• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transcriptome Analysis of oserf922 Mutants Reveals New Insights into Rice Blast Resistance

    2023-09-05 08:27:22QinMengchaoTaoHuiShiXuetaoZhangChongyangHeFengWangMinLiuZhengWangJisongZhangRongxueWangShutongWangGuoliangNingYueseWangRuyi
    Rice Science 2023年5期

    Qin Mengchao, Tao Hui, Shi Xuetao, Zhang Chongyang, He Feng, Wang Min, Liu Zheng, Wang Jisong, Zhang Rongxue, Wang Shutong, Wang Guoliang, Ning Yuese, Wang Ruyi

    Letter

    Transcriptome Analysis ofMutants Reveals New Insights into Rice Blast Resistance

    Qin Mengchao1, 2, #, Tao Hui2, #, Shi Xuetao2, Zhang Chongyang2, He Feng2, Wang Min2, Liu Zheng2, Wang Jisong2, Zhang Rongxue3, Wang Shutong1, Wang Guoliang4, Ning Yuese2, Wang Ruyi2

    (College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; Department of Plant Pathology, the Ohio State University, Columbus, OH 43210, USA; These authors contributed equally to this work)

    Rice blast disease, caused by fungal,severely threatens food security. The susceptibility () genes have emerged to support pathogenesis, and disruption ofgene usually confers increased resistance to multiple pathogen isolates.Rice ethylene response factor geneis a potentialgene in blast disease. However, hownegatively regulates resistance againstis still unknown.Here, we generatedknockout (Cas9) mutants in Nipponbare background using genome editing technology and found that dysfunction ofenhancedresistance. RNA-Seq analysis identified 2264 up-regulated genes inCas9mutants compared with the wild type at 24 h post-inoculation. qRT-PCR analysis confirmed the inducible expression of several critical immunity pathway-related genes inCas9mutants, suggesting that-mediated blast susceptibility may be related to reactive oxygen species (ROS) production, metabolite accumulation and salicylic acid (SA) signaling.This study provides insight into the roles of thegenein rice immunity.

    Rice () is the main source of dietary calories for more than 50% of the world’s population, but rice production is severely affected by rice blast disease caused by the fungus,whichthreatens food security (Wing et al, 2018). Utilizing resistant rice varieties is the most environmentally friendly and sustainable way to control this pathogen.genes, targeted and/or induced by pathogens to support host compatibility and to facilitate infection, are useful targets for breeding resistant varieties (van Schie and Takken, 2014). Indeed, modification or loss of function ofgenes usually confers resistance to related pathogens. For example, disruption of thegene()in rice confers resistance to multipleisolates (Gao et al, 2021). Similarly, knockout of thegene() in wheat confers broad-spectrum resistance to rust fungus (Wang et al, 2022). Disruption ofgenes sometimes results in growth penalties and yield losses. Therefore, breeding resistance materials usinggene should also consider the trade-off between plant growth and immunity. One excellent example is the wheatline, which causes a large deletion in thelocus and shows resistance to powdery mildew without yield loss (Li et al, 2022).

    Knocking down the rice ethylene response factor geneinrice cultivar Zhonghua 17 enhances resistance againstisolate P140(Liu et al, 2012). Similarly, a knockout ofproduced by CRISPR/ Cas9-mediated gene editing inrice variety Kuiku 131 increases resistance againstisolate 06-47-6 (Wang et al, 2016). These studies suggested thatacts as a usefulgene in rice blast resistance. However, the mechanism underlying OsERF922-mediated rice immunityremains unclear. To explore the function and regulation ofin blast susceptibility, we used the CRISPR/Cas9 method to specifically target thecoding region (at 134–153 bp downstream from ATG) to generate knockout mutants in therice cultivar Nipponbare (NPB) (Fig. 1-A). We selected two independent homozygous lines 2-1 and 7-1 (with a 1-bp insertion of a T or G base, respectively, leading to early termination of translation) for spray inoculation using the virulentisolate RB22 (Figs. 1-A, -B and S1). As observed in a previous study (Wang et al, 2016), theCas9mutants generated in this study produced fewer disease lesions and accumulated less relative fungal biomass compared with the controlNPB plants (Fig. 1-C to -E).

    To explore the regulation of-mediated susceptibility, we performed qRT-PCR assay and found a significant down-regulated expression ofafter inoculated with RB22 compared with 0 h (Fig. S2), implying thatmay be involved in rice andinteraction. We subsequently carried out a transcriptome deep sequencing (RNA-Seq) analysis of NPB andCas9plants before inoculation and at 24 h afterspray inoculation. We identified 104 differentially expressed genes (DEGs) inCas9mutants compared with NPB plants before inoculation, with 73 up-regulated and 31 down-regulated genes (Figs. 1-F and S3), suggesting that knocking outin rice may minimally affect the global transcriptome. Remarkably, 24 h after the onset of inoculation, we detected 5357 DEGs inCas9mutants compared with NPB plants, of which 2264 were up-regulated and 3093 were down-regulated (Figs. 1-F and S3). A Venn diagram illustrated in addition to 3497 co-upregulated DEGs inCas9mutants and NPB plants at 24 h post- inoculation, additional 2440 DEGs were specially induced at 24 h post-inoculation in theCas9mutants, but not in the NPB control (Fig. 1-G), suggesting thatis likely a negative regulator of disease resistance, and these up-regulated genes may attribute to the ability of’s transcription activating function. A Gene Ontology (GO) analysis revealed that the up-regulated DEGs inCas9mutants were mainly associated with the GO categories: protein modification process, metabolic process, adenyl ribonucleotide binding, and transcription factor complex (Fig. S4). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that the up-regulated DEGs inCas9mutants were over-represented in KEGG pathways related to protein processing in endoplasmic reticulum, plant-pathogen interaction, biosynthesis of cofactor, and MAPK signaling pathway (Fig. S5), which have all been reported to be closely associated with the plant disease resistance responses (Liang and Zhou, 2018; Chen et al, 2020). We concluded thatCas9mutant plants may activate these signaling pathways to execute the immunity response.

    Fig. 1. RNA-Seq analysis of Nipponbare andCas9plants before inoculation and at 24 h post-inoculation with.

    A, Diagram ofshowing the position of the sgRNA target site. ATG and TGA represent start and stop codons, respectively. B, Sequence electropherograms ofin wild type Nipponbare (NPB) andCas9mutants. The red rectangle highlights the mutations. C, Representative phenotypes of NPB andCas9mutants following spray inoculation withisolate RB22. D and E, Lesion number (D) and relative fungal biomass (E) of the inoculated leaves in C. F, Analysis of differentially expressed genes (DEGs) of leaves in NPB andCas9mutants before inoculation and at 24 h post-inoculation with RB22. G, Venn diagram showing the extent of overlapping DEGs inCas9mutants and NPB before inoculation and at 24 h post-inoculation with RB22. H, Heatmap representation of the expression levels of selected significantly up-regulated and down-regulated DEGs inCas9mutants and NPB-samples before inoculation and at 24 h post-inoculation with RB22. The genes are classified based on the function of their encoded proteins: E3 ligase, receptor kinase, cell wall-associated kinase, transcription factor, and others. The color scale indicates the expression level of genes from low (green) to high (red). I–L, Relative expression levels of DEGs from the RNA-Seq analysis encoding E3 ligase (I), receptor kinase (J) and transcription factors (K and L), as evaluated by qRT-PCR in leaves of NPB andCas9plants. The internal control gene was.

    Data in D, E and I–L are Mean ± SE (= 3). Asterisks indicate statistically significant differences as determined by the Student’s-test (*,< 0.05; **,< 0.01; ns, Not significant).

    A growing number of studies have shown that E3 ubiquitin ligases, receptor kinases, cell wall-associated kinases, transcription factors, and others are widely involved in plant immunity (Antolín-Llovera et al, 2012; Duplan and Rivas, 2014; Kohorn, 2016; Wani et al, 2021). Interestingly, we noticed differential expression for such genes inCas9mutant plants compared with NPB plants before inoculation and at 24 h post-inoculation with, including several E3 ubiquitin ligase genes [(,),(), and()], receptor kinase genes [(,),(), and()], cell wall-associated kinase genes [(),(), and()], transcription factor genes [(),(), and()], and others [() and()] (Fig. 1-H).

    To verify the accuracy of the RNA-Seq results, we chose several functionally interesting DEGs for qRT-PCR analysis. The E3 ubiquitin ligase OsPUB15 positively regulates blast resistance by inducing the expression of pathogenesis-related genes and accumulation of hydrogen peroxide (Wang et al, 2015). We determined thatexpression was significantly induced at 24 h inoculation in theCas9mutants, but not in NPB plants (Fig. 1-I), indicating that OsERF922 may negatively regulatefollowing blast infection. OsRLCK118 and OsMKK1positively regulate blast resistance, while OsRLCK118 phosphorylates the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG B (OsRbohB) to promote ROS production (Fan et al, 2018), and OsMKK1promotes ROS accumulation and lipid peroxidation (Dangol et al, 2021). We observed a significant up-regulation ofandat 24 h inoculation in theCas9mutants, but not in NPB plants (Figs. 1-J and S6-A). The induction of,andin theCas9mutants afterinfection suggested that OsERF922-mediated blast susceptibility may be related to ROS accumulation. Over-expression of the transcription factor gene() in soybean () enhances salt tolerance by accumulating soluble sugars and free prolines (Zhang et al, 2013). In this study,was significantly induced by blast infection in both NPB andCas9plants, but to a greater extent in the mutants (Fig. 1-K). OsWRKY76 was reported to be a negative regulator ofresistance (Yokotani et al, 2013). Knockout lines forexhibit an increased accumulation of phytoalexins (Liu et al, 2016). According to the RNA-Seq data,expression was down-regulated byinfection in theCas9mutants compared with the NPB plants. qRT-PCR assay revealed theexpressionwas much lower in theCas9mutants than in the NPB plants before infection (Fig. 1-L), indicating that the transcriptional regulation ofbyOsERF922 may be independent ofinfection. Moreover,expression further decreased after pathogen infection (Fig. 1-L). A diterpenoid phytoalexins synthase gene(Cho et al, 2004)was significantly induced in theCas9mutants afterinfection (Fig. S6-B). The differential expression of,andin theCas9mutants suggested that OsERF922-mediated blast susceptibility may be related to the accumulation of metabolites. SA is an essential hormone in plant immunity, and over-expression of SA signaling transcriptional regulator encoding geneenhances resistance to the rice blast fungus (Feng et al, 2011).is induced in response to SA analog benzothiadiazole andinfection (Reyna and Yang, 2006). In this study,andwere significantly induced after blast infection in theCas9plants compared with the NPB plants (Fig. S6-C and -D). The up-regulation expression level of these genes indicated that-mediated blast susceptibility may be involved in SA signaling and biosynthesis.

    OsERF922 is a transcriptional activator belonging to the APETELA2/ERF-type transcription factor family that regulates the transcription of downstream target genes by binding to the GCC box sequence in their promoters (Liu et al, 2012). Our transcriptome data revealed that several critical resistance- related genes were up-regulated in themutants (Figs. 1-I, -J, and S6-C, -D). The promoter sequences of these DEGs will be analyzed in the future to investigate potential direct target genes of OsERF922. We believed that these findings may offer valuable candidate genes for genetic manipulation of disease resistance in crop breeding improvement.

    ACKNOWLEDGEMENTS

    This study was supported by the National Natural Science Foundation of China (Grant Nos. U20A2021 and 32161143009) and Tianjin Natural Science Foundation, China (Grant No. 19JCZDJC34200).

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science; http://www.ricescience.org.

    File S1. Methods.

    Fig. S1. Predicted protein sequence of OsERF922 in Nipponbare andCas9mutants.

    Fig. S2. Expression ofin Nipponbare before and afterinfection evaluated by qRT-PCR assay.

    Fig. S3. Differential gene expression analysis at 0 and 24 h post-inoculation.

    Fig. S4. Gene Ontology (GO) term enrichment analysis of differentially expressed genes at 24 h post-inoculation.

    Fig. S5. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of differentially expressed genes at 24 h post-inoculation.

    Fig. S6. qRT-PCR assay confirmed expression of differently expressed genes in Nipponbare (NPB) andCas9plants before and afterinfection.

    Antolín-Llovera M, Ried M K, Binder A, Parniske M. 2012. Receptor kinase signaling pathways in plant-microbe interactions., 50: 451–473.

    Chen Q, Yu F F, Xie Q. 2020. Insights into endoplasmic reticulum- associated degradation in plants., 226(2): 345–350.

    Cho E M, Okada A, Kenmoku H, Otomo K, Toyomasu T, Mitsuhashi W, Sassa T, Yajima A, Yabuta G, Mori K J, Oikawa H, Toshima H, Shibuya N, Nojiri H, Omori T, Nishiyama M, Yamane H. 2004. Molecular cloning and characterization of a cDNA encoding ent-cassa-12,15-diene synthase, a putative diterpenoid phytoalexin biosynthetic enzyme, from suspension-cultured rice cells treated with a chitin elicitor., 37(1): 1–8.

    Dangol S, Nguyen N K, Singh R, Chen Y F, Wang J, Lee H G, Hwang B K, Jwa N S. 2021. Mitogen-activated protein kinase OsMEK2 and OsMPK1 signaling is required for ferroptotic cell death in rice-interactions., 12: 710794.

    Duplan V, Rivas S. 2014. E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity., 5: 42.

    Fan J B, Bai P F, Ning Y S, Wang J Y, Shi X T, Xiong Y H, Zhang K, He F, Zhang C Y, Wang R Y, Meng X Z, Zhou J G, Wang M, Shirsekar G, Park C H, Bellizzi M, Liu W D, Jeon J S, Xia Y, Shan L B, Wang G L. 2018. The monocot-specific receptor-like kinase SDS2 controls cell death and immunity in rice., 23(4): 498–510.

    Feng J X, Cao L, Li J, Duan C J, Luo X M, Le N, Wei H H, Liang S J, Chu C C, Pan Q H, Tang J L. 2011. Involvement ofin rice basal resistance to blast fungus., 131(2): 221–235.

    Gao M J, He Y, Yin X, Zhong X B, Yan B X, Wu Y, Chen J, Li X Y, Zhai K R, Huang Y F, Gong X Y, Chang H Z, Xie S H, Liu J Y, Yue J X, Xu J L, Zhang G Q, Deng Y W, Wang E T, Tharreau D, Wang G L, Yang W B, He Z H. 2021. Ca2+sensor- mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector., 184(21): 5391–5404.

    Kohorn B D. 2016. Cell wall-associated kinases and pectin perception., 67(2): 489–494.

    Li S N, Lin D X, Zhang Y W, Deng M, Chen Y X, Lv B, Li B S, Lei Y, Wang Y P, Zhao L, Liang Y T, Liu J X, Chen K L, Liu Z Y, Xiao J, Qiu J L, Gao C X. 2022. Genome-edited powdery mildew resistance in wheat without growth penalties., 602: 455–460.

    Liang X X, Zhou J M. 2018. Receptor-like cytoplasmic kinases: Central players in plant receptor kinase-mediated signaling., 69: 267–299.

    Liu D F, Chen X J, Liu J Q, Ye J C, Guo Z J. 2012. The rice ERF transcription factor OsERF922 negatively regulates resistance toand salt tolerance., 63(10): 3899–3911.

    Liu J Q, Chen X J, Liang X X, Zhou X G, Yang F, Liu J, He S Y, Guo Z J. 2016. Alternative splicing of riceandtranscription factor genes in pathogen defense., 171(2): 1427–1442.

    Reyna N S, Yang Y N. 2006. Molecular analysis of the rice MAP kinase gene family in relation toinfection., 19(5): 530–540.

    van Schie C C N, Takken F L W. 2014. Susceptibility genes 101: How to be a good host., 52: 551–581.

    Wang F J, Wang C L, Liu P Q, Lei C L, Hao W, Gao Y, Liu Y G, Zhao K J. 2016. Enhanced rice blast resistance by CRISPR/ Cas9-targeted mutagenesis of the ERF transcription factor gene., 11(4): e0154027.

    Wang J, Qu B Y, Dou S J, Li L Y, Yin D D, Pang Z Q, Zhou Z Z, Tian M M, Liu G Z, Xie Q, Tang D Z, Chen X W, Zhu L H. 2015. The E3 ligase OsPUB15 interacts with the receptor-like kinase PID2 and regulates plant cell death and innate immunity., 15: 49.

    Wang N, Tang C L, Fan X, He M Y, Gan P F, Zhang S, Hu Z Y, Wang X D, Yan T, Shu W X, Yu L G, Zhao J R, He J N, Li L L, Wang J F, Huang X L, Huang L L, Zhou J M, Kang Z S, Wang X J. 2022. Inactivation of a wheat protein kinase gene confers broad- spectrum resistance to rust fungi., 185(16): 2961–2974.

    Wani S H, Anand S, Singh B, Bohra A, Joshi R. 2021. WRKY transcription factors and plant defense responses: Latest discoveries and future prospects., 40(7): 1071–1085.

    Wing R A, Purugganan M D, Zhang Q F. 2018. The rice genome revolution: From an ancient grain to Green Super Rice., 19(8): 505–517.

    Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, Okada K, Yamane H, Shimono M, Sugano S, Takatsuji H, Kaku H, Minami E, Nishizawa Y. 2013. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance., 64(16): 5085–5097.

    Zhang X X, Tang Y J, Ma Q B, Yang C Y, Mu Y H, Suo H C, Luo L H, Nian H. 2013., a rice transcription factor, significantly affects salt tolerance in transgenic soybean., 8(12): e83011.

    Copyright ? 2023, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2023.05.002

    Wang Ruyi (wangruyi@caas.cn);

    Tao Hui (htao2018@126.com)

    4 April 2023;

    24 May 2023

    国产精品精品国产色婷婷| 久久韩国三级中文字幕| 女人久久www免费人成看片| 亚洲人成网站在线观看播放| 美女被艹到高潮喷水动态| 欧美成人一区二区免费高清观看| 亚洲国产欧美在线一区| 亚洲一区二区三区欧美精品 | 爱豆传媒免费全集在线观看| 大片免费播放器 马上看| 别揉我奶头 嗯啊视频| 热99国产精品久久久久久7| 嫩草影院精品99| 久久6这里有精品| 一级毛片我不卡| 高清av免费在线| 国国产精品蜜臀av免费| 在线观看美女被高潮喷水网站| 在线观看三级黄色| 狂野欧美激情性xxxx在线观看| av国产精品久久久久影院| 久久精品久久精品一区二区三区| 免费观看的影片在线观看| 少妇熟女欧美另类| 涩涩av久久男人的天堂| 可以在线观看毛片的网站| 亚洲欧美一区二区三区黑人 | 永久网站在线| 麻豆国产97在线/欧美| 久久久色成人| 精品久久久久久久人妻蜜臀av| 国产女主播在线喷水免费视频网站| 免费不卡的大黄色大毛片视频在线观看| 一区二区三区免费毛片| 99热这里只有是精品50| 午夜福利在线观看免费完整高清在| 99久久精品热视频| 六月丁香七月| 国产色爽女视频免费观看| 人人妻人人澡人人爽人人夜夜| 五月伊人婷婷丁香| 久久午夜福利片| 久久精品国产亚洲av天美| 亚洲经典国产精华液单| 免费电影在线观看免费观看| 久久久久网色| 日韩在线高清观看一区二区三区| av免费观看日本| 69人妻影院| 欧美成人精品欧美一级黄| 亚洲欧美日韩东京热| 日本色播在线视频| 亚洲精品影视一区二区三区av| 欧美日韩亚洲高清精品| 新久久久久国产一级毛片| 久久久久久久久久人人人人人人| 午夜福利在线在线| 少妇被粗大猛烈的视频| av国产精品久久久久影院| 又爽又黄无遮挡网站| 少妇的逼水好多| 大话2 男鬼变身卡| 激情五月婷婷亚洲| 极品教师在线视频| 国产精品一区二区在线观看99| 亚洲欧美成人综合另类久久久| 午夜福利视频精品| 国产一区有黄有色的免费视频| 免费观看在线日韩| 激情五月婷婷亚洲| 国产欧美日韩一区二区三区在线 | 午夜福利视频1000在线观看| 久热这里只有精品99| 日韩av不卡免费在线播放| 亚洲国产欧美人成| 久久人人爽人人片av| 久久亚洲国产成人精品v| 免费看a级黄色片| 午夜免费鲁丝| 乱码一卡2卡4卡精品| 欧美三级亚洲精品| av在线天堂中文字幕| 超碰97精品在线观看| 天天一区二区日本电影三级| 亚洲一级一片aⅴ在线观看| 婷婷色综合www| 青春草国产在线视频| 丝袜喷水一区| 在线a可以看的网站| 99久久中文字幕三级久久日本| 亚洲最大成人手机在线| 亚洲欧美成人精品一区二区| 少妇人妻 视频| 欧美日韩国产mv在线观看视频 | 欧美日韩一区二区视频在线观看视频在线 | 亚洲成人精品中文字幕电影| 欧美成人一区二区免费高清观看| 成人欧美大片| 2022亚洲国产成人精品| av免费观看日本| 97在线视频观看| 日本午夜av视频| 精品久久久久久久人妻蜜臀av| 国产精品99久久久久久久久| 免费av不卡在线播放| 中文字幕av成人在线电影| 欧美日韩视频精品一区| 国产精品三级大全| 校园人妻丝袜中文字幕| 黄色视频在线播放观看不卡| 免费黄网站久久成人精品| 欧美老熟妇乱子伦牲交| 欧美日韩综合久久久久久| 国产 一区精品| 九色成人免费人妻av| 丝袜美腿在线中文| 久久精品国产亚洲av天美| 亚洲国产高清在线一区二区三| 97超视频在线观看视频| 韩国高清视频一区二区三区| 三级经典国产精品| 国国产精品蜜臀av免费| 亚洲美女搞黄在线观看| 91久久精品电影网| 亚洲av成人精品一二三区| 王馨瑶露胸无遮挡在线观看| 18+在线观看网站| 日产精品乱码卡一卡2卡三| 少妇裸体淫交视频免费看高清| 人妻少妇偷人精品九色| 国产久久久一区二区三区| 日日摸夜夜添夜夜添av毛片| 国产高潮美女av| 日本wwww免费看| 亚洲色图综合在线观看| 国产精品国产三级国产专区5o| 观看免费一级毛片| 白带黄色成豆腐渣| 久久精品国产自在天天线| 久久久精品欧美日韩精品| 卡戴珊不雅视频在线播放| 一级黄片播放器| 国产大屁股一区二区在线视频| 亚洲国产日韩一区二区| 亚洲精品亚洲一区二区| 九色成人免费人妻av| 久久久久网色| 男女那种视频在线观看| 一个人看的www免费观看视频| 中文欧美无线码| 精品一区在线观看国产| 午夜老司机福利剧场| 极品少妇高潮喷水抽搐| 搞女人的毛片| 亚洲精品乱码久久久久久按摩| 97超视频在线观看视频| 国产精品女同一区二区软件| 狂野欧美激情性bbbbbb| av天堂中文字幕网| 爱豆传媒免费全集在线观看| 亚洲av一区综合| 日韩 亚洲 欧美在线| 伊人久久国产一区二区| av专区在线播放| 国产有黄有色有爽视频| 2021天堂中文幕一二区在线观| 一边亲一边摸免费视频| 国产免费一区二区三区四区乱码| 免费看日本二区| 日本熟妇午夜| 国产一区二区三区av在线| 国产精品精品国产色婷婷| 热re99久久精品国产66热6| 网址你懂的国产日韩在线| 中文精品一卡2卡3卡4更新| 久久99热6这里只有精品| 免费av不卡在线播放| 亚州av有码| 国语对白做爰xxxⅹ性视频网站| 18禁动态无遮挡网站| 中国美白少妇内射xxxbb| 色网站视频免费| 亚洲一级一片aⅴ在线观看| 亚洲精品第二区| 伦理电影大哥的女人| 大片电影免费在线观看免费| 嘟嘟电影网在线观看| 人妻一区二区av| freevideosex欧美| 我要看日韩黄色一级片| 下体分泌物呈黄色| 中文字幕久久专区| 亚洲av日韩在线播放| 日韩大片免费观看网站| 男人狂女人下面高潮的视频| 国产爱豆传媒在线观看| 日韩欧美精品免费久久| 免费看光身美女| 国产成人精品婷婷| 亚洲av在线观看美女高潮| 男的添女的下面高潮视频| 女人十人毛片免费观看3o分钟| 久久久久久久亚洲中文字幕| 免费观看av网站的网址| 高清av免费在线| 日韩一区二区三区影片| 午夜免费男女啪啪视频观看| 免费观看在线日韩| 国产男女内射视频| 国产片特级美女逼逼视频| 免费看不卡的av| 国产精品av视频在线免费观看| 水蜜桃什么品种好| 熟女电影av网| 一个人观看的视频www高清免费观看| 免费人成在线观看视频色| 91aial.com中文字幕在线观看| 一区二区三区乱码不卡18| kizo精华| 2018国产大陆天天弄谢| 欧美日韩亚洲高清精品| 国产精品一区二区三区四区免费观看| 搡女人真爽免费视频火全软件| 欧美成人一区二区免费高清观看| 亚洲图色成人| 成人免费观看视频高清| av国产免费在线观看| 舔av片在线| 国产视频内射| 日日摸夜夜添夜夜添av毛片| 亚洲激情五月婷婷啪啪| 丰满乱子伦码专区| 国产 精品1| a级一级毛片免费在线观看| 午夜日本视频在线| 大片免费播放器 马上看| 欧美高清成人免费视频www| 日韩制服骚丝袜av| 国产老妇伦熟女老妇高清| 男女无遮挡免费网站观看| 国内少妇人妻偷人精品xxx网站| 黄色怎么调成土黄色| 成人综合一区亚洲| 国产成人免费观看mmmm| 蜜桃久久精品国产亚洲av| 亚洲一区二区三区欧美精品 | 人妻一区二区av| 精品国产乱码久久久久久小说| 亚洲国产精品成人综合色| 亚洲精品一区蜜桃| 九九在线视频观看精品| 高清日韩中文字幕在线| 老司机影院成人| 久热这里只有精品99| 国产高潮美女av| 一级毛片电影观看| 国产精品蜜桃在线观看| 日韩成人伦理影院| 永久免费av网站大全| 天天躁夜夜躁狠狠久久av| 国产 一区精品| 欧美性猛交╳xxx乱大交人| 黄色视频在线播放观看不卡| 日韩在线高清观看一区二区三区| 天天躁夜夜躁狠狠久久av| 久久久精品94久久精品| 欧美3d第一页| av天堂中文字幕网| 各种免费的搞黄视频| 99热6这里只有精品| 亚洲电影在线观看av| 久久综合国产亚洲精品| 97超碰精品成人国产| 欧美精品国产亚洲| 国产精品麻豆人妻色哟哟久久| 99热国产这里只有精品6| 亚洲人与动物交配视频| 免费观看在线日韩| 日韩免费高清中文字幕av| 看黄色毛片网站| 国产 一区精品| 精品少妇久久久久久888优播| 亚洲美女搞黄在线观看| 永久免费av网站大全| 欧美成人一区二区免费高清观看| h日本视频在线播放| 国产精品女同一区二区软件| 久久久精品免费免费高清| 神马国产精品三级电影在线观看| av一本久久久久| 超碰97精品在线观看| 免费看不卡的av| 国产精品偷伦视频观看了| 国产av国产精品国产| 欧美高清性xxxxhd video| 国产白丝娇喘喷水9色精品| 最近最新中文字幕免费大全7| 国产美女午夜福利| 亚洲在久久综合| 亚洲美女视频黄频| 热99国产精品久久久久久7| 直男gayav资源| 日韩欧美 国产精品| 激情五月婷婷亚洲| 久久久久久久大尺度免费视频| 国产av码专区亚洲av| 久久ye,这里只有精品| 久久久久久久国产电影| 免费观看av网站的网址| 一边亲一边摸免费视频| 极品教师在线视频| 三级国产精品欧美在线观看| 久久久精品欧美日韩精品| 午夜精品国产一区二区电影 | 免费播放大片免费观看视频在线观看| 国产亚洲av嫩草精品影院| 免费人成在线观看视频色| 亚洲熟女精品中文字幕| 男插女下体视频免费在线播放| 国产免费又黄又爽又色| 亚洲成人精品中文字幕电影| 一区二区三区免费毛片| 大又大粗又爽又黄少妇毛片口| 交换朋友夫妻互换小说| 国产高清国产精品国产三级 | 少妇高潮的动态图| 一二三四中文在线观看免费高清| 国产毛片a区久久久久| 视频中文字幕在线观看| 亚洲欧美日韩东京热| 日韩强制内射视频| 直男gayav资源| 91久久精品电影网| 久久97久久精品| 男女那种视频在线观看| 亚洲国产av新网站| 精品人妻一区二区三区麻豆| 日韩精品有码人妻一区| 在线亚洲精品国产二区图片欧美 | 国产精品麻豆人妻色哟哟久久| www.色视频.com| 免费黄网站久久成人精品| eeuss影院久久| 男人狂女人下面高潮的视频| 国产真实伦视频高清在线观看| 男人和女人高潮做爰伦理| 99re6热这里在线精品视频| 啦啦啦在线观看免费高清www| 男女那种视频在线观看| 久久人人爽人人爽人人片va| 国产伦精品一区二区三区四那| 2018国产大陆天天弄谢| 啦啦啦啦在线视频资源| 三级国产精品欧美在线观看| 亚洲欧美中文字幕日韩二区| 精品人妻偷拍中文字幕| 男男h啪啪无遮挡| 久久人人爽人人片av| 水蜜桃什么品种好| 欧美激情国产日韩精品一区| 久久久久久久久大av| 性色avwww在线观看| 久久久久久久久久成人| 91在线精品国自产拍蜜月| 日韩国内少妇激情av| 日本爱情动作片www.在线观看| 伦精品一区二区三区| 久久综合国产亚洲精品| 黄色配什么色好看| 午夜福利视频精品| 插逼视频在线观看| 老司机影院成人| 麻豆久久精品国产亚洲av| 国产精品熟女久久久久浪| 永久网站在线| 国产美女午夜福利| 国产精品一区二区在线观看99| 色哟哟·www| 建设人人有责人人尽责人人享有的 | 国产国拍精品亚洲av在线观看| 男人狂女人下面高潮的视频| 三级国产精品欧美在线观看| 国产成人a∨麻豆精品| 欧美老熟妇乱子伦牲交| 97超视频在线观看视频| 亚洲国产成人一精品久久久| 国产精品国产三级专区第一集| 久久97久久精品| 真实男女啪啪啪动态图| 婷婷色麻豆天堂久久| 欧美一区二区亚洲| 欧美高清性xxxxhd video| 婷婷色麻豆天堂久久| 国产在视频线精品| 欧美+日韩+精品| 色视频在线一区二区三区| 国产成人freesex在线| 精品少妇久久久久久888优播| 国产一区二区三区综合在线观看 | 日韩欧美精品v在线| 简卡轻食公司| 精品国产露脸久久av麻豆| 日日摸夜夜添夜夜爱| 成人一区二区视频在线观看| 日本色播在线视频| 国产 精品1| 亚洲av在线观看美女高潮| 久久精品人妻少妇| 校园人妻丝袜中文字幕| 伊人久久国产一区二区| 成人黄色视频免费在线看| 少妇 在线观看| 久久99蜜桃精品久久| 美女视频免费永久观看网站| 精品一区二区免费观看| 亚洲三级黄色毛片| 国产精品精品国产色婷婷| 亚洲在久久综合| 色播亚洲综合网| 在线a可以看的网站| 大香蕉97超碰在线| 91午夜精品亚洲一区二区三区| 三级国产精品片| 亚洲成人精品中文字幕电影| 久久精品国产亚洲av天美| 一本色道久久久久久精品综合| 男女无遮挡免费网站观看| 午夜激情久久久久久久| 亚洲精品乱码久久久v下载方式| 国产精品成人在线| 国产精品一区www在线观看| 午夜福利在线观看免费完整高清在| 嫩草影院入口| 亚洲色图av天堂| 18禁裸乳无遮挡免费网站照片| 日本熟妇午夜| 天美传媒精品一区二区| 亚洲最大成人中文| 国产在视频线精品| 91午夜精品亚洲一区二区三区| 天堂俺去俺来也www色官网| eeuss影院久久| av在线app专区| 大片电影免费在线观看免费| 91狼人影院| 卡戴珊不雅视频在线播放| 国产熟女欧美一区二区| 最近2019中文字幕mv第一页| 精华霜和精华液先用哪个| 久久精品国产a三级三级三级| 亚洲精品色激情综合| 波多野结衣巨乳人妻| 日本av手机在线免费观看| 亚洲最大成人中文| 免费大片18禁| 欧美日本视频| 亚洲内射少妇av| 欧美一级a爱片免费观看看| 免费av毛片视频| 精品亚洲乱码少妇综合久久| 久久精品国产自在天天线| 青春草国产在线视频| 午夜福利高清视频| 五月天丁香电影| 夫妻性生交免费视频一级片| 看免费成人av毛片| 一本色道久久久久久精品综合| 久久精品国产鲁丝片午夜精品| av国产免费在线观看| 韩国高清视频一区二区三区| 久久久亚洲精品成人影院| videossex国产| 国产成人精品福利久久| 99九九线精品视频在线观看视频| 亚洲av中文字字幕乱码综合| 大码成人一级视频| 又爽又黄a免费视频| 久久久久精品久久久久真实原创| 久热久热在线精品观看| 91aial.com中文字幕在线观看| a级毛色黄片| 男女边摸边吃奶| 精品一区二区三区视频在线| 国产成人精品久久久久久| 亚洲最大成人手机在线| 精品熟女少妇av免费看| 插阴视频在线观看视频| 亚洲av二区三区四区| 国产av国产精品国产| 人妻一区二区av| 我要看日韩黄色一级片| 国产伦理片在线播放av一区| 日韩强制内射视频| 午夜免费观看性视频| 国国产精品蜜臀av免费| 联通29元200g的流量卡| 亚洲av免费在线观看| 直男gayav资源| 国内揄拍国产精品人妻在线| 特大巨黑吊av在线直播| 国产 一区精品| 蜜桃亚洲精品一区二区三区| 久久99蜜桃精品久久| 啦啦啦啦在线视频资源| 亚洲精品,欧美精品| 久久人人爽人人片av| 日日啪夜夜撸| 日本黄色片子视频| 亚洲自拍偷在线| 免费看av在线观看网站| 2021天堂中文幕一二区在线观| 日本黄色片子视频| 亚洲精品成人久久久久久| 欧美成人精品欧美一级黄| 欧美日韩在线观看h| 又爽又黄无遮挡网站| 日韩欧美精品v在线| 亚洲精品中文字幕在线视频 | 亚洲国产精品成人综合色| 亚洲最大成人中文| 91久久精品国产一区二区成人| 人人妻人人澡人人爽人人夜夜| 国模一区二区三区四区视频| 高清午夜精品一区二区三区| 一级毛片我不卡| 日本免费在线观看一区| 亚洲精品日本国产第一区| 91久久精品电影网| 久久人人爽人人片av| 自拍偷自拍亚洲精品老妇| 啦啦啦啦在线视频资源| 黄片wwwwww| 夜夜爽夜夜爽视频| 啦啦啦中文免费视频观看日本| 在线看a的网站| 国产v大片淫在线免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 久久精品久久久久久久性| 亚洲自拍偷在线| 欧美成人午夜免费资源| 男女国产视频网站| 国产欧美亚洲国产| 国产免费视频播放在线视频| 成人亚洲精品一区在线观看 | 深爱激情五月婷婷| 夜夜看夜夜爽夜夜摸| 免费看av在线观看网站| 五月伊人婷婷丁香| 国产日韩欧美亚洲二区| 2018国产大陆天天弄谢| 午夜视频国产福利| 亚洲最大成人av| 特级一级黄色大片| 国产成人免费无遮挡视频| 全区人妻精品视频| 成年人午夜在线观看视频| 日日啪夜夜撸| 女的被弄到高潮叫床怎么办| 久久久久久久久大av| 国产日韩欧美在线精品| 高清av免费在线| 国产精品人妻久久久久久| 国产精品女同一区二区软件| 久久鲁丝午夜福利片| av卡一久久| 欧美日韩综合久久久久久| 免费观看的影片在线观看| 1000部很黄的大片| 青春草国产在线视频| 最新中文字幕久久久久| 久久久a久久爽久久v久久| 麻豆国产97在线/欧美| 亚洲精品一二三| 高清欧美精品videossex| 日本午夜av视频| a级一级毛片免费在线观看| 97热精品久久久久久| 国产精品无大码| 成人一区二区视频在线观看| 一区二区三区免费毛片| 国产精品成人在线| 日韩电影二区| av国产久精品久网站免费入址| 免费看a级黄色片| 天堂网av新在线| 国产免费视频播放在线视频| 久久久午夜欧美精品| 亚洲av成人精品一区久久| 免费观看性生交大片5| 日韩一本色道免费dvd| 中文在线观看免费www的网站| 久久久久久久精品精品| 久久久亚洲精品成人影院| 欧美成人精品欧美一级黄| 丰满人妻一区二区三区视频av| 欧美变态另类bdsm刘玥| 国产黄片视频在线免费观看| 97人妻精品一区二区三区麻豆| 蜜桃久久精品国产亚洲av| 久久99热这里只有精品18| 午夜精品一区二区三区免费看| a级毛片免费高清观看在线播放| 免费看光身美女| 久久久久九九精品影院| 久久精品人妻少妇| 女的被弄到高潮叫床怎么办| 美女国产视频在线观看| 国产乱人偷精品视频| 国产成人精品婷婷| 国产欧美亚洲国产| 午夜激情福利司机影院| 国产一区亚洲一区在线观看| 亚洲经典国产精华液单| 国产视频内射| 精品久久国产蜜桃|