搐| 成人av一区二区三区在线看| 身体一侧抽搐| 啦啦啦免费观看视频1| 亚洲自拍偷在线| 麻豆成人av在线观看| 在线十欧美十亚洲十日本专区| 脱女人内裤的视频| 精品国产乱子伦一区二区三区| 在线国产一区二区在线| 9色porny在线观看| 黑人欧美特级aaaaaa片| 在线国产一区二区在线| 九色亚洲精品在线播放| 三上悠亚av全集在线观看| 国产成人系列免费观看| 亚洲激情在线av| 久久精品人人爽人人爽视色| 欧美在线一区亚洲| 久久午夜亚洲精品久久| 国产成人欧美在线观看| 伦理电影免费视频| 男男h啪啪无遮挡| 757午夜福利合集在线观看| 欧美+亚洲+日韩+国产| 日本黄色日本黄色录像| x7x7x7水蜜桃| 欧美日韩瑟瑟在线播放| 亚洲视频免费观看视频| 一进一出抽搐动态| 欧美乱色亚洲激情| 久久人人精品亚洲av| 少妇裸体淫交视频免费看高清 | 女同久久另类99精品国产91| 国产一区二区激情短视频| 午夜精品久久久久久毛片777| 50天的宝宝边吃奶边哭怎么回事| 色哟哟哟哟哟哟| 国产精品二区激情视频| 精品熟女少妇八av免费久了| 欧美最黄视频在线播放免费 | www.www免费av| √禁漫天堂资源中文www| 老司机在亚洲福利影院| 亚洲av成人av| 亚洲人成伊人成综合网2020| 又黄又爽又免费观看的视频| 久久精品国产清高在天天线| 99在线视频只有这里精品首页| 亚洲欧美日韩高清在线视频| 欧美日本亚洲视频在线播放| 一级片免费观看大全| 免费av中文字幕在线| 欧美成人午夜精品| 美女高潮喷水抽搐中文字幕| aaaaa片日本免费| 91九色精品人成在线观看| 久久精品91蜜桃| 亚洲人成网站在线播放欧美日韩| 青草久久国产| 久久99一区二区三区| 一个人免费在线观看的高清视频| 18禁裸乳无遮挡免费网站照片 | 波多野结衣一区麻豆| 亚洲熟妇中文字幕五十中出 | 国产精品电影一区二区三区| 国产精品乱码一区二三区的特点 | 国产av在哪里看| 欧美激情 高清一区二区三区| 久久中文字幕人妻熟女| 成年人黄色毛片网站| 日日干狠狠操夜夜爽| 制服诱惑二区| 校园春色视频在线观看| 高潮久久久久久久久久久不卡| 黄网站色视频无遮挡免费观看| 欧美黄色片欧美黄色片| 国产区一区二久久| 国产亚洲精品久久久久久毛片| 亚洲精品一二三| 麻豆国产av国片精品| 男男h啪啪无遮挡| 欧美日本亚洲视频在线播放| 人成视频在线观看免费观看| 国产精品电影一区二区三区| 午夜精品国产一区二区电影| 波多野结衣av一区二区av| 99久久综合精品五月天人人| 久久精品国产99精品国产亚洲性色 | 交换朋友夫妻互换小说| 免费搜索国产男女视频| 午夜精品久久久久久毛片777| 欧美日韩亚洲国产一区二区在线观看| 日日爽夜夜爽网站| 久久久久国产精品人妻aⅴ院| 久久人人97超碰香蕉20202| 男女做爰动态图高潮gif福利片 | 91麻豆精品激情在线观看国产 | 无限看片的www在线观看| 一级a爱视频在线免费观看| 在线观看www视频免费| 欧美在线黄色| 国产精品日韩av在线免费观看 | 在线观看免费日韩欧美大片| 国产精品亚洲av一区麻豆| 欧美大码av| 99在线视频只有这里精品首页| 国产亚洲欧美精品永久| 久久人人爽av亚洲精品天堂| 欧美国产精品va在线观看不卡| 老熟妇仑乱视频hdxx| 精品国产美女av久久久久小说| 中文字幕人妻丝袜制服| 一级作爱视频免费观看| 正在播放国产对白刺激| 757午夜福利合集在线观看| 精品电影一区二区在线| 免费av毛片视频| 在线看a的网站| 精品久久久久久电影网| 50天的宝宝边吃奶边哭怎么回事| 国产精品亚洲一级av第二区| 国产主播在线观看一区二区| 精品国产乱码久久久久久男人| 国产成人一区二区三区免费视频网站| 成人18禁高潮啪啪吃奶动态图| 欧美日韩精品网址| 久久久国产欧美日韩av| 视频区欧美日本亚洲| 18禁裸乳无遮挡免费网站照片 | 纯流量卡能插随身wifi吗| 亚洲久久久国产精品| 日韩av在线大香蕉| 中文字幕色久视频| 成人永久免费在线观看视频| 韩国精品一区二区三区| 欧美日本中文国产一区发布| 中文欧美无线码| 精品久久久久久成人av| 久久精品亚洲精品国产色婷小说| 老汉色∧v一级毛片| 午夜免费成人在线视频| 国产真人三级小视频在线观看| 精品一品国产午夜福利视频| 美女午夜性视频免费| 国产一区二区在线av高清观看| a在线观看视频网站| 国产精品 欧美亚洲| 不卡av一区二区三区| 亚洲国产毛片av蜜桃av| 大陆偷拍与自拍| 极品人妻少妇av视频| 久久 成人 亚洲| 亚洲精品中文字幕在线视频| 久久中文看片网| 国产精品 国内视频| 成年女人毛片免费观看观看9| 韩国av一区二区三区四区| 身体一侧抽搐| 国产av不卡久久| 国产美女午夜福利| 久久久久久久久中文| 97碰自拍视频| 18禁在线播放成人免费| 国产v大片淫在线免费观看| 色5月婷婷丁香| 不卡一级毛片| 高清日韩中文字幕在线| 亚洲av免费在线观看| 欧美性感艳星| 桃红色精品国产亚洲av| 性欧美人与动物交配| 国产av麻豆久久久久久久| 三级国产精品欧美在线观看| 欧美黑人欧美精品刺激| 亚洲国产精品成人综合色| 精品99又大又爽又粗少妇毛片 | 免费无遮挡裸体视频| eeuss影院久久| 美女xxoo啪啪120秒动态图 | 午夜免费成人在线视频| 一本久久中文字幕| 少妇熟女aⅴ在线视频| 九九在线视频观看精品| 露出奶头的视频| 亚洲人成网站在线播| 夜夜看夜夜爽夜夜摸| 久久精品影院6| 亚洲无线在线观看| 悠悠久久av| 久久这里只有精品中国| 欧美一区二区国产精品久久精品| 国产成人av教育| 久久人妻av系列| 黄色一级大片看看| 麻豆久久精品国产亚洲av| 美女大奶头视频| 国产欧美日韩精品亚洲av| 俺也久久电影网| 国产aⅴ精品一区二区三区波| 国产亚洲精品久久久久久毛片| 国产精品久久久久久人妻精品电影| 听说在线观看完整版免费高清| 免费在线观看亚洲国产| 婷婷精品国产亚洲av在线| 久久伊人香网站| 夜夜看夜夜爽夜夜摸| 人妻丰满熟妇av一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 人人妻人人澡欧美一区二区| av在线蜜桃| 别揉我奶头 嗯啊视频| 特大巨黑吊av在线直播| 国产精品久久电影中文字幕| 亚洲欧美日韩高清在线视频| 精品久久久久久久人妻蜜臀av| 成年版毛片免费区| 91午夜精品亚洲一区二区三区 | 国产免费一级a男人的天堂| 此物有八面人人有两片| av中文乱码字幕在线| 亚洲 国产 在线| 免费观看精品视频网站| 国产精品久久久久久人妻精品电影| 欧美性感艳星| 午夜福利欧美成人| 亚洲一区高清亚洲精品| 午夜福利欧美成人| 国产精品久久久久久久电影| 在线a可以看的网站| 91在线观看av| 我要搜黄色片| 免费av毛片视频| 午夜福利在线观看免费完整高清在 | 九色国产91popny在线| 亚洲av电影不卡..在线观看| 亚洲av二区三区四区| 88av欧美| 亚洲第一欧美日韩一区二区三区| 亚洲第一区二区三区不卡| 日韩欧美免费精品| 淫妇啪啪啪对白视频| 亚洲精品成人久久久久久| 99在线视频只有这里精品首页| 性色avwww在线观看| 国产伦精品一区二区三区四那| 3wmmmm亚洲av在线观看| 国产欧美日韩一区二区精品| 久久久精品大字幕| 一级a爱片免费观看的视频| 亚洲成人久久爱视频| 亚洲av二区三区四区| 久久精品影院6| 精品日产1卡2卡| 精品人妻偷拍中文字幕| 女人十人毛片免费观看3o分钟| 怎么达到女性高潮| av欧美777| 一级黄片播放器| 成年女人看的毛片在线观看| 日本a在线网址| 99久久精品一区二区三区| 久久婷婷人人爽人人干人人爱| 欧美日韩福利视频一区二区| 一个人看的www免费观看视频| 亚洲av日韩精品久久久久久密| 国产在视频线在精品| 欧美+亚洲+日韩+国产| 一区二区三区免费毛片| 中文字幕av在线有码专区| 精品国产三级普通话版| 欧美色欧美亚洲另类二区| 每晚都被弄得嗷嗷叫到高潮| 国产精品久久久久久人妻精品电影| 搡老熟女国产l中国老女人| 88av欧美| 内地一区二区视频在线| 国产男靠女视频免费网站| 毛片女人毛片| 老熟妇乱子伦视频在线观看| 国产一区二区在线av高清观看| 高清在线国产一区| 国产不卡一卡二| 国产精品久久久久久人妻精品电影| 国产伦在线观看视频一区| 亚洲精品粉嫩美女一区| 亚洲天堂国产精品一区在线| 深夜a级毛片| 国产中年淑女户外野战色| 午夜福利在线观看免费完整高清在 | 国产精品久久电影中文字幕| 2021天堂中文幕一二区在线观| 亚洲成av人片免费观看| 天天一区二区日本电影三级| 欧美日韩瑟瑟在线播放| 我的老师免费观看完整版| 亚洲av免费高清在线观看| 美女 人体艺术 gogo| 亚洲国产精品久久男人天堂| 日韩欧美在线乱码| 成人国产综合亚洲| 成人午夜高清在线视频| 成年女人永久免费观看视频| 极品教师在线免费播放| 欧美色视频一区免费| 久久久精品欧美日韩精品| 99热只有精品国产| 日本a在线网址| 欧美另类亚洲清纯唯美| 成年版毛片免费区| 色吧在线观看| 国产亚洲欧美98| 久久国产精品影院| 久久久久久久午夜电影| 色尼玛亚洲综合影院| 人妻夜夜爽99麻豆av| 国产精品自产拍在线观看55亚洲| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 午夜福利高清视频| АⅤ资源中文在线天堂| 简卡轻食公司| 日韩欧美国产在线观看| 搡老熟女国产l中国老女人| 动漫黄色视频在线观看| 国产精品av视频在线免费观看| 少妇的逼好多水| 成年人黄色毛片网站| 亚洲成av人片在线播放无| 少妇人妻一区二区三区视频| 嫩草影院入口| 精品国内亚洲2022精品成人| 又粗又爽又猛毛片免费看| 国产精品影院久久| 一边摸一边抽搐一进一小说| 日日干狠狠操夜夜爽| 精品乱码久久久久久99久播| 桃红色精品国产亚洲av| 欧美日韩国产亚洲二区| 国产私拍福利视频在线观看| 国产日本99.免费观看| 成人国产综合亚洲| 亚洲熟妇熟女久久| 精品99又大又爽又粗少妇毛片 | 欧美最新免费一区二区三区 | 一本久久中文字幕| 99精品在免费线老司机午夜| 国产精品久久久久久久电影| 成人av一区二区三区在线看| 久久6这里有精品| 国产精品电影一区二区三区| 两个人的视频大全免费| 偷拍熟女少妇极品色| 一卡2卡三卡四卡精品乱码亚洲| 一进一出抽搐gif免费好疼| 嫩草影院精品99| bbb黄色大片| 欧美色视频一区免费| 少妇的逼水好多| 精华霜和精华液先用哪个| 九九热线精品视视频播放| 国产69精品久久久久777片| 欧美日韩瑟瑟在线播放| or卡值多少钱| 中文字幕久久专区| 少妇被粗大猛烈的视频| 日韩亚洲欧美综合| 国产精品1区2区在线观看.| 午夜福利免费观看在线| 十八禁国产超污无遮挡网站| 此物有八面人人有两片| 亚洲黑人精品在线| 国产色爽女视频免费观看| 日韩欧美精品v在线| 51午夜福利影视在线观看| 亚洲最大成人av| 在线播放国产精品三级| 老熟妇仑乱视频hdxx| 两个人视频免费观看高清| 99热精品在线国产| 久久国产乱子伦精品免费另类| 久久亚洲真实| 国产探花在线观看一区二区| 国产精品av视频在线免费观看| 色视频www国产| 成人特级黄色片久久久久久久| 精品久久久久久久久av| 国产v大片淫在线免费观看| 免费av不卡在线播放| 成人特级av手机在线观看| 久久久久精品国产欧美久久久| 999久久久精品免费观看国产| 欧美在线一区亚洲| 两人在一起打扑克的视频| 国产真实乱freesex| 12—13女人毛片做爰片一| 欧美激情国产日韩精品一区| 国产91精品成人一区二区三区| 久久久国产成人精品二区| 国产爱豆传媒在线观看| 精品久久久久久久末码| 免费av观看视频| 欧美在线黄色| 日本a在线网址| 亚洲,欧美精品.| 日本黄色片子视频| ponron亚洲| 国产精品女同一区二区软件 | 中文字幕精品亚洲无线码一区| 日本成人三级电影网站| 99国产综合亚洲精品| 免费观看精品视频网站| 亚州av有码| www.熟女人妻精品国产| 久久精品国产自在天天线| 国产69精品久久久久777片| 人人妻,人人澡人人爽秒播| 精品久久久久久久末码| 久久久久久久久久成人| 亚洲无线在线观看| 夜夜躁狠狠躁天天躁| 久久国产乱子伦精品免费另类| 国产中年淑女户外野战色| 亚洲中文字幕一区二区三区有码在线看| 久久中文看片网| 日本a在线网址| 国产av麻豆久久久久久久| 国产高清视频在线播放一区| 露出奶头的视频| 真实男女啪啪啪动态图| 午夜影院日韩av| 最近最新免费中文字幕在线| 色综合婷婷激情| 好男人电影高清在线观看| 国产精华一区二区三区| 人人妻人人看人人澡| 永久网站在线| 色在线成人网| 国产精品久久视频播放| 欧美不卡视频在线免费观看| 男女之事视频高清在线观看| 国产毛片a区久久久久| 偷拍熟女少妇极品色| 国产精品人妻久久久久久| 欧美黄色片欧美黄色片| 午夜久久久久精精品| 搡女人真爽免费视频火全软件 | 丝袜美腿在线中文| 少妇的逼水好多| 高清日韩中文字幕在线| 麻豆av噜噜一区二区三区| 国产白丝娇喘喷水9色精品| 日本免费a在线| 亚洲在线自拍视频| 日韩中字成人| 久久99热6这里只有精品| 日本免费一区二区三区高清不卡| 国产高清视频在线观看网站| av视频在线观看入口| 国产精品电影一区二区三区| 97超视频在线观看视频| 国产精品伦人一区二区| 男女那种视频在线观看| 亚洲国产精品sss在线观看| 18禁黄网站禁片午夜丰满| 中文亚洲av片在线观看爽| 亚洲五月婷婷丁香| 欧美区成人在线视频| 嫁个100分男人电影在线观看| 精品国产亚洲在线| 美女cb高潮喷水在线观看| 色哟哟哟哟哟哟| 久久性视频一级片| 国产爱豆传媒在线观看| 无人区码免费观看不卡| 在线观看av片永久免费下载| 在现免费观看毛片| 99久久九九国产精品国产免费| 国产精品国产高清国产av| 听说在线观看完整版免费高清| 亚洲人成网站高清观看| 国产精品av视频在线免费观看| 蜜桃久久精品国产亚洲av| 99国产极品粉嫩在线观看| 成人性生交大片免费视频hd| 永久网站在线| 午夜精品在线福利| 国产高潮美女av| 国产亚洲精品久久久com| 国产精品一区二区三区四区免费观看 | 精品人妻熟女av久视频| 精品不卡国产一区二区三区| 欧美一区二区亚洲| 亚洲欧美日韩高清在线视频| 男女床上黄色一级片免费看| 成人一区二区视频在线观看| 他把我摸到了高潮在线观看| 色综合欧美亚洲国产小说| www日本黄色视频网| 欧美中文日本在线观看视频| 亚洲美女视频黄频| 精品99又大又爽又粗少妇毛片 | 亚洲无线在线观看| 午夜视频国产福利| 免费av毛片视频| 精品久久久久久成人av| 91午夜精品亚洲一区二区三区 | 欧美日韩瑟瑟在线播放| www.色视频.com| 国产成人啪精品午夜网站| avwww免费| 一级av片app| 精华霜和精华液先用哪个| 欧美3d第一页| 3wmmmm亚洲av在线观看| 高清在线国产一区| 哪里可以看免费的av片| 一本综合久久免费| 日本a在线网址| 成年版毛片免费区| 午夜老司机福利剧场| 人人妻人人看人人澡| 国产一区二区三区在线臀色熟女| 免费一级毛片在线播放高清视频| 天堂动漫精品| 极品教师在线视频| 欧美又色又爽又黄视频| 可以在线观看的亚洲视频| 两个人的视频大全免费| 少妇人妻精品综合一区二区 | 国产精品人妻久久久久久| 色综合婷婷激情| 精品午夜福利在线看| 一卡2卡三卡四卡精品乱码亚洲| 欧美午夜高清在线| 久久国产精品人妻蜜桃| 久久亚洲精品不卡| 久久国产精品人妻蜜桃| 九色成人免费人妻av| netflix在线观看网站| 欧美一区二区亚洲| 在线观看免费视频日本深夜| 桃红色精品国产亚洲av| 一进一出抽搐gif免费好疼| 国产69精品久久久久777片| 九九久久精品国产亚洲av麻豆| 日韩欧美国产在线观看| 欧美一区二区国产精品久久精品| 91九色精品人成在线观看| 免费人成视频x8x8入口观看| 波野结衣二区三区在线| 日本一二三区视频观看| 久久国产精品影院| 国产欧美日韩一区二区精品| 日韩欧美国产一区二区入口| 能在线免费观看的黄片| 少妇的逼水好多| 麻豆成人av在线观看| 久久久久国内视频| 亚洲电影在线观看av| 午夜福利在线观看吧| 不卡一级毛片| 97热精品久久久久久| 我的老师免费观看完整版| 一级作爱视频免费观看| 亚洲专区中文字幕在线| 一级av片app| av欧美777| 啦啦啦观看免费观看视频高清| 亚洲无线在线观看| 天天一区二区日本电影三级| 免费人成视频x8x8入口观看| 国产午夜福利久久久久久| 亚洲人与动物交配视频| 成人永久免费在线观看视频| 婷婷精品国产亚洲av| 久久午夜福利片| 色哟哟哟哟哟哟|