• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genome-Wide Association Study for Milled Grain Appearance Traits Using Multi-Parent Advanced Generation Intercross Population in Rice

    2023-09-05 13:00:48LiXiaoxiangLiuJindongGuoLiangWeiXiucaiWangYameiPanXiaowuDongZhengLiuWenqiangLiuLichengMinJunLiuSanxiongYeGuoyouLiYongchao
    Rice Science 2023年5期

    Li Xiaoxiang, Liu Jindong, Guo Liang, Wei Xiucai,Wang Yamei, Pan Xiaowu, Dong Zheng, Liu Wenqiang,Liu Licheng, Min Jun, Liu Sanxiong, Ye Guoyou, 4, Li Yongchao

    Letter

    Genome-Wide Association Study for Milled Grain Appearance Traits Using Multi-Parent Advanced Generation Intercross Population in Rice

    Li Xiaoxiang1, #, Liu Jindong2, 3, #, Guo Liang1, #, Wei Xiucai1,Wang Yamei3, Pan Xiaowu1, Dong Zheng1, Liu Wenqiang1,Liu Licheng1, Min Jun1, Liu Sanxiong1, Ye Guoyou3, 4, Li Yongchao1

    (Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Crop Science Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Rice Breeding Innovations Platform, International Rice Research Institute, Metro Manila DAPO Box 7777, the Philippines; )

    The identification of loci and markers associated with milled grain appearance traits is essential for breeding high-yielding and good-quality rice variety. To detect stable loci for these characteristics, grain length (GL), grain width (GW), grain length/width (GLW), chalkiness degree (CD), chalky-grain rate (CR) and translucency degree (TD) of 378 rice lines were evaluated in three seasons. These lines were derived from a multi-parent advanced generation intercross (MAGIC) population,and genotyped using genotyping-by-sequencing, which identified 52 503 single nucleotide polymorphism (SNP) markers for genome-wide association study (GWAS). A total of 24 loci for milled grain appearance traits were detected, explaining 3.6%–27.7% of the phenotypic variations, among which, 10 were identified in the similar locations to known genes or QTLs, while 14 were believed to be novel. In addition, 15 loci exhibited effects across two or more traits, and 18 loci were stable across two or more seasons. Further, we identified four candidate genes possibly involved in signal transduction pathways of plant hormones and starch synthesis for milled rice using qRT-PCR validation. This study provides novel insights into the genetic basis underlying milled rice, and the significantly associated SNP markers and accessions with a larger number of favorable alleles could prove useful in improving grain yield and quality through breeding efforts.

    Rice (L.) is a staple food for more than half of the world’s population (Bai et al, 2018). The worldwide objective of rice breeding is to improve both grain yield and quality, with grain appearance being primary quality factors (Liu et al, 2020). Grain appearance makes significant contributions to the market value of rice, including grain size, shape, chalkiness and translucency (Zhao et al, 2018; Zhou et al, 2019). Despite more than 200 QTLs for grain appearance have been detected on all 12 rice chromosomes using various mapping populations, the genetic basis of these traits in rice is not yet fully understood. Several major QTLs controlling grain appearance have been identified and functionally characterized, including,,,,,,and(Shomura et al, 2008; Ying et al, 2018; Zhao et al, 2018). GWAS using high-density markers has become increasingly popular in crop genetics (Liu et al, 2017; Wang et al, 2021; Tatiana et al, 2021). The use of MAGIC population provides an alternative approach to both natural population-based GWAS and linkage mapping. MAGIC population offers better control over population structure and kinship, making it an effective tool in identifying major genes through association mapping (Bandillo et al, 2013; Ponce et al, 2018). In this study, GWAS was conducted in a MAGIC population, tested across three seasons, to identify loci associated with the grain appearance traits. The results of this study could provide valuable information for understanding the genetic basis of rice grain appearance and facilitating marker-assisted breeding.

    The grain shape factors (GL, GW and GLW) of a MAGIC population consisting 378 lines appeared to be normally distributed, whereas most of the grain appearance factors (CD, CR and TD) showed biased distribution (Fig. S1). The mean values of CD, CR and TD were 10.8% (1.7%–32.5%), 32.4% (5.3%–86.2%) and 2.5% (1.7%–4.0%), whereas the mean values of GL, GW and GLW were 6.2 mm (5.4–7.5 mm), 2.0 mm (1.6–2.5 mm) and 3.1 (2.3–4.4). Pearson’s product- moment correlation coefficient between the tested traits is presented in Table S1. The CD was positively correlated with CR (= 0.911,< 0.01) and TD (= 0.634,< 0.01). Additionally, CR was positively correlated with TD (= 0.652,< 0.05). Unsurprisingly, GLW was positively correlated with GL (= 0.717,< 0.01), and negatively correlated with GW (= -0.738,< 0.01). The broad sense heritabilities (b2) estimated for CR, CD, TD, GL, GW and GLW were 0.56, 0.52, 0.55, 0.65, 0.57 and 0.58, respectively, indicating that the total phenotypic variances for all the six traits were significantly influenced by genotype, environment and genotype × environment interaction (Table S2).

    A wide diversity of phenotype was observed in the MAGIC population for all the measured traits, indicating the emergence of transgressive segregants (Fig. S1). This segregation is of particular interest to breeders because it provides an excellent source for breeding materials to improve crops (Descalsota et al, 2018; Ponce et al, 2018). The substantial variability in grain appearance-related traits among the MAGIC lines will enable breeders to select superior lines with improved grain size. Additionally, the high level of variation observed suggests that the MAGIC population can effectively be utilized to identify allelic variants responsible for grain appearance differences (Bandillo et al, 2013; Descalsota et al, 2018).

    Table 1. Loci for milled grain appearance traits in Bandillo indica multiparent advanced generation intercross population by genome-wide association study.

    Chr, Chromosome; CD, Chalkiness degree; CR, Chalky-grain rate; TD, Translucency degree; GL, Grain length; GW, Grain width; GLW, Grain length/width;2, Proportion of phenotypic variance explained by the QTL effect; 2017, 2018 and 2020 represents the cropping seasons of 2017, 2018 and 2020, respectively.

    As reported in Ponce et al (2021), 27 042 SNPs were employed for the construction of physical map, with an average of 14 kb per SNP. Principal component analysis (PCA) indicated that no population structure was observed in the association panel, and the top three PCs only explained about 2.7%, 2.3% and 2.2% of the variances, respectively (Fig. S2). The decline of linkage disequilibrium (LD) to 50% of its initial value was at 1.70 Mb for the BandilloMAGIC (BIM) population. The mixed linear model (PCA + K) was used to conduct association analysis. A total of 24 loci were identified associated with GL, GW and CD, explaining 3.6%–27.7% of the phenotypic variation (Table 1, Figs. S3 and S4). Of these, 6 loci for GL were identified on chromosomes 1–4 and 7, 9 loci for GW were identified on chromosomes 2, 3, 5–9 and 12, 6 loci for GLW were distributed on chromosomes 2, 3, 7 and 8, 11 loci for CD were detected on chromosomes 1–4, 7, 8 and 11, 10 loci for CR were identified on chromosomes 1–4 and 7–9, 8 loci for TD were identified on chromosomes 1, 2, 4, 6, 8 and 11 (Table 1). Of these loci,,andwere significantly associated with CD, CR and TD,showed effects on CD, CR and GW,was significantly associated with CD and GL,was associated with CR and GW,had effects on CD, GLW and TD,showed effects on GL and GLW,was associated with GLW, GL and GW,andhad effects on CR and CD, andwas associated with GLW and GW,showed effects on GW and GLW, andhad effects on both TD and CD. The most two important considerations in QTL detection studies are the genetic background effect and QTL-by-environment interaction, which refers to whether the identified QTLs remain consistent across different populations and environments. Out of the 24 QTLs identified,,,,,,,,andwere stably expressed across all the three seasons, making them important in marker-assisted breeding to improve grain appearance.,,,andwere only detected in one of the testing seasons, suggesting that these five loci were more sensitive to the environment, leading to phenotypic plasticity.

    Fig. 1. Quantitative real-time PCR for candidate genes related to grain appearance traits in eight parents.

    V1, Fedearroz 50; V2, Shanhuangzhan 2; V3, IR64633-87-2-2-3-3; V4, IR4630-22-2-5-1-3; V5, IR45427-2B-2-2B-1-1; V6, IR84196-12-32; V7, IR77298-14-1-2-10; V8, IR77186-122-2-2-3.

    Ten of the QTLs were previously detected, including,,,,,,,,and.(9.8–11.6 Mb) was nearby(8.11–8.12 Mb), which encodes E3 ubiquitin-ligase enzymes and plays a crucial role in grain width and weight (Choi et al, 2018).(28.8–31.6 Mb) was coincided withor(32.1 Mb) (Ruan et al, 2020).(15.3–17.7 Mb) was coincided with(16.72 Mb), which encodes a putative transmembrance protein, playing an essential role in grain weight and length (Fan et al, 2006).(20.7–24.7 Mb) was overlapped with(Ponce et al, 2021).(34.7 Mb) was coincided with(34.2 Mb), which acts as a transcription factor and plays an important role in the shattering trait and grain weight (Wu et al, 2017).(4.3–4.8 Mb) was nearby(5.4 Mb), which has been identified as crucial for grain weight (Shomura et al, 2008; Duan et al, 2017; Liu et al, 2017).(5.6–7.1 Mb) impacting TD was found to nearby/(8.9 Mb). This gene is involved in encoding of gibberellin-regulated GASA/GAST/Snakin family protein precursor essential for the regulation of grain width and weight (Shi et al, 2020; Tang et al, 2021).(28.0 Mb) neared by(26.6 Mb), which encodes the GANT protein and plays an important role in grain weight and yield (Song et al, 2015).(23.7–25.0 Mb), associated with CD, CR, GL, GW and GLW, was found to nearby(19.1 Mb) (Zhou et al, 2015), which belongs to the SBP-box gene family member and plays a critical role in regulating grain length and weight.(26.3–27.9 Mb) overlapped with(26.5 Mb), which also belongs to the SBP-box gene family member and is crucial for the regulation of both grain weight and width (Wang et al, 2012).(21.2–23.7 Mb) was found to nearbyand(19.2 Mb).encodes the indole-3-acetic acid-amido synthetase and plays a vital role in determining grain weight and length (Wang et al, 2021).

    ,andshowed effects across three or more traits, thus, they were considered promising. The genes located in LD block region around the peak SNP (± 150 Kb) of each important QTL were excavated from the MSU Rice Genome Annotation Project (http://www.rice.uga.edu/). Then, all available SNPs located inside these genes were searched. Except for genes encoding hypothetical protein, transposon protein and retrotransposon protein, with SNP in coding region that leads to sense mutation, were considered as the candidate genes. Totally, five genes involved in the biological metabolism of plant hormone and starch synthesis were screened by this method (Tables S3 and S4), includingfor,andfor, andandfor.The expression levels of the five candidate genes in eight parents were detected using qRT-PCR (Fig. 1).showed no significant differences among the parental accessions, whereas,,andshowed 1.3–3.9-fold higher expression between the parental accessions.encodes a glucosidase II beta subunit-like domain containing protein. Glucosidase plays a crucial role in the metabolic pathway of glucose in organism. β-glucosidase is known to participate in cellulose metabolism, physiological and biochemical pathways (Ayaad et al, 2020).encodessucrose- phosphatase. Sucrose phosphate synthase is a rate-limiting enzyme that catalyzes the synthesis of sucrose 6-phosphate, whereas sucrose phosphatase hydrolyzes the phosphate radical on sucrose 6-phosphate to form sucrose. Sucrose phosphate synthase has high activity in photosynthetic tissues. It only uses uridine diphosphate glucose as glucose donor, hydrolyzes and removes phosphate groups through the action of phosphatase, and forms sucrose, which is the main pathway of sucrose biosynthesis (Barnaby et al, 2020).encodes an auxin efflux carrier component. Auxin, a crucial hormone composed of a simple small molecule based on the indole ring, plays an important role in various aspects of plant growth and development, including cell differentiation, division and elongation (Hou et al, 2021).encodesstarch synthase III, which is the second largest components of total soluble starch synthase activity in developingrice endosperm and plays an important role in starch biosynthesis in plants and the chalkiness and translucency of rice grains, as well as grain length and width (You et al, 2020).

    This study contributes to our understanding of the genetic architecture underlying rice grain size. The QTLs and the significant SNPs identified in this study, particularly these exhibiting genetic background independency and environment stability, could be useful for breedingrice to improve grain size. Importantly, it is noteworthy that populations derived from multiparent crosses provide greater phenotypic and allelic diversity compared with conventional biparental populations, along with fewer confounding effects in terms of population structure and genetic relatedness than natural populations.

    ACKNOWLEDGEMENTS

    This study was supported by the earmarked fund for China Agriculture Research System (Grant No. CARS-01), Young Elite Scientists Sponsorship Program by China Association for Science and Technology (Grant No. 2020QNRC001), and Hunan Academy of Agricultural Sciences Scientific and Technological Innovation Project, China (Grant No. 2017JC10).

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science;http://www.ricescience.org.

    File S1. Methods.

    Fig. S1. Distribution for grain appearance traits in Bandillomultiparent advanced generation intercross population.

    Fig. S2. Principal component analysis for Bandillomultiparent advanced generation intercross population.

    Fig. S3. Manhattan plot for grain appearance and shape related traits in Bandillomultiparent advanced generation intercross population using mixed linear model.

    Fig. S4. Quantile-Quantile plot for grain appearance traits in Bandillomultiparent advanced generation intercross population using mixed linear model.

    Table S1. Correlation analysis for milled grain appearance traits in Bandillomultiparent advanced generation intercross population.

    Table S2. Analysis of variance for milled grain appearance traits in Bandillomultiparent advanced generation intercross population.

    Table S3. Details of candidate genes related to grain appearance traits.

    Table S4. Primers of five candidate genes used in qRT-PCR.

    Ayaad M, Han Z M, Zheng K, Hu G, Abo-Yousef M, Sobeih S E S, Xing Y Z. 2020. Bin-based genome-wide association studies reveal superior alleles for improvement of appearance quality using a 4-way MAGIC population in rice., 28: 183–194.

    Bai S, Yu H, Wang B, Li J. 2018. Retrospective and perspective of rice breeding in China., 45(11): 603–612.

    Bandillo N, Raghavan C, Muyco P A, Sevilla M A L, Lobina I T, Dilla-Ermita C J, Tung C W, McCouch S, Thomson M, Mauleon R, Singh R K, Gregorio G, Redo?a E, Leung H. 2013. Multi- parent advanced generation inter-cross (MAGIC) populations in rice: Progress and potential for genetics research and breeding., 6(1): 11.

    Barnaby J Y, Huggins T D, Lee H, McClung A M, Pinson S R M, Oh M, Bauchan G R, Tarpley L, Lee K J, Kim M, Edwards J D. 2020. Vis/NIR hyperspectral imaging distinguishes sub-population, production environment, and physicochemical grain properties in rice., 10(1): 9284.

    Choi B S, Kim Y J, Markkandan K, Koo Y J, Song J T, Seo H S. 2018.functions as an E3 ubiquitin ligase for rice expansin-like 1., 19(7): 1904.

    Descalsota G I L, Swamy B P M, Zaw H, Inabangan-Asilo M A, Amparado A, Mauleon R, Chadha-Mohanty P, Arocena E C, Raghavan C, Leung H, Hernandez J E, Lalusin A B, Mendioro M S, Diaz M G Q, Reinke R. 2018. Genome-wide association mapping in a rice MAGIC plus population detects QTLs and genes useful for biofortification., 9: 1347.

    Duan P G, Xu J S, Zeng D L, Zhang B L, Geng M F, Zhang G Z, Huang K, Huang L J, Xu R, Ge S, Qian Q, Li Y H. 2017. Natural variation in the promoter ofcontributes to grain size diversity in rice., 10(5): 685–694.

    Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q. 2006., a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrance protein., 112: 1164–1171.

    Hou M M, Luo F F, Wu D X, Zhang X H, Lou M M, Shen D F, Yan M, Mao C Z, Fan X R, Xu G H, Zhang Y L. 2021. OsPIN9, an auxin efflux carrier, is required for the regulation of rice tiller bud outgrowth by ammonium., 229(2): 935–949.

    Liu C, Song J L, Wang Y C, Huang X R, Zhang F, Wang W S, Xu J L, Zhang Y, Yu H X, Pang Y H, Bao J S. 2020. Rapid prediction of head rice yield and grain shape for genome-wide association study in indica rice., 96: 103091.

    Liu J D, He Z H, Rasheed A, Wen W E, Yan J, Zhang P Z, Wan Y X, Zhang Y, Xie C J, Xia X C. 2017. Genome-wide association mapping of black point reaction in common wheat (L.)., 17(1): 220.

    Ponce K S, Ye G Y, Zhao X Q. 2018. QTL identification for cooking and eating quality inrice using multi-parent advanced generation intercross (MAGIC) population., 9: 868.

    Ponce K S, Meng L J, Guo L B, Leng Y J, Ye G Y. 2021. Advances in sensing, response and regulation mechanism of salt tolerance in rice., 22(5): 2254.

    Ruan B P, Shang L G, Zhang B, Hu J, Wang Y X, Lin H, Zhang A P, Liu C L, Peng Y L, Zhu L, Ren D Y, Shen L, Dong G J, Zhang G H, Zeng D L, Guo L B, Qian Q, Gao Z Y. 2020. Natural variation in the promoter ofdetermines grain width and weight in rice., 227(2): 629–640.

    Shi C L, Dong N Q, Guo T, Ye W W, Shan J X, Lin H X. 2020. A quantitative trait locuscontrols rice grain size and yield through the gibberellin pathway., 103(3): 1174–1188.

    Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. 2008. Deletion in a gene associated with grain size increased yields during rice domestication., 40(8): 1023–1028.

    Song X J, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu J Z H, Kitano H, Sakakibara H, Jacobsen S E, Ashikari M. 2015. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice., 112(1): 76–81.

    Tang Z B, Gao X Y, Zhan X Y, Fang N Y, Wang R Q, Zhan C F, Zhang J Q, Cai G, Cheng J P, Bao Y M, Zhang H S, Huang J. 2021. Natural variation inregulates grain length in rice., 19(1): 14–16.

    Tatiana R, Julie D, Philippe L, Julien F, Isabelle R R, Noronirina V R, Tuong-Vi C, Kirsten V B, Alain R, Nourollah A, Louis-Marie R. 2021. Genome-wide association study of nitrogen use efficiency and agronomic traits in upland rice., 28(4): 379–390.

    Wang D W, Sun W Q, Yuan Z Y, Sun Q, Fan K, Zhang C P, Yu S B. 2021. Identification of a novel QTL and candidate gene associated with grain size using chromosome segment substitution lines in rice., 11(1): 189.

    Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X. 2012. Control of grain size, shape and quality byin rice., 44(8): 950–954.

    Wu W G, Liu X Y, Wang M H, Meyer R S, Luo X J, Ndjiondjop M N, Tan L B, Zhang J W, Wu J Z, Cai H W, Sun C Q, Wang X K, Wing R A, Zhu Z F. 2017. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication., 3: 17064.

    Ying J Z, Ma M, Bai C, Huang X H, Liu J L, Fan Y Y, Song X J. 2018., a major QTL that negatively modulates grain length and weight in rice., 11(5): 750–753.

    You H, Zhang O L, Xu L, Liang C, Xiang X C. 2020. Effects ofallelic variation on rice grain quality with differentbackgrounds., 100(15): 5344–5351.

    Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q. 2018.acts as a transcriptional activator to regulate rice grain shape and appearance quality., 9(1): 1240.

    Zhou H, Yun P, He Y Q. 2019. Rice appearance quality.: Bao J S. Rice: Chemistry and Technology 4 edn. AACC International Press: 371–383.

    Zhou Y, Miao J, Gu H Y, Peng X R, Leburu M, Yuan F H, Gu H W, Gao Y, Tao Y J, Zhu J Y, Gong Z Y, Yi C D, Gu M H, Yang Z F, Liang G H. 2015. Natural variations inregulate grain shape in rice., 201(4): 1591–1599.

    Copyright ? 2023, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2023.04.001

    Li Yongchao (yongchaoli66363@126.com)

    4 November 2022;

    28 April 2023

    日本一二三区视频观看| 岛国在线免费视频观看| 深夜a级毛片| 三级经典国产精品| 免费观看精品视频网站| 亚洲国产精品成人久久小说| 卡戴珊不雅视频在线播放| 听说在线观看完整版免费高清| 91aial.com中文字幕在线观看| 久久久欧美国产精品| 免费在线观看成人毛片| 亚洲高清免费不卡视频| 国产精品一区二区三区四区久久| 日本黄色视频三级网站网址| 18+在线观看网站| 免费在线观看成人毛片| 男人和女人高潮做爰伦理| 欧美性感艳星| 日产精品乱码卡一卡2卡三| 精品国产一区二区三区久久久樱花 | 欧美成人一区二区免费高清观看| 久久亚洲精品不卡| 只有这里有精品99| av在线蜜桃| 日本黄色视频三级网站网址| 熟女电影av网| 午夜视频国产福利| 日韩视频在线欧美| 国产 一区 欧美 日韩| 久久精品国产鲁丝片午夜精品| 中文字幕亚洲精品专区| 色视频www国产| 国产精品美女特级片免费视频播放器| 99热6这里只有精品| 欧美xxxx黑人xx丫x性爽| or卡值多少钱| 有码 亚洲区| 亚洲国产欧洲综合997久久,| 国产男人的电影天堂91| 欧美日韩在线观看h| 亚洲激情五月婷婷啪啪| 国产一区二区在线观看日韩| 精品人妻视频免费看| 精品人妻偷拍中文字幕| 91久久精品电影网| 国产激情偷乱视频一区二区| 国产伦精品一区二区三区四那| 国产精品野战在线观看| 三级男女做爰猛烈吃奶摸视频| 纵有疾风起免费观看全集完整版 | 我要看日韩黄色一级片| 国产伦精品一区二区三区视频9| 哪个播放器可以免费观看大片| 国产精品av视频在线免费观看| 黄片无遮挡物在线观看| 蜜臀久久99精品久久宅男| 亚洲欧美精品自产自拍| 免费av不卡在线播放| 最近中文字幕2019免费版| 网址你懂的国产日韩在线| 亚洲av二区三区四区| 网址你懂的国产日韩在线| 国产成人freesex在线| 伦精品一区二区三区| 亚洲人成网站在线观看播放| 成人鲁丝片一二三区免费| 国产一区二区在线av高清观看| 女人十人毛片免费观看3o分钟| 好男人在线观看高清免费视频| 午夜激情欧美在线| 国国产精品蜜臀av免费| 哪个播放器可以免费观看大片| 日本黄大片高清| av免费观看日本| 黄片无遮挡物在线观看| 免费看a级黄色片| 久久久久久九九精品二区国产| 91午夜精品亚洲一区二区三区| 国产精品一区二区性色av| 精品熟女少妇av免费看| 九草在线视频观看| 小说图片视频综合网站| 国产精品1区2区在线观看.| 国内精品一区二区在线观看| 国内精品一区二区在线观看| 内射极品少妇av片p| av在线亚洲专区| 搞女人的毛片| 亚洲av二区三区四区| 亚洲在久久综合| 国产精品综合久久久久久久免费| 麻豆久久精品国产亚洲av| 你懂的网址亚洲精品在线观看 | 九九久久精品国产亚洲av麻豆| 亚洲伊人久久精品综合 | 男女边吃奶边做爰视频| 成人特级av手机在线观看| 日本爱情动作片www.在线观看| 中国国产av一级| 色哟哟·www| 男女国产视频网站| 乱人视频在线观看| 国产黄片视频在线免费观看| 成人午夜高清在线视频| 欧美性猛交╳xxx乱大交人| 毛片一级片免费看久久久久| 国产黄色视频一区二区在线观看 | 久久久久免费精品人妻一区二区| 波多野结衣巨乳人妻| 国产伦在线观看视频一区| 欧美+日韩+精品| 岛国毛片在线播放| 国产免费福利视频在线观看| 少妇被粗大猛烈的视频| 亚洲欧美成人综合另类久久久 | 又爽又黄无遮挡网站| 亚洲美女搞黄在线观看| 亚洲精品乱码久久久v下载方式| 久久久久久久久久久丰满| 99久久人妻综合| 久久久久久久亚洲中文字幕| 99久久精品一区二区三区| 久久这里有精品视频免费| 中文资源天堂在线| 欧美最新免费一区二区三区| 国产午夜福利久久久久久| 久久久亚洲精品成人影院| 国产亚洲5aaaaa淫片| 国产三级在线视频| 热99在线观看视频| 成人特级av手机在线观看| 欧美性感艳星| 天美传媒精品一区二区| 好男人视频免费观看在线| 久久国内精品自在自线图片| 能在线免费观看的黄片| 蜜桃久久精品国产亚洲av| 高清在线视频一区二区三区 | av黄色大香蕉| 99久久人妻综合| 一级爰片在线观看| 赤兔流量卡办理| 国产午夜精品论理片| 精品酒店卫生间| 午夜日本视频在线| 久久久成人免费电影| 热99在线观看视频| 国内揄拍国产精品人妻在线| 国产精品,欧美在线| 亚州av有码| 男女国产视频网站| 中国国产av一级| 丰满少妇做爰视频| av女优亚洲男人天堂| 久久精品国产99精品国产亚洲性色| 欧美3d第一页| 99热这里只有精品一区| 久久久精品大字幕| 国产精品电影一区二区三区| 色尼玛亚洲综合影院| 国产又黄又爽又无遮挡在线| 国产在视频线在精品| 人人妻人人看人人澡| 国产在线男女| 日本熟妇午夜| 国产av码专区亚洲av| 天堂中文最新版在线下载 | 久久热精品热| av在线观看视频网站免费| 亚洲熟妇中文字幕五十中出| 在线免费观看的www视频| 色哟哟·www| 日本爱情动作片www.在线观看| 欧美激情在线99| 一本久久精品| 少妇熟女欧美另类| 国产精品蜜桃在线观看| 成人美女网站在线观看视频| 久久久久免费精品人妻一区二区| 日本熟妇午夜| 亚洲国产精品合色在线| 你懂的网址亚洲精品在线观看 | 日本一二三区视频观看| 精品欧美国产一区二区三| 久久久久性生活片| 国产精品久久电影中文字幕| 高清视频免费观看一区二区 | 亚洲,欧美,日韩| 伦精品一区二区三区| 精品熟女少妇av免费看| 亚洲乱码一区二区免费版| 亚洲伊人久久精品综合 | 狂野欧美激情性xxxx在线观看| 亚洲精品影视一区二区三区av| 人妻系列 视频| 又黄又爽又刺激的免费视频.| 人人妻人人看人人澡| 人人妻人人澡人人爽人人夜夜 | 国产在线一区二区三区精 | 国产女主播在线喷水免费视频网站 | 亚洲精品456在线播放app| 久久精品国产鲁丝片午夜精品| 欧美日本视频| 观看免费一级毛片| 联通29元200g的流量卡| 伦精品一区二区三区| 边亲边吃奶的免费视频| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品永久免费网站| 97超碰精品成人国产| 欧美区成人在线视频| 中文欧美无线码| 亚洲18禁久久av| 狠狠狠狠99中文字幕| 国产成人aa在线观看| 国产精品电影一区二区三区| 白带黄色成豆腐渣| 久久久亚洲精品成人影院| 久久精品久久久久久噜噜老黄 | 在线播放国产精品三级| 亚洲无线观看免费| 男的添女的下面高潮视频| 色综合亚洲欧美另类图片| 一夜夜www| 亚洲欧美中文字幕日韩二区| 亚洲欧美精品综合久久99| 少妇熟女aⅴ在线视频| 男人舔女人下体高潮全视频| 男女边吃奶边做爰视频| 久久精品久久精品一区二区三区| 麻豆成人午夜福利视频| 精品人妻一区二区三区麻豆| 久久精品国产亚洲av涩爱| 纵有疾风起免费观看全集完整版 | 中文亚洲av片在线观看爽| 成人美女网站在线观看视频| 精品一区二区三区视频在线| 三级国产精品片| 欧美一级a爱片免费观看看| 国产黄片美女视频| 国产精品福利在线免费观看| 亚洲av福利一区| 亚洲欧美中文字幕日韩二区| 国产高清三级在线| 国产精品国产高清国产av| 欧美一区二区精品小视频在线| 美女黄网站色视频| 亚洲国产最新在线播放| 久久精品国产亚洲av天美| 久久久久国产网址| 亚洲乱码一区二区免费版| 久久精品综合一区二区三区| 老司机影院成人| 国产欧美日韩精品一区二区| 老司机影院毛片| 我的女老师完整版在线观看| 亚洲av电影在线观看一区二区三区 | 三级国产精品片| 亚洲精品一区蜜桃| 日本熟妇午夜| 国产精品无大码| 我要看日韩黄色一级片| 精品人妻熟女av久视频| 青春草视频在线免费观看| 国产一级毛片七仙女欲春2| 免费电影在线观看免费观看| 69人妻影院| 91精品国产九色| 中文资源天堂在线| 久久久午夜欧美精品| 久久久精品94久久精品| 三级国产精品片| 伦精品一区二区三区| 欧美日本亚洲视频在线播放| 综合色av麻豆| 一区二区三区乱码不卡18| 色尼玛亚洲综合影院| 三级男女做爰猛烈吃奶摸视频| 丰满人妻一区二区三区视频av| 亚洲欧美清纯卡通| 国产综合懂色| 亚洲中文字幕一区二区三区有码在线看| АⅤ资源中文在线天堂| 成人av在线播放网站| 大又大粗又爽又黄少妇毛片口| 国内精品美女久久久久久| 丰满人妻一区二区三区视频av| 丰满少妇做爰视频| 国产亚洲av片在线观看秒播厂 | 久久精品国产鲁丝片午夜精品| 看十八女毛片水多多多| 99热网站在线观看| 国产美女午夜福利| 天堂av国产一区二区熟女人妻| 国产爱豆传媒在线观看| 亚洲av成人av| 人妻少妇偷人精品九色| 91精品一卡2卡3卡4卡| av播播在线观看一区| 综合色丁香网| 国产精品久久久久久久久免| 国产毛片a区久久久久| 美女国产视频在线观看| 久久久久网色| 亚洲欧美成人精品一区二区| 亚洲精品,欧美精品| 91在线精品国自产拍蜜月| 晚上一个人看的免费电影| 久久久久国产网址| 精品久久久久久电影网 | 精品酒店卫生间| 黑人高潮一二区| 大香蕉97超碰在线| 中文字幕久久专区| 男人舔奶头视频| 国产黄片视频在线免费观看| 中文字幕免费在线视频6| 中国美白少妇内射xxxbb| 日本色播在线视频| 美女内射精品一级片tv| 日韩视频在线欧美| 午夜福利高清视频| 青春草亚洲视频在线观看| 国产在线一区二区三区精 | 日韩大片免费观看网站 | 亚洲性久久影院| 欧美日韩在线观看h| 亚洲婷婷狠狠爱综合网| 国产又黄又爽又无遮挡在线| 日韩人妻高清精品专区| 国产亚洲午夜精品一区二区久久 | 欧美日韩在线观看h| 欧美成人a在线观看| 亚洲三级黄色毛片| 亚洲成人中文字幕在线播放| 成人无遮挡网站| 欧美一级a爱片免费观看看| 国产乱人视频| 97在线视频观看| 99久国产av精品| 搞女人的毛片| 日韩欧美三级三区| 久久久久性生活片| 少妇熟女aⅴ在线视频| 美女国产视频在线观看| 国产精品一区www在线观看| 日本熟妇午夜| 色哟哟·www| 国产精品久久久久久久久免| 人人妻人人澡人人爽人人夜夜 | 蜜桃亚洲精品一区二区三区| 亚洲精华国产精华液的使用体验| 亚洲精品日韩av片在线观看| 最近手机中文字幕大全| 天堂av国产一区二区熟女人妻| 亚洲精品日韩av片在线观看| 亚洲高清免费不卡视频| 免费观看精品视频网站| av免费观看日本| 国产亚洲精品久久久com| av专区在线播放| 少妇人妻一区二区三区视频| 国模一区二区三区四区视频| 日韩一区二区视频免费看| 亚洲欧美精品专区久久| 性色avwww在线观看| 高清视频免费观看一区二区 | 菩萨蛮人人尽说江南好唐韦庄 | 国产视频内射| 欧美不卡视频在线免费观看| 亚洲av免费在线观看| 国产人妻一区二区三区在| 国产伦在线观看视频一区| 亚洲av.av天堂| 大香蕉97超碰在线| 人人妻人人看人人澡| 精品国产三级普通话版| 精品欧美国产一区二区三| 麻豆一二三区av精品| 久久99蜜桃精品久久| 91久久精品国产一区二区成人| 久久久精品大字幕| 日产精品乱码卡一卡2卡三| 搡老妇女老女人老熟妇| 精品久久久久久久久久久久久| 国产精品久久久久久久电影| 日本猛色少妇xxxxx猛交久久| 亚洲美女搞黄在线观看| 亚洲精品乱码久久久久久按摩| 成人午夜高清在线视频| 黄色欧美视频在线观看| 在线观看av片永久免费下载| 综合色丁香网| 观看免费一级毛片| 天天躁夜夜躁狠狠久久av| 一级毛片久久久久久久久女| 久久久国产成人精品二区| 小说图片视频综合网站| 长腿黑丝高跟| 韩国高清视频一区二区三区| 身体一侧抽搐| 一级二级三级毛片免费看| 久久久久久久久久久丰满| 成人毛片60女人毛片免费| 搡老妇女老女人老熟妇| 又黄又爽又刺激的免费视频.| 日韩av不卡免费在线播放| 久久精品久久精品一区二区三区| 久久久精品大字幕| 自拍偷自拍亚洲精品老妇| 能在线免费看毛片的网站| 欧美日本视频| 精品久久久久久电影网 | 久久精品人妻少妇| 久久精品久久精品一区二区三区| 最近最新中文字幕大全电影3| av播播在线观看一区| 丰满少妇做爰视频| 日韩视频在线欧美| 国产极品天堂在线| 毛片一级片免费看久久久久| 成人美女网站在线观看视频| 村上凉子中文字幕在线| 插阴视频在线观看视频| 日韩成人伦理影院| АⅤ资源中文在线天堂| 亚洲图色成人| 亚洲精品aⅴ在线观看| 一个人免费在线观看电影| 日韩一区二区视频免费看| 日本色播在线视频| 午夜福利视频1000在线观看| 中国美白少妇内射xxxbb| 我的女老师完整版在线观看| 国产麻豆成人av免费视频| 波野结衣二区三区在线| АⅤ资源中文在线天堂| 精品99又大又爽又粗少妇毛片| 成人毛片60女人毛片免费| 99九九线精品视频在线观看视频| av线在线观看网站| 亚洲真实伦在线观看| 成人性生交大片免费视频hd| 日日啪夜夜撸| 日本与韩国留学比较| 男人和女人高潮做爰伦理| 黄色一级大片看看| 久久久久久久午夜电影| 国产综合懂色| 美女大奶头视频| 午夜激情欧美在线| 全区人妻精品视频| 91在线精品国自产拍蜜月| 少妇的逼水好多| 国产高清视频在线观看网站| 国产精品永久免费网站| 日韩欧美精品v在线| 国产精品久久久久久精品电影小说 | 日本黄色片子视频| 永久网站在线| 日日摸夜夜添夜夜爱| 午夜视频国产福利| 欧美精品国产亚洲| 国产在视频线在精品| 国内揄拍国产精品人妻在线| 国产精品蜜桃在线观看| 亚洲成人精品中文字幕电影| 三级国产精品片| 大话2 男鬼变身卡| 免费观看性生交大片5| 小蜜桃在线观看免费完整版高清| 亚洲av免费在线观看| 免费黄网站久久成人精品| 亚洲精品亚洲一区二区| 毛片女人毛片| 免费av不卡在线播放| 最近中文字幕高清免费大全6| 联通29元200g的流量卡| 高清日韩中文字幕在线| 蜜桃亚洲精品一区二区三区| 自拍偷自拍亚洲精品老妇| 能在线免费观看的黄片| 精品国产露脸久久av麻豆 | 少妇被粗大猛烈的视频| 天堂av国产一区二区熟女人妻| 99久久精品热视频| 国产久久久一区二区三区| 欧美又色又爽又黄视频| 男插女下体视频免费在线播放| 少妇的逼水好多| 欧美一区二区国产精品久久精品| 国产 一区 欧美 日韩| 精品国产三级普通话版| 青春草国产在线视频| 99视频精品全部免费 在线| 搡老妇女老女人老熟妇| 大又大粗又爽又黄少妇毛片口| 高清日韩中文字幕在线| 国产精品久久电影中文字幕| 午夜福利在线在线| 欧美色视频一区免费| 免费av不卡在线播放| av视频在线观看入口| 欧美日本视频| 中国国产av一级| 亚洲av中文字字幕乱码综合| 精品午夜福利在线看| 亚洲国产精品久久男人天堂| 看非洲黑人一级黄片| 亚洲一区高清亚洲精品| 国产三级中文精品| 人妻少妇偷人精品九色| 日本-黄色视频高清免费观看| 99久久无色码亚洲精品果冻| 久久久久久久久久成人| 亚洲av电影在线观看一区二区三区 | 天天躁夜夜躁狠狠久久av| 水蜜桃什么品种好| 成人毛片60女人毛片免费| 97热精品久久久久久| 国产白丝娇喘喷水9色精品| 午夜亚洲福利在线播放| a级一级毛片免费在线观看| 美女国产视频在线观看| 国产乱来视频区| 伦理电影大哥的女人| 亚洲av成人av| 日韩一区二区三区影片| 欧美激情久久久久久爽电影| 在线观看一区二区三区| 国产麻豆成人av免费视频| 看十八女毛片水多多多| 国产精品三级大全| 99热这里只有精品一区| 小说图片视频综合网站| 九色成人免费人妻av| 国产精品伦人一区二区| 亚洲av中文av极速乱| 国产亚洲精品久久久com| 高清午夜精品一区二区三区| 99久久无色码亚洲精品果冻| 欧美激情久久久久久爽电影| 搡老妇女老女人老熟妇| 欧美人与善性xxx| 国产高清有码在线观看视频| 色综合色国产| 99国产精品一区二区蜜桃av| 黄色一级大片看看| 91在线精品国自产拍蜜月| 麻豆成人av视频| 一个人免费在线观看电影| 亚洲欧美成人精品一区二区| 淫秽高清视频在线观看| 少妇的逼水好多| 综合色av麻豆| 国产精品不卡视频一区二区| 激情 狠狠 欧美| kizo精华| 深爱激情五月婷婷| 欧美+日韩+精品| 岛国在线免费视频观看| 日本熟妇午夜| 性插视频无遮挡在线免费观看| 亚洲色图av天堂| 久久6这里有精品| 国语自产精品视频在线第100页| 少妇猛男粗大的猛烈进出视频 | av卡一久久| 亚洲色图av天堂| 丝袜美腿在线中文| 网址你懂的国产日韩在线| 亚洲婷婷狠狠爱综合网| 国产老妇女一区| 久久国内精品自在自线图片| 精品一区二区三区人妻视频| 午夜爱爱视频在线播放| 男人舔奶头视频| 大香蕉97超碰在线| 人妻夜夜爽99麻豆av| 国产精品一区www在线观看| 亚洲精品乱码久久久久久按摩| 亚洲人与动物交配视频| 国产三级中文精品| a级毛色黄片| 3wmmmm亚洲av在线观看| 亚洲精品一区蜜桃| 日韩欧美三级三区| 大又大粗又爽又黄少妇毛片口| 久久久久久国产a免费观看| 国产又色又爽无遮挡免| 在线观看美女被高潮喷水网站| 亚洲欧美日韩东京热| 69av精品久久久久久| 亚洲国产高清在线一区二区三| 亚洲国产色片| 国产精品综合久久久久久久免费| 中文字幕精品亚洲无线码一区| 国产精品福利在线免费观看| 蜜桃亚洲精品一区二区三区| 男女下面进入的视频免费午夜| 国产av一区在线观看免费| 免费不卡的大黄色大毛片视频在线观看 | 亚洲综合精品二区| 成人毛片a级毛片在线播放| 乱系列少妇在线播放| 亚洲精品久久久久久婷婷小说 | 亚洲欧美日韩东京热| 国语对白做爰xxxⅹ性视频网站| 1000部很黄的大片| 99热全是精品| 五月伊人婷婷丁香| 老女人水多毛片| 久久人人爽人人爽人人片va| 小蜜桃在线观看免费完整版高清| 在线观看美女被高潮喷水网站|