• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Priming for Saline-Alkaline Tolerance in Rice: Current Knowledge and Future Challenges

    2023-09-05 13:01:06JiangChangjieLiangZhengweiXieXianzhi
    Rice Science 2023年5期

    Jiang Changjie, Liang Zhengwei, Xie Xianzhi

    Review

    Priming for Saline-Alkaline Tolerance in Rice: Current Knowledge and Future Challenges

    Jiang Changjie1, Liang Zhengwei2, Xie Xianzhi1

    (Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

    Soil salinization and/or alkalization is a major constraint to crop production worldwide. Approximately 60% of the cultivated land is affected by salt, over half of which is alkalized.Alkaline soils are characterized by high alkalinity and typically high salinity, which creates a complex saline-alkaline (SA) stress that affects plant growth. Rice cultivation has been accepted as an important strategy for effective utilization of SA land if water is available for irrigation. Nevertheless, as a salt-sensitive plant, rice plants suffer severe SA-induced damage, which results in poor plant growth and grain yield. Various approaches have been employed to improve rice productivity in SA land. Among them, the priming technique has emerged as a powerful method for enhancing SA tolerance in rice plants. In this review, we summarized how SA stress damages rice plants, and then presented how priming treatment can mitigate such damage.

    saline-alkaline stress; plant hormone; abscisic acid; reactive oxygen species; antioxidant; stress tolerance

    It is estimated that more than7.32% of the land area (1.12 × 109hm2) is salt-affected (Wicke et al, 2011; Shahid et al, 2018; Liu and Wang, 2021). Approximately 60% of the cultivated land (9.0× 108hm2) suffers from salinization (3.4 × 108hm2, 23%) and alkalization (5.6 × 108hm2, 37%) (Shahid et al, 2018). Even worse, over 1.0× 106hm2of arable land continues to degrade every year because of increasing soil salinity (Xia et al, 2019; Liu and Wang, 2021), which poses a serious threat to the world crop production. In China, 3.5%–10.3% of the country’s land (3.4 × 107–9.9 × 107hm2) is salt-affected, and it is widely distributed in 17 Northern provinces (Li et al, 2021; Liu and Wang, 2021).A typical alkaline soil, for example, can be seen in the Songnen Plain of Northeast China, where 6.2% of the land area (7.66 × 106hm2) is alkalized (Wang et al, 2004; Wang et al, 2009), and alarmingly it continues to expand by 2.0 × 104hm2per year (Xiu, 2000; Yin et al, 2003; Yang et al, 2008; Zhang et al, 2013). The soils in this area are characterized by high alkalinity with soil pH ranging from 8.5 to 11.0 (Ma and Liang, 2007; Hossner, 2008),allowing only a few species of alkali- resistant halophytes to survive (Wang et al, 2004).

    Soil alkalization commonly co-occurswith salinization, creating a complex saline-alkaline (SA) stress for plants. The high pH of SA soils not only directly damages plants but also causes deficiencies in nutritional minerals such as iron and phosphorus (Qadir et al, 2001; Rehman et al, 2012; Nandal and Hooda, 2013). Thus, SA stress is highly more damaging to plants than any single neutral saline stress (Campbell and Nishio, 2000; Hartung et al, 2002; Islam et al, 2011; Chen et al, 2012; Paz et al, 2012; Radi et al, 2012).

    TheUnited Nations projected that the world’s population would reach 9.9 billion by 2050 (PRB, 2020), and FAO (2022) projections suggested a 140% increase in cereal production and 70% increase in total global food demand by 2050. However, it was estimated that approximately 20% of future increases in crop production will still come from land extensification (Gregory et al, 2002). Therefore, the development and effective agricultural use of the marginal SA land resources are key importance to meet the increasing food and feed demands of the ever-expanding human population and livestock production. Rice cultivation has been empirically accepted as an effective strategy for food production in SA land if water is available for irrigation (Leng et al, 2020; Ganapati et al, 2022). Nevertheless, rice is a salt-sensitive crop (Grattan et al, 2002; Islam et al, 2019), and is highly stressed under SA conditions, which results in poor grain yield and quality. Therefore, it is important to develop effective approaches to enhance rice plant resistance to SA stress, and thereby improve plant growth and productivity in SA fields.

    Plants can become more tolerant to future stress exposure after experiencing biotic or abiotic stress, which is known as priming, preconditioning or hardening (Mauch-Mani et al, 2017; Llorens et al, 2020; Sharma et al, 2022; Shasmita et al, 2022). The primed state between the two stresses can last from days to months, and even to the next generation. Well-known examples include systemic acquired resistance and seed preconditioning (seed priming) (Beckers and Conrath, 2007; Goellner and Conrath, 2008; Jisha et al, 2013). Priming can also be triggered by various chemical compounds (chemical priming), such as plant hormones and their functional analogs (Bektas and Eulgem, 2015; Rhaman et al, 2020), reactive chemicals (Savvides et al, 2016; Kerchev et al, 2020), plant metabolites (Sako et al, 2021), and some inorganic salts (Kerchev et al, 2020). The primed plants are in a sensitized or potentiated physiological state that enables them to initiate a more rapid and/or effective resistance response to stress exposure.

    In this review, we summarized the damaging effects of SA stress on rice plants, and presented recent research progress on the effects of priming on underlying the mechanisms of SA tolerance in rice plants.The aspects of molecular response of plants to SA stress (Rao et al, 2023) as well as agricultural use of SA land (Cao et al, 2021; Minhas et al, 2021) have been comprehensively summarized before, and are therefore not discussed further here.

    Rice cultivation in SA paddy fields

    Rice cultivation in SA land has been practiced for several decades worldwide. In the 1950s, Jilin Province in Northeastern China launched a strategy named ‘Reclamation of salt-alkali lands with rice cultivation’. After half a century of tremendous effort, the rice cultivation paddies reached2.7×107hm2in JilinProvince, and the average grain yield increased from 5 to 10 t/hm2in the reclaimed paddies in 2012 (Zhao et al, 2012). These exceptional results were achieved through comprehensive measures, including infrastructure construction, soil reclamation, and breeding of SA-tolerant rice varieties.

    Remarkably, rice cultivation accelerates the pace of reclamation of SA soils (Wang et al, 2003b; Liang et al, 2008; Luo et al, 2019). Soil pH is decreased by 0.53 in the 0–20-cm layer between 1–3 years of rice cultivation (Huang et al, 2015). Similarly, rice planting for 5–10 years decreases pH value and total salt by 0.22?0.24 and 0.07%?0.10%, respectively, and increases the organic matter content by 3.9?5.0 g/kg. Therefore, rice cultivation has been recommended and adopted as an effective strategy for the gradual reclamation of SA soils.

    However, rice yields are often still below 5 t/hm2in SA paddies around the world. Maas and Grattan (1999) reported that the rice grain yield decreases by 12% per unit increase (dS/m) in electrical conductivity (EC) values above 3.0 dS/m. In alkaline soils with pH 9.8, the grain yield reduces by 25.1%, 37.2% and 67.6% in tolerant, semi-tolerant and sensitive rice genotypes, respectively (Rao et al, 2008). Consistently, the grain yield of rice reduces by 2 610 kg/hm2under SA conditions compared with that from improved land (Wang et al, 2003a). Thus, constant effort is required to construct a comprehensive system for high and stable yield production of rice in SA paddy fields.

    SA stress damage to rice plants

    SA stress severely damages rice plants over the entire growth period, including reduced seed germination rate, retarded plant growth, seedling death, decreased primary root length, lateral root number, tillering number, spikelet number per panicle and panicle weight, delayed heading and greatly reduced grain yield (Khan et al, 1997; Khan and Abdullah, 2003; Sun et al, 2004).

    Plants growing in SA soil suffer from high ion toxicity (high salinity), alkalinity (high pH) and osmotic stress (Munns and Tester, 2008; Lv et al, 2013). A comparative analysis of the above three SA stress factors on rice seedling growth revealed that alkaline stress is the most important factor that inhibits rice seedling growth (Lv et al, 2013). This finding indicates that improving the alkaline stress tolerance of rice plants is criticalfor improving plant growth and productivity in SA soils.

    Alkaline stress causes severe cellular damage, especially to the root system, as evidenced by the marked increase in malondialdehyde (MDA, an indicator of lipid peroxidation) content, cell damage, and induction of cell death-related genes, which in turn results in root cell death and subsequent wilting of the whole plant (Wei et al, 2015; Zhang et al, 2017). Evaluation of 25cultivars for their relative levels of tolerance (membership degree) to alkaline stress revealed that several root growth indices of rice seedlings, including root number, total root length, total root volume, average root diameter and total root surface area, are highly correlated with the relative levels of alkaline tolerance (Lv et al, 2015). These findings indicate that root growth is highly sensitive to alkaline stress and is closely correlated with tolerance level, and these root growth indices represent a set of simple and operational parameters for assessing alkaline stress tolerance in rice.

    Plants produce reactive oxygen species (ROS) such as superoxide anions (O2·?) and hydrogen peroxide (H2O2) in response to various biotic and abiotic stresses (Choudhury et al, 2017). These ROS at low levels function as important cellular signaling molecules in stress toleranceregulation (Müller et al, 2009; Baxter et al, 2014; Dietz et al, 2016; Willems et al, 2016; Mittler, 2017; Yu et al, 2017); but at high levels, they induce severe oxidative damage, including damage to cellular membranes (lipid peroxidation), DNA, RNA and proteins, which is irreversible, and even causes cell death (Choudhury et al, 2017; Mittler, 2017). The oxidative stress generated by ROS in plants is considered a major limitation to crop productivity (Sharma et al, 2017).

    The root damage of rice seedlings under alkaline stress is associated with excessive accumulation of O2·? and H2O2in the roots, and reducing ROS accumulation by applying procyanidins (a potent antioxidant) to rice seedlings for 24 h before alkaline treatment significantly alleviates alkali-induced root damage and seedling growth inhibition (Zhang et al, 2017). Consistently, Guo et al (2014) showed that the alkaline tolerance of a rice mutant,(), is associated with reduced ROS accumulation under alkaline conditions, and Guan et al (2017) reported that over-expression of a chloroplast superoxide dismutase (SOD) gene () in rice plants increases survival rate, plant growth, and grain yield under alkaline conditions. These results strongly indicate that ROS accumulation is the most important factor in root cell damage and plant growth inhibition in rice seedlings under alkaline stress, and that alkaline stress tolerance is correlated with ROS-scavenging capacity.

    Priming for enhanced tolerance to SA stress in rice

    In this review, priming is defined as a time-limited pre-treatment of plants or seeds with a chemical or mild stress that leads to enhanced tolerance to subsequent stress exposure. Studies in which exogenous chemicals were continuously applied during stress treatment are not included in this review.Known priming chemicals and their effects on SA stress tolerance in rice plants are summarized in Table 1.

    Impact of priming with plant hormones

    The plant hormone abscisic acid (ABA) plays a key role in plant adaptive response to various environmental stresses (Mittler and Blumwald, 2015; Jones, 2016; Sah et al, 2016). Wei et al (2015) transiently treated rice seedlings with ABA (0, 10 or 50mmol/L) by root-drenching for 24 h and then, the seedlings were exposed to alkaline stress (15 mmol/L Na2CO3, pH 10.87). Measurement of seedling growth revealed that ABA pretreatment significantly improves seedling survival rate, root growth and biomass compared with the control treatment (0mmol/L ABA) (Wei et al, 2015). These results demonstrated that ABA has a potent priming effect on alkaline stress tolerance in rice. Physiologically, ABA pretreatment increases SOD, catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) activities, but reduces alkali- and paraquat-induced accumulation of O2·?and H2O2, electrolyte leakage (an indicator of membrane and cell injury) and Na+/K+ratio (Liu et al, 2019). In addition, expression levels of the stress tolerance- related genes,,,andare superinduced by ABA pretreatment under alkaline conditions (Liu et al, 2019). These results indicate that ABA priming increases alkaline tolerance by upregulating the antioxidant defense system and stress tolerance-related genes, and maintaining an appropriate Na+/K+ratio and cellular membrane integrity.

    Table 1. Known priming chemicals and their effects on saline-alkaline (SA) stress tolerance in rice plants.

    ABA, Abscisic acid; SOD, Superoxide dismutase; CAT, Catalase; APX, Ascorbate peroxidase; EC, Electrical conductivity; LOX, Lysyl oxidase; POD, Peroxidase; RWC, Relative water content; GR, Glutathion reductase; SPAD, Soil and plant analyzer development.

    The priming effect of ABA was further corroborated in a 3-year field trial (Wei et al, 2017). Rice seedlings were treated with ABA (0, 1 and 10mmol/L) by root-drenching for 24 h before transplanting to paddy fields with two different SA levels, pH 10.1/EC1:50.50 and pH 9.7/EC1:50.48. The results showed that ABA-priming significantly reduces the seedling death by 11%–17% and leaf withering by 22%–50%, and significantly improves subsequent plant growth and final grain yield by 8%–55% compared with the control treatment (0mmol/L ABA). A more profound effect was observed in the heavier SA field. The magnitude of the ABA effect on grain yield varies by experimental years, but is consistently significant across all the three years in treated and control SA fields. Notably, these beneficial effects of ABA were obtained with only a single prior treatment (priming). These results confirm that there is a strong priming effect of ABA on SA stress tolerance of rice plants in SA fields, which may provide an effective and practical approach to improve the rice production in SA fields.

    Furthermore, the expression levels of the ABA- responsive genesandare highly induced by ABA treatment, and the upregulated levels are persisted until at least 8 d after transplanting, which indicates a long-lasting effect of ABA priming in the SA fields (Liu X L et al, 2022). The alleviating effects of ABA on alkaline and SA stress were also confirmed by RNAi-mediated knockdown of(-kd), a key ABA catabolic gene, which results in higher endogenous ABA levels and survival rates under hydroponic alkaline conditions and in pot trials using soil from SA fields (Liu X L et al, 2022).

    The priming impacts of plant hormones are also shown by salicylic acid, kinetin (Shukla and Yadav, 2017), brassinosteroid (Sharma et al, 2019), and melatonin (Lu et al, 2022). Seed priming with salicylic acid (50 or 100 mg/L) and kinetin (100 or 150 mg/L) upregulates CAT and POD activities, chlorophyll and soluble carbohydrate contents and K+/Na+ratio, which leads to improved plant growth and grain yield under SA soil conditions (pH 9.3) (Shukla and Yadav, 2017). Sharma et al (2019) found that short-term root-drenching of rice seedlings for 10 h with 0.01mmol/L of 24-epibrassinolide (a brassinosteroid) significantly improves seedling survival and growth, and grain yield under alkaline stress (25 mmol/L NaHCO3) by upregulating SOD, CAT and APX activities, and reducing O2·? and H2O2contents and membrane injury. Furthermore, it was recently reported that foliar spray of melatonin (200mmol/L) on rice seedlings for 3 d reduces leaf wilt index and increases root/shoot ratio under alkaline stress conditions (20 mmol/L NaHCO3/Na2CO3, pH 9.55) (Lu et al, 2022). Physiologically, melatonin priming upregulates SOD, CAT, APX and POD activities, and compatible osmolytes including proline, sucrose and fructose, chlorophyll content, and leaf relative water content (RWC), but reducesO2·? and H2O2contents, lysyl oxidase activity, and membrane injury.

    Impact of priming with inorganic salts

    Silicon (Si), though not an essential nutrient, has many beneficial effects on plants, especially under various biotic and abiotic stresses (Liang Y C et al, 2015; Haynes, 2017). Rice accumulates a large amount of Si, reaching as much as 4.2% of the shoot dry weight (Guntzer et al, 2012). Liang X L et al (2015) reported that seed priming with Na2SiO3·9H2O significantly improves rice seed germination and seedling growth under SA stress. The improvement effects of Si are accompanied by activation of the antioxidant enzymes SOD, POD and CAT, and reduction of MDA content in rice seedlings. These results indicated that Si plays a pivotal role in SA tolerance of rice seedlings by activating antioxidant mechanisms. A similar effect of Si was also observed in maize, in which seed priming with Si for 12 h significantly improves maize plant growth under alkaline stress with Na2CO3concentration less than 75 mmol/L (Abdel Latef and Tran, 2016). It was further shown that the effect of Si priming is correlated with increased antioxidant enzyme activities (SOD, CAT and POD), leaf RWC, and levels of photosynthetic pigments, osmolytes and K+/Na+(Abdel Latef and Tran, 2016).

    Recently, Kamanga et al (2022) reported that pre-exposure of rice seedlings to low concentrations of NaCl (2.5–10.0 mmol/L) and H2O2(1.0–10.0mmol/L) for 7 d results in cross-tolerance to SA stress (50 mmol/L Na+, pH 8.25), as evidenced by improved seedling growth, and maintained chlorophyll content and pH of the growth medium. It was revealed that the enhanced SA tolerance is associated with enhanced Fe acquisition, and improved Na+and ROS homeostasis.

    Fig. 1. Schematic illustration of priming-induced relative changes in physiological and cellular characteristics and growth traits in rice plants under saline-alkaline (SA) stress.

    ABA, Abscisic acid; Si, Silicon; SA, Saline-alkaline; ROS, Reactive oxygen species.

    Up (red)- and down (blue)-pointing arrows indicate up- and down-changes relative to the unprimed control, respectively.

    Perspectives

    Priming is a cost-effective and environmentally friendly agro-biological technique for improving stress tolerance and plant growth in various crop plants (Aranega-Bou et al, 2014; Sako et al, 2021). Each priming agent has its own appropriate use and effect. For example, ABA may be unsuitable for seed priming treatment as it generally inhibits seed germination, whereas seed priming with Si improves seed germination. Therefore, it is important and interesting to assess the effect of combining different priming agents for greater efficacy in future studies.

    As depicted in Fig. 1 and summarized in Table 1, priming can potentiate rice plants to increase antioxidant activity, osmolyte content, stress-related gene expression, and membrane integrity upon exposure to SA stress, thereby maintaining redox and ionic homeostasis, protecting cells from injury and death, and eventually leading to better plant growth and grain yield under SA stress conditions. The most important and attractive advantage of priming may be its long-lasting effect on multiple types of abiotic stress. For example, pretreatment with exogenous ABA can enhance tolerance to various stresses, such as drought, low or high temperature, and high salinity and alkalinity, in a wide range of plant species (Jones, 2016; Sah et al, 2016). Additionally, a single short- term treatment with ABA results in marked improvement in plant growth and grain yield under various stress conditions (Gurmani et al, 2006, 2011, 2013; Wei et al, 2015, 2017). These findings strongly indicate that ABA serves as a potent priming agent, and the recent discoveries of various functional analogs of ABA and inhibitors of ABA metabolism (Dejonghe et al, 2018; Hewage et al, 2020) will undoubtedly facilitate the practical application of ABA pathway-targeted priming to improve crop productivities in SA fields.

    Alkalinity causes much more severe damage to rice seedlings, particularly to the root system, compared with osmotic stress and high salinity (Lv et al, 2013). Therefore, improving the alkaline stress tolerance is a top priority for improving rice plant growth and productivity in SA soils. Alkaline stress, like many other stresses, causes hyper-accumulation of ROS and cellular membrane damage, which in turn results in cell injury and cell death (Zhang et al, 2017). As shown in Table 1, the priming effects of different chemicals are all associated with increased antioxidant enzyme activity and reduced ROS accumulation. In addition, maintaining ROS homeostasis is a key priming effect in various plant species under various stresses (Choudhury et al, 2017). Thus, suppressing excess ROS accumulation will be the key for successful priming treatments.

    ACKNOWLEDGEMENTS

    This study was supported by the Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences, China (Grant No. CXGC2022F02), and the Agricultural Variety Improvement Project of Shandong Province, China (Grant No. 2019LZGC003). We thank Mallory Eckstut from Liwen Bianji (Edanz) (www.liwenbianji.cn) for English improvement of this manuscript.

    Abdel Latef A A, Tran L S P. 2016. Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress., 7: 243.

    Aranega-Bou P, de la O Leyva M, Finiti I, García-Agustín P, González-Bosch C. 2014. Priming of plant resistance by natural compounds: Hexanoic acid as a model., 5: 488.

    Baxter A, Mittler R, Suzuki N. 2014. ROS as key players in plant stress signalling., 65(5): 1229–1240.

    Beckers G J M, Conrath U. 2007. Priming for stress resistance: From the lab to the field., 10(4): 425–431.

    Bektas Y, Eulgem T. 2015. Synthetic plant defense elicitors., 5: 804.

    Campbell S A, Nishio J N. 2000. Iron deficiency studies of sugar beet using an improved sodium bicarbonate-buffered hydroponic growth system., 23(6): 741–757.

    Cao X F, Sun B, Chen H B, Zhou J M, Song X W, Liu X J, Deng X D, Li X J, Zhao Y G, Zhang J B, Li J Y. 2021. Approaches and research progresses of marginal land productivity expansion and ecological benefit improvement in China., 36(3): 336–348. (in Chinese with English abstract)

    Chen S S, Xing J J, Lan H Y. 2012. Comparative effects of neutral salt and alkaline salt stress on seed germination, early seedling growth and physiological response of a halophyte species., 11(40): 9572–9581.

    Choudhury F K, Rivero R M, Blumwald E, Mittler R. 2017. Reactive oxygen species, abiotic stress and stress combination., 90(5): 856–867.

    Dejonghe W, Okamoto M, Cutler S R. 2018. Small molecule probes of ABA biosynthesis and signaling., 59(8): 1490–1499.

    Dietz K J, Turkan I, Krieger-Liszkay A. 2016. Redox- and reactive oxygen species-dependent signaling into and out of the photo- synthesizing chloroplast., 171(3): 1541–1550.

    FAO (Food and Agriculture Organization). 2022. How to feed the World in 2050. [2023-01-01]. https://www.fao.org/fileadmin/ templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf.

    Ganapati R K, Naveed S A, Zafar S, Wang W S, Xu J L. 2022. Saline-alkali tolerance in rice: Physiological response, molecular mechanism, and QTL identification and application to breeding., 29(5): 412–434.

    Goellner K, Conrath U. 2008. Priming: It’s all the world to induced disease resistance., 121(3): 233–242.

    Grattan S R, Zeng L H, Shannon M C, Roberts S R. 2002. Rice is more sensitive to salinity than previously thought., 56(6): 189–195.

    Gregory P J, Ingram J S I, Andersson R, Betts R A, Brovkin V, Chase T N, Grace P R, Gray A J, Hamilton N, Hardy T B, Howden S M, Jenkins A, Meybeck M, Olsson M, Ortiz-Monasterio I, Palm C A, Payn T W, Rummukainen M, Schulze R E, Thiem M, Valentin C, Wilkinson M J. 2002. Environmental consequences of alternative practices for intensifying crop production., 88(3): 279–290.

    Guan Q J, Liao X, He M L, Li X F, Wang Z Y, Ma H Y, Yu S, Liu S K. 2017. Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO3stress., 12(10): e0186052.

    Guntzer F, Keller C, Meunier J D. 2012. Benefits of plant silicon for crops: A review., 32(1): 201–213.

    Guo M X, Wang R C, Wang J, Hua K, Wang Y M, Liu X Q, Yao S G. 2014. ALT1, a Snf2 family chromatin remodeling ATPase, negatively regulates alkaline tolerance through enhanced defense against oxidative stress in rice., 9(12): e112515.

    Gurmani A R, Bano A, Salim M. 2006. Effect of growth regulators on growth, yield and ions accumulation of rice (L.) under salt stress., 38(5): 1415–1424.

    Gurmani A R, Bano A, Khan S U, Din J, Zhang J L. 2011. Alleviation of salt stress by seed treatment with abscisic acid (ABA), 6-benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes ion and organic matter accumulation and increases yield of rice (L.)., 5(10): 1278–1285.

    Gurmani A R, Bano A, Ullah N, Khan H, Jahangir M, Flowers T J. 2013. Exogenous abscisic acid (ABA) and silicon (Si) promote salinity tolerance by reducing sodium (Na+) transport and bypass flow in rice ()., 7: 1219–1226.

    Hartung W, Leport L, Ratcliffe R G, Sauter A, Duda R, Turner N C. 2002. Abscisic acid concentration, root pH and anatomy do not explain growth differences of chickpea (L.) and lupin (L.) on acid and alkaline soils., 240(1): 191–199.

    Haynes R J. 2017. Significance and role of Si in crop production., 146: 83–166.

    Hewage K A H, Yang J F, Wang D, Hao G F, Yang G F, Zhu J K. 2020. Chemical manipulation of abscisic acid signaling: A new approach to abiotic and biotic stress management in agriculture., 7(18): 2001265.

    Hossner L R. 2008. Field pH.: Chesworth W. Encyclopedia of Soil Science. Dordrecht, the Netherlands: Springer: 271–272.

    Huang L H, Liang Z W, Suarez D L, Wang Z C, Wang M M, Yang H Y, Liu M. 2015. Impact of cultivation year, nitrogen fertilization rate and irrigation water quality on soil salinity and soil nitrogen in saline-sodic paddy fields in Northeast China., 154(4): 632–646.

    Islam F, Wang J, Farooq M A, Yang C, Jan M, Mwamba T M, Hannan F, Xu L, Zhou W J. 2019. Rice responses and tolerance to salt stress: Deciphering the physiological and molecular mechanisms of salinity adaptation.: Hasanuzzaman M, Fujita M, Nahar K, Biswas J K. Advance in Rice Research for Abiotic Stress Tolerance. Cambridge, UK: Woodhead Publishing: 791–819.

    Islam M S, Akhter M, El-Sabagh A, Liu L Y, Nguyen N T, Ueda A, Masaoka Y, Saneoka H. 2011. Comparative studies on growth and physiological responses to saline and alkaline stresses of Foxtail millet (L.) and Proso millet (L.)., 5(10): 1269–1277.

    Jisha K C, Vijayakumari K, Puthur J T. 2013. Seed priming for abiotic stress tolerance: An overview., 35(5): 1381–1396.

    Jones A M. 2016. A new look at stress: Abscisic acid patterns and dynamics at high-resolution., 210(1): 38–44.

    Kamanga R M, Oguro S, Nampei M, Ueda A. 2022. Acclimation to NaCl and H2O2develops cross tolerance to saline-alkaline stress in Rice (L.) by enhancing fe acquisition and ROS homeostasis., 68(3): 342–352.

    Kerchev P, van der Meer T, Sujeeth N, Verlee A, Stevens C V, Van Breusegem F, Gechev T. 2020. Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants., 40: 107503.

    Khan M S A, Hamid A, Karim M A. 1997. Effect of sodium chloride on germination and seedling characters of different types of rice (L.)., 179(3): 163–169.

    Khan M A, Abdullah Z. 2003. Salinity-sodicity induced changes in reproductive physiology of rice () under dense soil conditions., 49(2): 145–157.

    Leng C X, Zheng F Y, Zhao B P, Li H Y, Wang Y J. 2020. Advances on alkaline tolerance of rice., 36(11): 103–111. (in Chinese with English abstract)

    Li F L, Luo C K, Lu X P, Tian L, Li P F. 2021. Current status and prospect of research on physiology and genetic mechanism of alkali tolerance in rice., 22(2): 283–292. (in Chinese with English abstract)

    Liang X L, Fang S M, Ji W B, Zheng D F. 2015. The positive effects of silicon on rice seedlings under saline-alkali mixed stress., 46(17): 2127–2138.

    Liang Y C, Nikolic M, Bélanger R, Gong H J, Song A L. 2015. History and introduction of silicon research.: Silicon in Agriculture. Dordrecht, the Netherlands: Springer: 1–18.

    Liang Z W, Wang Z C, Ma H Y, Yang F, Huang L H, Kong X J, Yan C, Liu M, Wang M M, Qi C Y. 2008. The progress in improvement of high pH saline-alkali soil in the Songnen Plain by stress tolerant plants., 30: 517–528. (in Chinese with English abstract)

    Liu H P, Able A J, Able J A. 2022. Priming crops for the future: Rewiring stress memory., 27(7): 699–716.

    Liu L L, Wang B S. 2021. Protection of halophytes and their uses for cultivation of saline-alkali soil in China., 10(5): 353.

    Liu X L, Zhang H, Jin Y Y, Wang M M, Yang H Y, Ma H Y, Jiang C J, Liang Z W. 2019. Abscisic acid primes rice seedlings for enhanced tolerance to alkaline stress by upregulating antioxidant defense and stress tolerance-related genes., 438(1): 39–55.

    Liu X L, Xie X Z, Zheng C K, Wei L X, Li X W Jin Y Y, Zhang G H, Jiang C J, Liang Z W. 2022. RNAi-mediated suppression of the abscisic acid catabolism geneincreases abscisic acid content and tolerance to saline-alkaline stress in rice (L.)., 10(2): 354–367.

    Llorens E, González-Hernández A I, Scalschi L, Fernández-Crespo E, Cama?es G, Vicedo B, García-Agustín P. 2020. Priming mediated stress and cross-stress tolerance in plants: Concepts and opportunities.: Hossain M A, Liu F L, Burritt D J, Fujita M, Huang B R. Priming-mediated Stress and Cross-stress Tolerance in Crop Plants. UT, USA: Academic Press: 1–20.

    Lu X P, Min W F, Shi Y F, Tian L, Li P F, Ma T L, Zhang Y X, Luo C K. 2022. Exogenous melatonin alleviates alkaline stress by removing reactive oxygen species and promoting antioxidant defence in rice seedlings., 13: 849553.

    Luo C K, Tian L, Bi J T, Xiao G J. 2019. Effects of rice planting years on saline-alkali soil trace elements, rice yield and quality., 28(8): 1577–1584.

    Lv B S, Li X W, Ma H Y, Sun Y, Wei L X, Jiang C J, Liang Z W. 2013. Differences in growth and physiology of rice in response to different saline-alkaline stress factors., 105(4): 1119–1128.

    Lv B S, Ma H Y, Li X W, Wei L X, Lv H Y, Yang H Y, Jiang C J, Liang Z W. 2015. Proline accumulation is not correlated with saline-alkaline stress tolerance in rice seedlings., 107(1): 51–60.

    Ma H Y, Liang Z W. 2007. Effects of different soil pH and soil extracts on the germination and seedling growth of., 24(2): 181–188. (in Chinese with English abstract)

    Maas E V, Grattan S R. 1999. Crop yields as affected by salinity.: Skaggs R W, van Schilfgaarde J. Agrcicultural Drainage. WI, USA: American Society of Agronomy: 38: 55–110.

    Mauch-Mani B, Baccelli I, Luna E, Flors V. 2017. Defense priming: An adaptive part of induced resistance., 68: 485–512.

    Minhas P S, Yadav R K, Sharma P C. 2021. Managing salt-affected soils for sustainable agriculture. New Delhi, India: ICAR.

    Mittler R, Blumwald E. 2015. The roles of ROS and ABA in systemic acquired acclimation., 27(1): 64–70.

    Mittler R. 2017. ROS are good., 22(1): 11–19.

    Müller K, Linkies A, Vreeburg R A M, Fry S C, Krieger-Liszkay A, Leubner-Metzger G. 2009.cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth., 150(4): 1855–1865.

    Munns R, Tester M. 2008. Mechanisms of salinity tolerance., 59: 651–681.

    Nandal M, Hooda R. 2013. Salt tolerance and physiological response of plants to salinity: A Review., 4(10): 45–67.

    Paz R C, Rocco R A, Reinoso H, Menéndez A B, Pieckenstain F L, Ruiz O A. 2012. Comparative study of alkaline, saline, and mixed saline-alkaline stresses with regard to their effects on growth, nutrient accumulation, and root morphology of., 31(3): 448–459.

    PRB (Population Reference Bureau). 2020. The 2020 World population data sheet. [2023-01-01]. https://interactives.prb.org/ 2021-wpds/.

    Qadir M, Schubert S, Ghafoor A, Murtaza G. 2001. Amelioration strategies for sodic soils: A review., 12(4): 357–386.

    Radi A A, Abdel-Wahab D A, Hamada A M. 2012. Evaluation of some bean lines tolerance to alkaline soil., 2(1): B18–B27.

    Rao P S, Mishra B, Gupta S R, Rathore A. 2008. Reproductive stage tolerance to salinity and alkalinity stresses in rice genotypes., 127(3): 256–261.

    Rao Y, Peng T, Xue S W. 2023. Mechanisms of plant saline-alkaline tolerance., 281: 153916.

    Rehman H U, Aziz T, Farooq M, Wakeel A, Rengel Z. 2012. Zinc nutrition in rice production systems: A review., 361(1): 203–226.

    Rhaman M S, Imran S, Rauf F, Khatun M, Baskin C C, Murata Y, Hasanuzzaman M. 2020. Seed priming with phytohormones: An effective approach for the mitigation of abiotic stress., 10(1): 37.

    Sah S K, Reddy K R, Li J X. 2016. Abscisic acid and abiotic stress tolerance in crop plants., 7: 571.

    Sako K, Nguyen H M, Seki M. 2021. Advances in chemical priming to enhance abiotic stress tolerance in plants., 61(12): 1995–2003.

    Savvides A, Ali S, Tester M, Fotopoulos V. 2016. Chemical priming of plants against multiple abiotic stresses: Mission possible?, 21(4): 329–340.

    Shahid S A, Zaman M, Heng L E. 2018. Soil salinity: Historical perspectives and a world overview of the problem.: Zaman M, Shahid S A, Heng L E. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Cham, Switzerland: Springer International Publishing: 43–53.

    Sharma M, Gupta S K, Deeba F, Pandey V. 2017. Effects of reactive oxygen species on crop productivity: An overview.: Singh V P, Singh S, Tripathi D K, Prasad S M, Chauhan D K. Reactive Oxygen Species in Plants: Boon or Bane‐Revisiting the Role of ROS. Chichester, UK: John Wiley & Sons Ltd: 117–136.

    Sharma M, Mahajan P, Singh H P, Batish D R, Kohli R K. 2019. 24-Epibrassinolide pre-treatment reduces alkaline-induced oxidative stress in red rice seedlings., 26(22): 23192–23197.

    Sharma M, Kumar P, Verma V, Sharma R, Bhargava B, Irfan M. 2022. Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects., 179: 10–24.

    Shasmita B B S, Mohapatra P K, Naik S K, Mukherjee A K. 2022. Biopriming for induction of disease resistance against pathogens in rice., 255(6): 113.

    Shukla A K, Yadav A K. 2017. Response of PGRS on growth, biochemical changes and yield of rice (L.) under sodic soil., 10(34): 7297–7300.

    Sun T, Du Z Y, Zhang R Z, Meng F X, Yang J, Ma J Y. 2004. Effectof salinity-alkalinity stress on tillering and yield of rice., 28(6): 597–605. (in Chinese with English abstract)

    Wang C Y, Wu Z J, Shi Y I, Wang R Y. 2004. The resource of saline soil in the Northeast China., 35: 643–647. (in Chinese with English abstract)

    Wang L, Seki K, Miyazaki T, Ishihama Y. 2009. The causes of soil alkalinization in the Songnen Plain of Northeast China., 7(3): 259–270.

    Wang Z C, Li Q S, Li X J, Song C C, Zhang G X. 2003a. Sustainable agriculture development in saline-alkali soil area of Songnen Plain, Northeast China., 13(2): 171–174.

    Wang Z C, Sun C Z, Li X J, Shao X W. 2003b. Integrated technique model of rice production on saline-alkali land., 1: 56–59.

    Wei L X, Lv B S, Wang M M, Ma H Y, Yang H Y, Liu X L, Jiang C J, Liang Z W. 2015. Priming effect of abscisic acid on alkaline stress tolerance in rice (L.) seedlings., 90: 50–57.

    Wei L X, Lv B S, Li X W, Wang M M, Ma H Y, Yang H Y, Yang R F, Piao Z Z, Wang Z H, Lou J H, Jiang C J, Liang Z W. 2017. Priming of rice (L.) seedlings with abscisic acid enhances seedling survival, plant growth, and grain yield in saline-alkaline paddy fields., 203: 86–93.

    Wicke B, Smeets E, Dornburg V, Vashev B, Gaiser T, Turkenburg W, Faaij A. 2011. The global technical and economic potential of bioenergy from salt-affected soils., 4(8): 2669–2681.

    Willems P, Mhamdi A, Stael S, Storme V, Kerchev P, Noctor G, Gevaert K, van Breusegem F. 2016. The ROS wheel: Refining ROS transcriptional footprints., 171(3): 1720–1733.

    Xia J B, Ren J Y, Zhang S Y, Wang Y H, Fang Y. 2019. Forest and grass composite patterns improve the soil quality in the coastal saline-alkali land of the Yellow River Delta, China., 349: 25–35.

    Xiu L N. 2000. The alkili-saline land and agricultural sustainable development of the western Songnen Plain in China., 1: 008.

    Yang C W, Shi D C, Wang D L. 2008. Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte(Bge.)., 56(2): 179–190.

    Yin H N, Tang Z, Lu F. 2003. Analysis of eco-environment degradation mechanism in the west of Northeast Plain in China during the last 100 years., 10(4): 190–192.

    Yu S X, Feng Q N, Xie H T, Li S, Zhang Y. 2017. Reactive oxygen species mediate tapetal programmed cell death in tobacco and tomato., 17(1): 76.

    Zhang H, Liu X L, Zhang R X, Yuan H Y, Wang M M, Yang H Y, Ma H Y, Liu D, Jiang C J, Liang Z W. 2017. Root damage under alkaline stress is associated with reactive oxygen species accumulation in rice (L.)., 8: 1580.

    Zhang X G, Huang B, Liang Z W, Zhao Y C, Sun W X, Hui W Y. 2013. Study on salinization characteristics of surface soil in western Songnen Plain., 45(2): 332–338. (in Chinese with English abstract)

    Zhao G C, Qi C Y, Hou L G, Ma W, Sui P J, Liu L, Guo X M, Sun H J. 2012. Progress and prospect of rice production in Jilin Province at soda saline-alkaline land., 43(6): 673–680. (in Chinese with English abstract)

    Copyright ? 2023, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2023.05.003

    19 March 2023;

    5 May 2023

    Jiang Changjie (cypa44@hotmail.com)

    (Managing Editor: Wang Caihong)

    亚洲av第一区精品v没综合| 国产av一区在线观看免费| 色综合婷婷激情| 黑人巨大精品欧美一区二区mp4| 此物有八面人人有两片| 国产精品,欧美在线| 亚洲av熟女| 久久这里只有精品19| 黄色a级毛片大全视频| 国产精品乱码一区二三区的特点| 午夜免费成人在线视频| 免费高清视频大片| 男插女下体视频免费在线播放| 成人亚洲精品av一区二区| 成人永久免费在线观看视频| 精品电影一区二区在线| 岛国视频午夜一区免费看| 亚洲国产精品成人综合色| 国产成人欧美在线观看| 国产精品一区二区免费欧美| 精品久久久久久久久久久久久| 国产精品精品国产色婷婷| 国产亚洲欧美在线一区二区| 两个人视频免费观看高清| 国产真实乱freesex| 亚洲男人的天堂狠狠| 亚洲欧洲精品一区二区精品久久久| 最新美女视频免费是黄的| 久久人妻av系列| 亚洲av中文字字幕乱码综合| 无限看片的www在线观看| av免费在线观看网站| 成人av一区二区三区在线看| 日本免费一区二区三区高清不卡| 色在线成人网| 黄色女人牲交| 久久久久久国产a免费观看| 国产一区二区激情短视频| 美女高潮喷水抽搐中文字幕| 久久精品夜夜夜夜夜久久蜜豆 | 男人舔女人的私密视频| 国产一区在线观看成人免费| 黄色女人牲交| 性色av乱码一区二区三区2| 1024手机看黄色片| 午夜成年电影在线免费观看| 色综合婷婷激情| 国产99白浆流出| 精品久久久久久,| 九色成人免费人妻av| av视频在线观看入口| 青草久久国产| 中文字幕精品亚洲无线码一区| 99久久精品国产亚洲精品| 亚洲男人的天堂狠狠| 免费一级毛片在线播放高清视频| 国产免费男女视频| 中文亚洲av片在线观看爽| 国产男靠女视频免费网站| 免费av毛片视频| 国产精品爽爽va在线观看网站| 99久久无色码亚洲精品果冻| 午夜精品久久久久久毛片777| 成人三级做爰电影| 国产亚洲精品综合一区在线观看 | 性欧美人与动物交配| 国产熟女xx| 亚洲美女黄片视频| 欧美日韩亚洲综合一区二区三区_| 桃色一区二区三区在线观看| 久久精品国产综合久久久| 人人妻人人澡欧美一区二区| 成在线人永久免费视频| 久久久久久亚洲精品国产蜜桃av| 无限看片的www在线观看| 搡老岳熟女国产| 日日干狠狠操夜夜爽| 亚洲第一欧美日韩一区二区三区| 一本大道久久a久久精品| 在线视频色国产色| 亚洲精品中文字幕一二三四区| 婷婷丁香在线五月| 欧美精品亚洲一区二区| 亚洲美女视频黄频| 国模一区二区三区四区视频 | 亚洲中文字幕日韩| 在线免费观看的www视频| 好男人在线观看高清免费视频| 怎么达到女性高潮| 国产爱豆传媒在线观看 | 曰老女人黄片| 午夜a级毛片| a级毛片在线看网站| 黄色丝袜av网址大全| 日本黄色视频三级网站网址| 五月玫瑰六月丁香| 久久久国产成人免费| 99精品在免费线老司机午夜| 国产精品综合久久久久久久免费| 久久久国产精品麻豆| 97超级碰碰碰精品色视频在线观看| 亚洲专区字幕在线| av在线播放免费不卡| 午夜福利在线观看吧| 欧美大码av| 久久久久久免费高清国产稀缺| 老汉色av国产亚洲站长工具| 黄色片一级片一级黄色片| 亚洲成av人片在线播放无| 日韩成人在线观看一区二区三区| 两个人视频免费观看高清| √禁漫天堂资源中文www| 国产亚洲精品久久久久久毛片| 中文字幕人妻丝袜一区二区| 欧美日韩福利视频一区二区| 9191精品国产免费久久| 久久久国产欧美日韩av| 69av精品久久久久久| 久久伊人香网站| 亚洲熟女毛片儿| 精品国产美女av久久久久小说| 久久久久久久精品吃奶| 美女 人体艺术 gogo| 亚洲欧洲精品一区二区精品久久久| 看片在线看免费视频| 欧美精品亚洲一区二区| 成人国产一区最新在线观看| 在线永久观看黄色视频| 亚洲九九香蕉| 一本一本综合久久| 人妻久久中文字幕网| 18美女黄网站色大片免费观看| 两性夫妻黄色片| 美女扒开内裤让男人捅视频| 色综合婷婷激情| 老司机靠b影院| 欧美午夜高清在线| 两个人视频免费观看高清| 在线看三级毛片| 亚洲精品av麻豆狂野| 国内精品一区二区在线观看| 亚洲 国产 在线| 丝袜美腿诱惑在线| 蜜桃久久精品国产亚洲av| 国产精品亚洲一级av第二区| 国产午夜精品久久久久久| 国产日本99.免费观看| 欧美精品啪啪一区二区三区| 亚洲激情在线av| 好男人在线观看高清免费视频| 午夜日韩欧美国产| av国产免费在线观看| 在线观看午夜福利视频| 国产精品电影一区二区三区| 18禁观看日本| 国产黄色小视频在线观看| 国产精品永久免费网站| 午夜视频精品福利| 午夜亚洲福利在线播放| 日韩欧美国产在线观看| 老熟妇仑乱视频hdxx| 久久人妻福利社区极品人妻图片| 精品午夜福利视频在线观看一区| 午夜两性在线视频| 国产精品爽爽va在线观看网站| 老司机福利观看| 亚洲 欧美 日韩 在线 免费| 久久久久久久午夜电影| 特大巨黑吊av在线直播| 一区二区三区激情视频| 久久久国产精品麻豆| 午夜福利成人在线免费观看| 久久久久久免费高清国产稀缺| 成在线人永久免费视频| 亚洲第一电影网av| 国产爱豆传媒在线观看 | www日本在线高清视频| 国产精品免费一区二区三区在线| 女警被强在线播放| 天天一区二区日本电影三级| 在线免费观看的www视频| 免费在线观看成人毛片| 国产精品99久久99久久久不卡| 亚洲,欧美精品.| 99久久国产精品久久久| 欧美日韩瑟瑟在线播放| 欧美黄色片欧美黄色片| 桃色一区二区三区在线观看| 国产亚洲av高清不卡| 欧美日韩中文字幕国产精品一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 妹子高潮喷水视频| 久久中文字幕人妻熟女| 亚洲第一电影网av| 亚洲 国产 在线| 色播亚洲综合网| 国产激情欧美一区二区| 18禁黄网站禁片免费观看直播| 十八禁人妻一区二区| 天堂av国产一区二区熟女人妻 | 桃色一区二区三区在线观看| 亚洲人成网站在线播放欧美日韩| 90打野战视频偷拍视频| 成人18禁在线播放| 999久久久国产精品视频| 日日干狠狠操夜夜爽| 日本一本二区三区精品| 无遮挡黄片免费观看| 久久久久九九精品影院| 国产激情偷乱视频一区二区| 久久这里只有精品中国| 99久久国产精品久久久| 亚洲欧美精品综合一区二区三区| 久久精品影院6| 精品午夜福利视频在线观看一区| 我的老师免费观看完整版| 一夜夜www| 亚洲欧美日韩高清在线视频| 欧美在线黄色| 99精品久久久久人妻精品| 国内精品一区二区在线观看| 床上黄色一级片| 一进一出抽搐动态| 亚洲中文日韩欧美视频| 精品国产美女av久久久久小说| 亚洲五月天丁香| 伦理电影免费视频| 午夜福利在线在线| 高清毛片免费观看视频网站| 免费在线观看视频国产中文字幕亚洲| 中文字幕人妻丝袜一区二区| 人妻久久中文字幕网| ponron亚洲| 亚洲国产欧美一区二区综合| 欧美高清成人免费视频www| 午夜免费观看网址| 国产亚洲欧美98| 亚洲成人免费电影在线观看| 日本a在线网址| 国产99久久九九免费精品| 一a级毛片在线观看| 日本一区二区免费在线视频| 亚洲色图av天堂| 90打野战视频偷拍视频| 日本一本二区三区精品| 午夜福利欧美成人| 三级毛片av免费| 一二三四在线观看免费中文在| 露出奶头的视频| 亚洲欧洲精品一区二区精品久久久| 男女午夜视频在线观看| 给我免费播放毛片高清在线观看| 日本熟妇午夜| 国产三级黄色录像| 亚洲天堂国产精品一区在线| 村上凉子中文字幕在线| 最近在线观看免费完整版| 欧美日韩精品网址| 国产精品精品国产色婷婷| 人妻丰满熟妇av一区二区三区| 日韩精品免费视频一区二区三区| 午夜老司机福利片| 一边摸一边做爽爽视频免费| а√天堂www在线а√下载| 国产精品一区二区免费欧美| av在线播放免费不卡| x7x7x7水蜜桃| 熟女电影av网| 亚洲aⅴ乱码一区二区在线播放 | 老鸭窝网址在线观看| 精品国内亚洲2022精品成人| 亚洲真实伦在线观看| 日韩欧美国产一区二区入口| 人人妻人人澡欧美一区二区| 久久久精品欧美日韩精品| 久9热在线精品视频| 亚洲欧洲精品一区二区精品久久久| 在线十欧美十亚洲十日本专区| 婷婷精品国产亚洲av在线| 国产av不卡久久| 国产熟女午夜一区二区三区| 精品第一国产精品| 国产精品电影一区二区三区| 欧美日韩黄片免| 大型黄色视频在线免费观看| 午夜免费成人在线视频| 国内毛片毛片毛片毛片毛片| 在线看三级毛片| 欧美日韩精品网址| 国产av一区二区精品久久| 久久香蕉激情| 熟妇人妻久久中文字幕3abv| 国产主播在线观看一区二区| 国产成人精品久久二区二区91| 欧美国产日韩亚洲一区| 免费无遮挡裸体视频| 欧美午夜高清在线| 午夜精品久久久久久毛片777| 久久精品亚洲精品国产色婷小说| 亚洲精品国产精品久久久不卡| 九色国产91popny在线| 国产不卡一卡二| e午夜精品久久久久久久| 日韩免费av在线播放| 成人手机av| 在线观看66精品国产| av视频在线观看入口| 香蕉久久夜色| 久久久久久久午夜电影| 怎么达到女性高潮| 国产91精品成人一区二区三区| 成人三级做爰电影| 成人三级黄色视频| 老司机午夜十八禁免费视频| 老熟妇仑乱视频hdxx| 久久九九热精品免费| 国产精品98久久久久久宅男小说| 亚洲av熟女| 搞女人的毛片| 久久久精品欧美日韩精品| 国产精品野战在线观看| 久久精品影院6| 日本一本二区三区精品| 宅男免费午夜| www.熟女人妻精品国产| 久久精品夜夜夜夜夜久久蜜豆 | 精品福利观看| 亚洲av第一区精品v没综合| 国产熟女xx| 国产精品爽爽va在线观看网站| 国产激情欧美一区二区| 国产欧美日韩精品亚洲av| 欧美久久黑人一区二区| 国产私拍福利视频在线观看| 欧美国产日韩亚洲一区| 国产精品av视频在线免费观看| 欧美极品一区二区三区四区| 丁香欧美五月| 亚洲免费av在线视频| 人人妻,人人澡人人爽秒播| 亚洲人成电影免费在线| 午夜视频精品福利| av福利片在线| 久久久久久九九精品二区国产 | 久久国产乱子伦精品免费另类| 99久久国产精品久久久| 伊人久久大香线蕉亚洲五| 麻豆国产av国片精品| 欧美日韩黄片免| 午夜福利视频1000在线观看| 精品少妇一区二区三区视频日本电影| 免费人成视频x8x8入口观看| 色老头精品视频在线观看| а√天堂www在线а√下载| 欧美 亚洲 国产 日韩一| 久久中文字幕一级| 成人永久免费在线观看视频| 免费观看人在逋| netflix在线观看网站| 一个人免费在线观看的高清视频| 看片在线看免费视频| 麻豆国产97在线/欧美 | 男女床上黄色一级片免费看| 91老司机精品| 久久久久久久久久黄片| 一本精品99久久精品77| 久久精品国产清高在天天线| 久久人妻av系列| 精品乱码久久久久久99久播| 亚洲av成人精品一区久久| 99精品欧美一区二区三区四区| 91大片在线观看| 久久婷婷人人爽人人干人人爱| 日本撒尿小便嘘嘘汇集6| 午夜日韩欧美国产| 精品国产乱子伦一区二区三区| 亚洲成人精品中文字幕电影| 欧美在线一区亚洲| 一级毛片精品| 男女下面进入的视频免费午夜| 国产麻豆成人av免费视频| 变态另类成人亚洲欧美熟女| 欧美一区二区国产精品久久精品 | 欧美乱色亚洲激情| 国产成年人精品一区二区| 亚洲第一欧美日韩一区二区三区| 一进一出抽搐gif免费好疼| 亚洲五月天丁香| 香蕉久久夜色| 老汉色av国产亚洲站长工具| 亚洲男人的天堂狠狠| 日韩欧美国产一区二区入口| 免费看十八禁软件| 老司机深夜福利视频在线观看| 久久精品影院6| 国产片内射在线| 色在线成人网| 国产成人av教育| 熟女电影av网| 大型av网站在线播放| 成人国产综合亚洲| 亚洲国产欧美一区二区综合| 亚洲熟女毛片儿| 后天国语完整版免费观看| 成人av一区二区三区在线看| 精品一区二区三区四区五区乱码| 久久久国产欧美日韩av| 亚洲avbb在线观看| 1024香蕉在线观看| 免费在线观看日本一区| 久久久久久久午夜电影| 国产精品亚洲美女久久久| 午夜亚洲福利在线播放| 国产黄片美女视频| 禁无遮挡网站| 999久久久国产精品视频| 欧美色欧美亚洲另类二区| 在线视频色国产色| 国产久久久一区二区三区| 欧美午夜高清在线| 看免费av毛片| 舔av片在线| 熟妇人妻久久中文字幕3abv| 母亲3免费完整高清在线观看| 在线观看免费视频日本深夜| 99在线视频只有这里精品首页| 精品国产超薄肉色丝袜足j| 日本 欧美在线| 久久精品亚洲精品国产色婷小说| 亚洲18禁久久av| 久久久久国产一级毛片高清牌| 村上凉子中文字幕在线| 国产麻豆成人av免费视频| 老汉色∧v一级毛片| 十八禁人妻一区二区| 精品福利观看| 欧美日韩亚洲综合一区二区三区_| 看片在线看免费视频| 一二三四社区在线视频社区8| 看片在线看免费视频| 国内毛片毛片毛片毛片毛片| 国产乱人伦免费视频| 精品久久久久久久久久久久久| 在线免费观看的www视频| 一级毛片精品| 精品免费久久久久久久清纯| av免费在线观看网站| 香蕉国产在线看| 97碰自拍视频| 美女扒开内裤让男人捅视频| 国产精品一区二区三区四区久久| 久久精品国产综合久久久| 又黄又爽又免费观看的视频| 十八禁人妻一区二区| 久久久久久九九精品二区国产 | av欧美777| 制服人妻中文乱码| 亚洲精品色激情综合| 亚洲avbb在线观看| 两个人的视频大全免费| av国产免费在线观看| 亚洲欧美激情综合另类| 好男人电影高清在线观看| 欧美乱妇无乱码| 久久久久久免费高清国产稀缺| 国产精华一区二区三区| 一级黄色大片毛片| 亚洲自偷自拍图片 自拍| 久久中文看片网| 亚洲精品国产一区二区精华液| 人人妻人人澡欧美一区二区| 在线观看免费午夜福利视频| 日本黄色视频三级网站网址| 国产亚洲精品久久久久5区| 中文字幕av在线有码专区| 一二三四社区在线视频社区8| 国产高清videossex| av欧美777| 亚洲第一欧美日韩一区二区三区| 久久久久亚洲av毛片大全| 后天国语完整版免费观看| 黑人巨大精品欧美一区二区mp4| 两个人视频免费观看高清| 亚洲最大成人中文| 香蕉丝袜av| 看黄色毛片网站| 亚洲人成77777在线视频| 亚洲最大成人中文| 香蕉国产在线看| 国产三级在线视频| 中文在线观看免费www的网站 | 国产探花在线观看一区二区| 一夜夜www| 亚洲电影在线观看av| 三级毛片av免费| 午夜福利欧美成人| 亚洲 欧美一区二区三区| 一个人免费在线观看电影 | 欧美黄色片欧美黄色片| 搡老熟女国产l中国老女人| 午夜福利在线观看吧| 一区二区三区高清视频在线| 成熟少妇高潮喷水视频| 变态另类丝袜制服| 亚洲一区中文字幕在线| 亚洲欧美日韩高清专用| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av成人精品一区久久| 亚洲九九香蕉| 日韩中文字幕欧美一区二区| 免费在线观看成人毛片| 香蕉av资源在线| 一级毛片高清免费大全| 欧美黑人巨大hd| 999久久久国产精品视频| 成人亚洲精品av一区二区| 国产高清视频在线播放一区| 久久久久久亚洲精品国产蜜桃av| 国产精品,欧美在线| 亚洲午夜理论影院| a在线观看视频网站| 亚洲真实伦在线观看| 午夜久久久久精精品| 90打野战视频偷拍视频| 三级男女做爰猛烈吃奶摸视频| 黄色片一级片一级黄色片| 亚洲美女视频黄频| 色综合婷婷激情| 免费看十八禁软件| 人人妻人人澡欧美一区二区| 久久国产精品人妻蜜桃| 精品国产乱码久久久久久男人| 夜夜看夜夜爽夜夜摸| 99久久精品国产亚洲精品| 国产91精品成人一区二区三区| 在线观看舔阴道视频| 嫁个100分男人电影在线观看| 国产三级在线视频| 久久久久久久久免费视频了| 亚洲欧美一区二区三区黑人| 12—13女人毛片做爰片一| 成熟少妇高潮喷水视频| 亚洲国产欧美人成| 国产精品一区二区精品视频观看| 99热6这里只有精品| 一进一出好大好爽视频| 国产午夜精品论理片| 青草久久国产| www日本黄色视频网| 成人一区二区视频在线观看| 男女视频在线观看网站免费 | www.精华液| 午夜福利免费观看在线| 久久香蕉精品热| xxxwww97欧美| 男女床上黄色一级片免费看| 久久久久国产精品人妻aⅴ院| 1024手机看黄色片| 一区福利在线观看| 欧美高清成人免费视频www| 国模一区二区三区四区视频 | 51午夜福利影视在线观看| 999精品在线视频| 亚洲avbb在线观看| 国产亚洲欧美在线一区二区| 一二三四在线观看免费中文在| 日本撒尿小便嘘嘘汇集6| 免费在线观看完整版高清| 欧美 亚洲 国产 日韩一| 99精品久久久久人妻精品| 男女做爰动态图高潮gif福利片| 亚洲中文日韩欧美视频| 嫁个100分男人电影在线观看| 少妇人妻一区二区三区视频| 成人一区二区视频在线观看| 久久精品91无色码中文字幕| 亚洲自拍偷在线| 亚洲 欧美一区二区三区| 日本 欧美在线| 2021天堂中文幕一二区在线观| 黑人欧美特级aaaaaa片| 日日干狠狠操夜夜爽| 大型黄色视频在线免费观看| 欧美大码av| 两个人视频免费观看高清| 嫩草影视91久久| 精品久久久久久久久久久久久| 少妇裸体淫交视频免费看高清 | 国产精品久久久久久人妻精品电影| 波多野结衣高清无吗| 久久国产精品人妻蜜桃| 最近最新中文字幕大全免费视频| 国产高清视频在线播放一区| 黄色丝袜av网址大全| 国产精品av久久久久免费| 在线观看www视频免费| 99热这里只有精品一区 | 日韩高清综合在线| 亚洲国产精品999在线| 天堂av国产一区二区熟女人妻 | 国产乱人伦免费视频| av片东京热男人的天堂| 久久中文看片网| 婷婷亚洲欧美| 两人在一起打扑克的视频| 天堂动漫精品| 老司机在亚洲福利影院| 国产97色在线日韩免费| 日韩三级视频一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 女人被狂操c到高潮| 日本精品一区二区三区蜜桃| 国产精品98久久久久久宅男小说| 久久这里只有精品19| 国产欧美日韩精品亚洲av|