• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research Progress of Genomes of Insect Pests in Paddy Field

    2023-09-05 13:00:50XuHongxingZhaoXianxinZhongxianLiFei
    Rice Science 2023年5期

    Xu Hongxing, Zhao Xianxin, Lü Zhongxian, Li Fei

    Letter

    Research Progress of Genomes of Insect Pests in Paddy Field

    Xu Hongxing1, Zhao Xianxin2, Lü Zhongxian1, Li Fei2

    (State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agroproducts, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; State Key Laboratory of Rice Biology and Breeding / Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China)

    Innovations in sequencing technology and the development of bioinformatics have allowed for studies of the genomics of many rice pests. At present, draft genomes of rice pests including,,,,,,andhave been completed. The molecular mechanisms of biological characteristics of rice pests are gradually becoming clear with the help of genomics. We summarized the important progress in determining genome size of rice pests and the role of genomics in their biological characteristics as well as prospects for future research on rice pests combined with the development of omics.

    Insects are the most abundant species on earth, which include insects that are beneficial to human life, such as bees, silkworms and ladybugs, and numerous pests that endanger food security. Rice, an important food crop globally, suffers from multiple pests. According to a survey about global burden of pathogens and pests on major food crops, global rice yield loss caused by pests and diseases reaches 24.6%–40.9% (Savary et al, 2019). With globalization, these pests and pathogens have spread to all parts of the world, and have had a negative impact on agricultural production. According to the method of feeding, the pests can be divided into four categories: borer pests [e.g., purple stem borer(Lepidoptera: Noctuidae), striped rice borer(Lepidoptera: Crambidae), yellow rice borer(Lepidoptera: Crambidae)], stinging and sucking pests [e.g., brown planthopper (BPH)(Homoptera: Delphacidae), small brown planthopper (SBPH)(Homoptera: Delphacidae), white-backed planthopper (WBPH)(Homoptera: Delphacidae)], root eating pests [e.g., rice water weevil(Coleoptera: Erirhinidae)], and leaf eating pests [e.g., rice leaffolder(Lepidoptera: Crambidae), rice leaf roller(Lepidoptera: Crambidae)]. A comprehensive and in-depth understanding of the genetic information of rice pests can help researchers understand their biological characteristics more clearly.

    With the rapid development of high-throughput sequencing technology, a large amount of omics data have been generated. At present, hundreds of insect genomes have been sequenced, and more sequencing projects have been proposed and initiated with the wide use of genomics and other omics in contemporary insect research. For example, the Darwin tree of life project aims to sequence, assemble and annotate the genomes of all 70 000 eukaryotic species found in the UK and Ireland (Darwin Tree of Life Project Consortium, 2022). In 2018, the ‘Top 1000 Insect Genome Project’ was jointly launched by the Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences and multiple other Chinese scientific research institutions, including Chinese Academy of Sciences, Zhejiang University, China Agricultural University, Southwest University and other units, aiming to sequence and complete genome mapping to obtain high-quality reference genomes. With the advancement of large-scale sequencing plans and projects, the mining and analysis of insect genetic information will be more deeply. High- throughput sequencing technology can provide a good data foundation to prevention and control of pests, which fills the gap of species genetic information and interprets their habits based on molecular characteristics.Genome analysis of rice pests is still at the initial stages, and there are only eight rice pests with sequenced genomes (Table 1). Therefore, the research on rice pest genomes has broad prospects.

    Rice planthopper, the most serious pest in rice, harms rice and other crops by sucking plant sap (Muduli et al, 2021). In China, BPH is the most serious rice planthopper, followed by WBPH and SBPH (Liu et al, 2016). BPH is an important migratory pest in rice, with wing dimorphism, and its genome was first sequenced in 2014. In the first version of genome, Xue et al (2014) sequenced the whole genome of 13th generations of BPH purified by single mating, and finally obtained a 1.14-Gb assembled genome. The scaffold N50 was 356.6 kb, and the gene set of 27 571 protein coding genes was annotated by genome annotation. This version of the genome is characterized by high content of repetitive sequences (48.6%) and many species-specific genes (59.2%). The results of comparative genomic analysis indicated that the characteristics of BPH feeding on rice alone may be related to the contraction of gene families of olfactory receptors and gustatory receptors (Xue et al, 2014). Furthermore, based on genomic data, the wing differentiation of BPH is closely related to rice nutrition. When rice nutrition is low, genes related to wing development increase in BPH.

    Table 1. Summarize of rice pest genomes.

    The migration of BPH is mainly completed by long-wing form adults. Therefore, identifying the key regulatory genes or pathways of wing differentiation is necessary for effective control of BPH. The insulin receptor gene can control the wing type differentiation of BPH under the regulation of, and there are two highly homologous insulin receptor genes,and, in BPH. Among them,is the target gene of. When the expression ofis low, the content of NlInR1 in BPH is high, the insulin signal transduction pathway is opened, and BPH develops into the long-wing form. When the expression ofis increased, NlInR1 is inhibited, the content of NlInR2 is increased, the signal transduction pathway is closed, and the BPH develops into the short-wing form (Xu et al, 2015; Ye et al, 2019). With the gradual increase of extensive resequencing, the understanding of the migratory route of BPH will be improved, and a basis will be provided for monitoring the identification of different hazard levels caused by BPH, to reasonably control it (Luo et al, 2022).

    In 2017, sequencing and assembly of WBPH and SBPH genomes were completed (Wang et al, 2017; Zhu et al, 2017). The sequencing strategy of the WBPH genome is similar to that of BPH. The selected sample was a pair of WBPH populations purified for 18th generations. Through Illumina sequencing, a 720.7-Mb genome assembly of WBPH was obtained. The scaffold N50 is 1 185 kb, which is about three times higher than that of the BPH genome. A total of 21 254 protein coding genes were annotated, and a high proportion of multi-copy genes existed. In addition, the differentially expressed genes and their expression patterns in WBPH at different developmental stages were also systematically analyzed (Wang et al, 2017).

    To eliminate the high heterozygosity of the genome, the 22nd generation offsprings incubated from a single pair of adults were selected for sequencing of SBPH genome. Sequencing and assembly were done using the strategy of combining the second generation with the third generation, resulting in an SBPH genome with a size of 540.9 Mb and a scaffold N50 of 1 085 kb. A total of 17 736 protein coding genes were annotated (Zhu et al, 2017). In 2020, chromosome level genomes of three species of planthopper were released publicly. Pac-bio third generation sequencing and high-throughput chromosome conformation capture (Hi-C) assisted assembly technology were used to optimize and upgrade the genomes of the three species of planthopper. In addition, using the resequencing data of male and female insects, the X chromosomes of the three species of planthoppers were successfully identified (Ma et al, 2021).

    Rice stem borer is also an important pest that endangers rice production, of whichandare the most serious pests (Xiang et al, 2011). The larvae ofdrill into the rice stems for feeding and damage, resulting in withered young leaves, sheath and spikelet (Zheng, 2020; Gavara et al, 2021). After eating rice,induces rice to release high concentrations of volatile substances such asa-pinene and 2-heptanol, which attract BPH to feed and lay eggs. When BPH andharm rice together, it can significantly inhibit the rice defense response induced by. Jasmonic acid and other defense related genes are then down-regulated, and the content of protease inhibitors is also significantly reduced, completely eliminating the negative impact on the fitness of subsequentlarvae (Wang et al, 2018). Althoughis not as serious as, it also brings great loss to rice production in China (Sheng et al, 2003).is not the main pest in China, but with the change of farming methods, the occurrence of the giant borer has an upward trend in many regions of China, and the damage level has also risen in recent years (Li, 2018).

    Liu et al (2014)reported the genome of, with a genome size of 824 Mb and a scaffold N50 of 5.2 kbGenome annotation was performed using the Optimized Marker- based Insect Genome Annotation platform, and 10 211 protein coding genes were obtained. At the same time, core genes related to the cytochrome P450, odor binding protein, and chemoreceptor genes as well as the RNAi metabolic pathway were systematically identified in thegenome. These data will provide references for studying the damage habits, drug resistance mechanism, growth and development ofSubsequently, in 2020, a team at Huazhong Agricultural University published the chromosome level genome of(Ma et al, 2020). This is the first time that a genome draft was constructed and obtained using Illumina combined with Pac-bio sequencing, and 99.2% of the bases were allocated to 29 chromosomes using Hi-C assisted assembly technology. Finally, a chromosome level genome assembly with a size of 824.3 Mb was obtained, and the scaffold N50 reached 1.7 Mb. Homology analysis of gene families related to animal cold tolerance revealed the genomic basis of cold tolerance of, and combined with transcriptome data revealed the expression of 14 cold tolerance related genes inunder different treatment conditions (including non-diapause, low-temperature diapause, low-temperature domestication and non-low-temperature domestication). These genes are involved in cold tolerance strategies mediated by glucose derived glycerol biosynthesis, triacylglycerol derived glycerol biosynthesis, fatty acid synthesis and trehalose transport (Ma et al, 2020).

    The genomes ofandhave also been sequenced (data not published). Completed genomes of the three main rice borers help researchers to study their adaptability to the environment and the interaction through comparative genomics analysis in the future, providing a theoretical basis for the control of rice borers.

    Rice leaf folder,,is an important agricultural pest with migratory habits. Its larvae damage the pale white stripes of the leaves of gramineous plants by folding the leaves and scraping the mesophyll inside, which has caused serious loss to rice planting areas with high temperature and humidity all over the world (Zhang et al, 1980; Yang et al, 2015)., a close relative of, is also widely distributed in rice planting areas of different countries. It has a very similar morphological phenotype and leaf rolling feeding behavior to. However, compared with the seasonal migration of,, another species of rice leaf folder, can overwinter in the rice regions of south and southwest China. Through different hybrid strategies combined with corresponding sequencing technologies, including Illumina, Pac-bio, 10× Genomics and Hi-C, genome assemblies ofandhave been completed with high quality, providing a basis for further understanding of the biological characteristics and ecological adaptability of the two pests (Zhao et al, 2021; Xu et al, 2022).

    The size difference betweenandgenomes is about 270 Mb, and high-quality genome assembly at the level of two chromosomes is generated by Hi-C assisted assembly technology. Among them, 3 248 scaffolds ofare successfully attached to 31 chromosomes, while 1 413 scaffolds ofare anchored to 32 chromosomes. Through the comparison and detection of the benchmarking universal single copy orthologs, the two genome assemblies show a high percentage (> 95%) of matching results, indicating that the genome assembly has high integrity. At the same time, using the resequencing data of male and female pupae, the sex chromosomes ofandare successfully identified. Finally, through the same gene annotation process, 15 765 protein coding genes ofand 14 922 protein coding genes ofare obtained. In addition, the repetitive sequences ofaccount for more than half (52%) of the genome size, and the transposon sequence has an amplification. Compared with the repetitive sequences of(39.5%), this may be related to the difference in genome size (Zhao et al, 2021; Xu et al, 2022).

    In addition, phylogenetic and comparative genomics analyses show that although the biological characteristics of theandare similar and their genomes have high homology, they were differentiated into two species as early as 18 million years ago, and there are still differences in their genomic characteristics, gene family expansion and contraction, and positive selection pressure. For example, genes related to cold tolerance and resistance to exogenous infection show positive selection characteristics in. In, the signals of adaptive evolution mainly include genes related to energy storage, which may be adapted to the long-distance migration ability of the species (Zhao et al, 2021; Xu et al, 2022). Chromosome level genome assembly and comparative genome analysis ofandare helpful to clarify the genetic and molecular mechanisms of long-distance migration,toxin resistance, cold tolerance, sex determination, and the unique evolutionary trajectories of the two closely related insect species. These assemblies provide resources and new insights for studying the evolution and ecology of rice pests, which is beneficial to assist the management and implementation of relevant pest control.

    With the improvement of sequencing and assembly technology, genomic data has been better applied in pest control. Sequencing and assembly technology always has data polymorphism. It is difficult to culture insects with homozygous genes and the individual size is small, so it is impossible to collect high- quality DNA samples. This combination of factors makes it difficult to easily assemble insect genomes (Rong et al, 2016). Using Nanopore and short-read sequencing, Ye et al (2020) completed the genome assembly of the cocoon peak of wheat moth with an ultra-low starting amount (20 ng DNA), which provides a good example for the genome assembly of species with small individuals, rare samples and only a small amount of DNA. In addition, with the rapid development of artificial intelligence (AI), the analysis of various omics will also enter a more intelligent stage, with research conclusions becoming more reliable with the optimization of training sets and algorithms. In addition, there are some other omics methods, such as metabolomics, the ‘chemical fingerprint’ of living cell metabolism, and transcriptome analysis methods such as full-length transcriptome, spatial transcriptome and single-cell transcriptome. In the future, the development and optimization of the AI image data acquisition system of insect pest control facilities is likely to promote the development of radiomics for insects. Moreover, a series of functionally targeted databases have also become favorable tools for researchers, such as the image database for agricultural diseases and pests.

    Integrated pest management (IPM) has been the top priority in modern agricultural production. In recent decades, the pest species in China have increased significantly, and the degree of harm has become more serious. At the same time, with the development of global trade, the invasion of pests has become an extremely serious problem. With the mining of genomic data, IPM omics was proposed. IPM strategies, combined with genome technology, can be used to discover polymorphism in insect populations, and then explain the important problems of insect community changes. For example, rice insect-resistant genes are mainly distributed on several chromosomes, and BPH can inhibit the defense response of rice by salivary protein in saliva. The discovery of these mechanisms can help us select more resistant rice varieties and improve the control effect of BPH (Xu et al, 2021). Through the analysis of genomic data, the molecular mechanisms of pest species and drug resistance will be revealed. These molecular biological characteristics can be used to develop detection kits to achieve rapid detection of quarantine pests. Molecular markers designed for resistance genes can easily and quickly monitor the resistance frequency of pests in the field (Xiao et al, 2019). After comprehensive comparison of the obtained information with other existing data, the best pest management scheme can be formulated using the results and existing knowledge. Finally, information and communication technology can be used to effectively spread and develop strategies for broad pest control (Margam et al, 2011). Peng et al (2015) have proposed pest management strategies based on genomics, such as optimizing pest management structure in combination with landscape genetics, research on molecular identification, species identification and food web reconstruction based on DNA barcode technology, pest control through the establishment of a complete RNA interference technology system, and pest control supported by insect transgenic technology.

    Current genomics research focuses on single species, but each organism in the ecosystem does not exist independently. It is thus difficult to have a comprehensive understanding of a species only by studying its genome. In the future, numerous insect genomes will be sequenced and assembled, providing a lot of new information. Based on comparative genomic analysis, the genetic sequence information of some important pest related species and their natural enemies may also provide data for solving the evolution and mutual restraint relationships of species. Based on multi-omics data, through the research and mining of gene functions and the application of CRISPR/Cas9- mediated genome site-specific editing and other technical means, there will be revolutionary changes in the control of pests and the utilization of resource insects.

    ACKNOWLEDGEMENTS

    This study was supported by the Zhejiang Provincial Key Research and Development Plan, China (Grant Nos. 2020C02001 and 2022C02034), and the National Natural Science Foundation of China (Grant No. 31672022).

    Darwin Tree of Life Project Consortium. 2022. Sequence locally, think globally: The Darwin tree of life project., 119(4): e2115642118.

    Gavara A, Vacas S, Primo J, Navarro-Llopis V. 2021. Mating disruption of striped rice stem borer: Importance of early deployment of dispensers and impact on airborne pheromone concentration., 28(6): 525–528.

    Li Q C. 2018. Present situation and control measures of corn borer in northern Henan., 6(12): 84–85. (in Chinese with English abstract)

    Liu J D, Xiao H M, Huang S Q, Li F. 2014. OMIGA: Optimized marker-based insect genome annotation., 289(4): 567–573.

    Liu W C, Liu Z D, Huang C, Lu M H, Liu J, Yang Q P. 2016. Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years., 42(5): 1–9.

    Luo J, Tang J, Wang A Y, Yang B J, Liu S H. 2022. A rapid detection assay ofbased on recombinase aided amplification-lateral flow dipstick technology., 36(1): 96–104. (in Chinese with English abstract)

    Ma W H, Zhao X X, Yin C L, Jiang F, Du X Y, Chen T Y, Zhang Q H, Qiu L, Xu H X, Joe Hull J, Li G L, Sung W K, Li F, Lin Y J. 2020. A chromosome-level genome assembly reveals the genetic basis of cold tolerance in a notorious rice insect pest,., 20(1): 268–282.

    Ma W H, Xu L, Hua H X, Chen M Y, Guo M J, He K, Zhao J, Li F. 2021. Chromosomal-level genomes of three rice planthoppers provide new insights into sex chromosome evolution., 21(1): 226–237.

    Margam V M, Coates B S, Hellmich R L, Agunbiade T, Seufferheld M J, Sun W L, Ba M N, Sanon A, Binso-Dabire C L, Baoua I, Ishiyaku M F, Covas F G, Srinivasan R, Armstrong J, Murdock L L, Pittendrigh B R. 2011. Mitochondrial genome sequence and expression profiling for the legume pod borer(Lepidoptera: Crambidae)., 6(2): e16444.

    Muduli L, Pradhan S K, Mishra A, Bastia D N, Samal K C, Agrawal P K, Dash M. 2021. Understanding brown planthopper resistance in rice: Genetics, biochemical and molecular breeding approaches., 28(6): 532–546.

    Peng L, He W Y, Xia X F, Xie M, Ke F S, You S J, Huang Y P, You M S. 2015. Prospects for the management of insect pests in the genomic era., 52(1): 1–22. (in Chinese with English abstract)

    Rong C H, Li W D, Wang S J, Shen X Z. 2016. Integrated pest management in the era of gene: A review of ‘IPM-Omics’., 45(2): 159–163. (in Chinese with English abstract)

    Savary S, Willocquet L, Pethybridge S J, Esker P, McRoberts N, Nelson A. 2019. The global burden of pathogens and pests on major food crops., 3(3): 430–439.

    Sheng C F, Wang H T, Gao L D, Xuan W J. 2003. Current situation, loss estimation and control countermeasures of rice borer in China., 29(1): 37–39. (in Chinese)

    Wang L, Tang N, Gao X L, Chang Z X, Zhang L Q, Zhou G H, Guo D Y, Zeng Z, Li W J, Akinyemi I A, Yang H M, Wu Q F. 2017. Genome sequence of a rice pest, the white-backed planthopper ()., 6(1): 1–9.

    Wang X Y, Liu Q S, Meissle M, Peng Y F, Wu K M, Romeis J, Li Y H. 2018.rice could provide ecological resistance against nontarget planthoppers., 16(10): 1748–1755.

    Xiang Y Y, Zhang F, Xia B W, Guo R. 2011. Occurrence and control of rice borers in China., 31(11): 20–23. (in Chinese)

    Xiao Y T, Wu C, Wu K M. 2019. Agricultural pest control in China over the past 70 years: Achievements and future prospects., 56(6): 1115–1124. (in Chinese with English abstract)

    Xu H J, Xue J, Lu B, Zhang X C, Zhuo J C, He S F, Ma X F, Jiang Y Q, Fan H W, Xu J Y, Ye Y X, Pan P L, Li Q, Bao Y Y, Nijhout H F, Zhang C X. 2015. Two insulin receptors determine alternative wing morphs in planthoppers., 519: 464–467.

    Xu H X, Zhao X X, Yang Y J, Chen X, Mei Y, He K, Xu L, Ye X H, Liu Y, Li F, Lu Z X. 2022. Chromosome-level genome assembly of an agricultural pest, the rice leaffolder(Crambidae, Lepidoptera)., 22(1): 307–318.

    Xu X R, Tang M, Chen L. 2021. Research progress on the interaction between rice and brown planthopper,., 40(4): 1574–1583.

    Xue J, Zhou X, Zhang C X, Yu L L, Fan H W, Wang Z, Xu H J, XiY, Zhu Z R, Zhou W W, Pan P L, Li B L, Colbourne J K, Noda H, Suetsugu Y, Kobayashi T, Zheng Y, Liu S L, Zhang R, Liu Y, Luo Y D, Fang D M, Chen Y, Zhan D L, Lv X D, Cai Y, Wang Z B, Huang H J, Cheng R L, Zhang X C, Lou Y H, Yu B, Zhuo J C, Ye Y X, Zhang W Q, Shen Z C, Yang H M, Wang J, Wang J, Bao Y Y, Cheng J A. 2014. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation., 15(12): 521.

    Yang Y J, Xu H X, Zheng X S, Tian J C, Lu Y H, Lü Z X. 2015. Progresses in management technology of rice leafrollers in China., 42(5): 691–701. (in Chinese with English abstract)

    Ye X H, Xu L, Li X, He K, Hua H X, Cao Z H, Xu J D, Ye W Y, Zhang J, Yuan Z T, Li F. 2019. miR-34 modulates wing polyphenism in planthopper., 15(6): e1008235.

    Ye X H, Yan Z C, Yang Y, Xiao S, Chen L F, Wang J L, Wang F, Xiong S J, Mei Y, Wang F, Yao H W, Song Q S, Li F, Fang Q, Werren J H, Ye G Y. 2020. A chromosome-level genome assembly of the parasitoid wasp., 20(5): 1384–1402.

    Zhang X X, Lu Z Q, Geng J G, Li G Z, Chen X L, Wu X W. 1980. Study on the migration route ofGuenee., 23(2): 130–140. (in Chinese with English abstract)

    Zhao X X, Xu H X, He K, Shi Z M, Chen X, Ye X H, Mei Y, Yang Y J, Li M Z, Gao L B, Xu L, Xiao H M, Liu Y, Lu Z X, Li F. 2021. A chromosome-level genome assembly of rice leaffolder,., 21(2): 561–572.

    Zheng W Y. 2020. Damage characteristics and control measures of., 13(10): 33–35. (in Chinese with English abstract)

    Zhu J J, Jiang F, Wang X H, Yang P C, Bao Y Y, Zhao W, Wang W, Lu H, Wang Q S, Cui N, Li J, Chen X F, Luo L, Yu J T, Kang L, Cui F. 2017. Genome sequence of the small brown planthopper,., 6(12): 1–12.

    Copyright ? 2023, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2023.03.013

    Lü Zhongxian (luzxmh@163.com);

    Li Fei (lifei18@zju.edu.cn)

    4 January 2023;

    9 March 2023

    国精品久久久久久国模美| 国产精品人妻久久久久久| 欧美日韩亚洲高清精品| 99热6这里只有精品| 亚洲欧美一区二区三区国产| 国产淫片久久久久久久久| 春色校园在线视频观看| 99久久精品国产国产毛片| 欧美成人一区二区免费高清观看| 久久国内精品自在自线图片| 下体分泌物呈黄色| a级毛色黄片| 国产亚洲一区二区精品| 晚上一个人看的免费电影| 韩国高清视频一区二区三区| 中文字幕免费在线视频6| 又爽又黄无遮挡网站| 少妇 在线观看| 久久久久国产精品人妻一区二区| 久久精品国产亚洲网站| 国产一级毛片在线| 国产日韩欧美亚洲二区| 午夜视频国产福利| 少妇的逼水好多| 国产精品人妻久久久久久| 高清视频免费观看一区二区| 亚洲激情五月婷婷啪啪| 欧美另类一区| 国产成人aa在线观看| 国产成人精品一,二区| 白带黄色成豆腐渣| 亚洲国产av新网站| videossex国产| 蜜桃亚洲精品一区二区三区| 人人妻人人看人人澡| 1000部很黄的大片| 国产亚洲午夜精品一区二区久久 | 在线精品无人区一区二区三 | 欧美少妇被猛烈插入视频| 成人无遮挡网站| 蜜桃亚洲精品一区二区三区| 国产一区二区三区综合在线观看 | 亚洲精品,欧美精品| 亚洲国产欧美人成| 免费在线观看成人毛片| 不卡视频在线观看欧美| 日韩中字成人| 一区二区三区四区激情视频| 中文字幕制服av| 特级一级黄色大片| 精品久久久久久久久亚洲| 欧美一区二区亚洲| 国产精品蜜桃在线观看| 亚洲经典国产精华液单| 高清日韩中文字幕在线| 久久久色成人| 午夜视频国产福利| 亚洲熟女精品中文字幕| 91精品伊人久久大香线蕉| 女的被弄到高潮叫床怎么办| 特级一级黄色大片| av国产免费在线观看| 成人漫画全彩无遮挡| 狂野欧美白嫩少妇大欣赏| 青春草视频在线免费观看| 永久网站在线| 777米奇影视久久| 大香蕉97超碰在线| 日韩电影二区| 亚洲一区二区三区欧美精品 | 五月开心婷婷网| 亚洲熟女精品中文字幕| 国模一区二区三区四区视频| 涩涩av久久男人的天堂| 两个人的视频大全免费| 一级a做视频免费观看| 国产淫片久久久久久久久| 联通29元200g的流量卡| 久久久午夜欧美精品| 成人特级av手机在线观看| 国产淫片久久久久久久久| 91精品国产九色| 丝袜喷水一区| 国产精品久久久久久久久免| 国产 精品1| 国产69精品久久久久777片| 狠狠精品人妻久久久久久综合| 国产 一区 欧美 日韩| 免费看不卡的av| 国产精品一区二区在线观看99| 大话2 男鬼变身卡| 91午夜精品亚洲一区二区三区| 欧美bdsm另类| 爱豆传媒免费全集在线观看| 欧美一区二区亚洲| 啦啦啦中文免费视频观看日本| 亚洲精品国产av成人精品| 日本黄色片子视频| 国产白丝娇喘喷水9色精品| 又大又黄又爽视频免费| 一本久久精品| 天堂网av新在线| 1000部很黄的大片| 午夜亚洲福利在线播放| 高清在线视频一区二区三区| 国产成人精品久久久久久| 欧美精品国产亚洲| 人妻系列 视频| 亚洲无线观看免费| 少妇被粗大猛烈的视频| 国内精品宾馆在线| 国产午夜精品一二区理论片| 精品久久久久久久久亚洲| 大片免费播放器 马上看| 久久精品国产鲁丝片午夜精品| 国产男女超爽视频在线观看| 日韩av免费高清视频| 国产美女午夜福利| 国产精品一区二区三区四区免费观看| 午夜激情久久久久久久| 色视频www国产| 国产探花极品一区二区| 免费电影在线观看免费观看| 狂野欧美白嫩少妇大欣赏| 亚洲无线观看免费| 99热国产这里只有精品6| 91精品伊人久久大香线蕉| av在线老鸭窝| 亚洲欧美精品专区久久| 成人无遮挡网站| 精品久久久噜噜| 欧美精品人与动牲交sv欧美| 狂野欧美激情性xxxx在线观看| 亚洲欧美一区二区三区国产| 久久久久久久久久久免费av| 国产亚洲午夜精品一区二区久久 | 亚洲成人精品中文字幕电影| 最后的刺客免费高清国语| 国产色婷婷99| 午夜日本视频在线| 王馨瑶露胸无遮挡在线观看| 夜夜爽夜夜爽视频| 亚洲精品久久久久久婷婷小说| 超碰av人人做人人爽久久| 亚洲国产成人一精品久久久| 亚洲av日韩在线播放| 激情五月婷婷亚洲| 久久久久久久大尺度免费视频| 亚洲av二区三区四区| 亚洲av免费在线观看| 好男人在线观看高清免费视频| 80岁老熟妇乱子伦牲交| 国内揄拍国产精品人妻在线| 亚洲欧美中文字幕日韩二区| 十八禁网站网址无遮挡 | 亚洲真实伦在线观看| 我要看日韩黄色一级片| 国精品久久久久久国模美| 97精品久久久久久久久久精品| 秋霞伦理黄片| 亚洲自拍偷在线| 久久午夜福利片| 精品一区二区三卡| 精品久久久久久久久亚洲| 最近手机中文字幕大全| 熟女av电影| 精品久久久久久久久亚洲| 久久久久九九精品影院| 久久久久久久久久成人| 国产国拍精品亚洲av在线观看| 久久久久性生活片| 熟女电影av网| 超碰av人人做人人爽久久| 日日啪夜夜爽| 永久免费av网站大全| 青春草亚洲视频在线观看| 日本三级黄在线观看| 纵有疾风起免费观看全集完整版| 搡老乐熟女国产| 18禁动态无遮挡网站| 久久精品国产亚洲av涩爱| 久久精品人妻少妇| 丰满乱子伦码专区| 99热6这里只有精品| 国产大屁股一区二区在线视频| 免费看不卡的av| 国产精品一区二区性色av| 少妇人妻久久综合中文| 最近手机中文字幕大全| 久久精品国产亚洲av天美| 国产精品99久久久久久久久| 国产一区二区三区av在线| 综合色av麻豆| 国产视频内射| 麻豆成人av视频| 国产爱豆传媒在线观看| 亚洲欧洲日产国产| 亚洲国产色片| 高清在线视频一区二区三区| 国产免费又黄又爽又色| 18+在线观看网站| 免费观看在线日韩| 少妇的逼好多水| 男插女下体视频免费在线播放| 成人亚洲精品av一区二区| 亚洲在久久综合| 免费高清在线观看视频在线观看| 欧美性猛交╳xxx乱大交人| 蜜桃久久精品国产亚洲av| 国内少妇人妻偷人精品xxx网站| 久久99热这里只频精品6学生| 亚洲精品乱码久久久v下载方式| 国产高清不卡午夜福利| 亚洲成人中文字幕在线播放| 久久久精品欧美日韩精品| av卡一久久| 亚洲成人久久爱视频| 伊人久久国产一区二区| 久久久久国产网址| 欧美日韩在线观看h| av在线天堂中文字幕| 免费在线观看成人毛片| 久久亚洲国产成人精品v| 深夜a级毛片| 综合色丁香网| 99久久九九国产精品国产免费| 哪个播放器可以免费观看大片| 一区二区三区四区激情视频| 嘟嘟电影网在线观看| 免费大片黄手机在线观看| 97人妻精品一区二区三区麻豆| 一二三四中文在线观看免费高清| av线在线观看网站| 熟女电影av网| 中文精品一卡2卡3卡4更新| 久久久色成人| 亚洲人成网站在线播| 秋霞在线观看毛片| 国产伦在线观看视频一区| 男人舔奶头视频| 超碰av人人做人人爽久久| 天堂俺去俺来也www色官网| 久久亚洲国产成人精品v| 91aial.com中文字幕在线观看| 久久久精品94久久精品| 免费黄色在线免费观看| 午夜视频国产福利| 国产精品成人在线| 69av精品久久久久久| 丝瓜视频免费看黄片| 熟女电影av网| 大码成人一级视频| 日韩 亚洲 欧美在线| 免费av观看视频| 国产午夜精品久久久久久一区二区三区| 亚洲最大成人av| 国产精品久久久久久精品古装| 国产探花极品一区二区| 1000部很黄的大片| 欧美日韩精品成人综合77777| 少妇人妻久久综合中文| 一二三四中文在线观看免费高清| 真实男女啪啪啪动态图| 22中文网久久字幕| 少妇裸体淫交视频免费看高清| 国产69精品久久久久777片| 不卡视频在线观看欧美| 亚洲av国产av综合av卡| 91久久精品国产一区二区三区| 成年免费大片在线观看| 成人亚洲精品一区在线观看 | 人人妻人人爽人人添夜夜欢视频 | 国产人妻一区二区三区在| 日韩视频在线欧美| 久久99蜜桃精品久久| 成人漫画全彩无遮挡| 超碰97精品在线观看| 久久久久国产网址| 精品久久久久久电影网| 色婷婷久久久亚洲欧美| 国产伦在线观看视频一区| 成人黄色视频免费在线看| 丝袜美腿在线中文| 最近最新中文字幕大全电影3| 久久女婷五月综合色啪小说 | 国产av国产精品国产| 欧美日韩视频高清一区二区三区二| 在线观看国产h片| 97热精品久久久久久| 高清毛片免费看| 久久鲁丝午夜福利片| 99热网站在线观看| 能在线免费看毛片的网站| 丝袜喷水一区| 日韩av不卡免费在线播放| 久久久午夜欧美精品| 免费观看性生交大片5| 日日啪夜夜爽| 欧美精品人与动牲交sv欧美| 免费大片18禁| 最近2019中文字幕mv第一页| 内射极品少妇av片p| 免费av毛片视频| 能在线免费看毛片的网站| 老师上课跳d突然被开到最大视频| 日本黄大片高清| 少妇人妻 视频| av女优亚洲男人天堂| 国产毛片在线视频| 日韩不卡一区二区三区视频在线| 亚洲av免费高清在线观看| 日韩成人伦理影院| 久久精品国产自在天天线| 国语对白做爰xxxⅹ性视频网站| 小蜜桃在线观看免费完整版高清| 少妇丰满av| 热99国产精品久久久久久7| 看十八女毛片水多多多| 男男h啪啪无遮挡| 不卡视频在线观看欧美| 精品少妇久久久久久888优播| 国产又色又爽无遮挡免| 男女国产视频网站| 亚洲av中文字字幕乱码综合| 国国产精品蜜臀av免费| 精品久久久久久久人妻蜜臀av| 丰满人妻一区二区三区视频av| 晚上一个人看的免费电影| 久久久久久九九精品二区国产| 插阴视频在线观看视频| 一级毛片黄色毛片免费观看视频| 观看美女的网站| 日韩成人伦理影院| 亚洲av一区综合| 国产在线男女| 啦啦啦在线观看免费高清www| 国产 一区 欧美 日韩| 日韩制服骚丝袜av| 亚洲天堂国产精品一区在线| 最近最新中文字幕免费大全7| 三级国产精品片| 亚洲av中文av极速乱| 国产人妻一区二区三区在| 免费观看av网站的网址| 国产在视频线精品| 欧美xxⅹ黑人| 在现免费观看毛片| 欧美精品一区二区大全| 少妇猛男粗大的猛烈进出视频 | 舔av片在线| 人人妻人人看人人澡| 国国产精品蜜臀av免费| 中文在线观看免费www的网站| 97人妻精品一区二区三区麻豆| 国产亚洲一区二区精品| 纵有疾风起免费观看全集完整版| 亚洲欧美中文字幕日韩二区| 麻豆久久精品国产亚洲av| 99久国产av精品国产电影| 99视频精品全部免费 在线| 97热精品久久久久久| 夫妻性生交免费视频一级片| 六月丁香七月| 熟女电影av网| 色婷婷久久久亚洲欧美| 成人毛片a级毛片在线播放| 成年人午夜在线观看视频| 亚洲av日韩在线播放| 99久国产av精品国产电影| 日本wwww免费看| 最近的中文字幕免费完整| 91午夜精品亚洲一区二区三区| 熟女人妻精品中文字幕| 纵有疾风起免费观看全集完整版| 在线免费十八禁| 伦理电影大哥的女人| 五月玫瑰六月丁香| 国产爽快片一区二区三区| 亚洲精品aⅴ在线观看| 综合色丁香网| a级一级毛片免费在线观看| 久久精品久久久久久噜噜老黄| 午夜爱爱视频在线播放| 99视频精品全部免费 在线| 嫩草影院精品99| 国产乱人偷精品视频| 91午夜精品亚洲一区二区三区| 18禁在线无遮挡免费观看视频| 久久久欧美国产精品| 亚洲av成人精品一二三区| 免费黄色在线免费观看| 日本黄大片高清| 欧美zozozo另类| 久久久精品免费免费高清| 精品久久久久久电影网| 91精品国产九色| 国产永久视频网站| 性插视频无遮挡在线免费观看| 高清毛片免费看| 国产午夜精品一二区理论片| av国产久精品久网站免费入址| 少妇熟女欧美另类| 亚洲国产高清在线一区二区三| 日本爱情动作片www.在线观看| 国产精品麻豆人妻色哟哟久久| 又大又黄又爽视频免费| 一级av片app| 边亲边吃奶的免费视频| 丝袜美腿在线中文| 内射极品少妇av片p| 久久久久久伊人网av| 成人二区视频| freevideosex欧美| 毛片女人毛片| 99视频精品全部免费 在线| 久久精品久久精品一区二区三区| 久久精品国产a三级三级三级| 日韩av不卡免费在线播放| 婷婷色综合www| 国产欧美日韩精品一区二区| 成人国产麻豆网| 麻豆成人午夜福利视频| 亚洲经典国产精华液单| 一级毛片电影观看| 高清在线视频一区二区三区| 少妇人妻一区二区三区视频| 丝袜脚勾引网站| 久久久久久久久久人人人人人人| 深爱激情五月婷婷| 国产精品麻豆人妻色哟哟久久| 男女下面进入的视频免费午夜| 国产精品99久久99久久久不卡 | 日韩电影二区| 日韩三级伦理在线观看| 在线亚洲精品国产二区图片欧美 | 久久久久九九精品影院| 精品人妻偷拍中文字幕| 美女视频免费永久观看网站| 亚洲av男天堂| 成人午夜精彩视频在线观看| 久久99热这里只频精品6学生| 国产黄片美女视频| 国产片特级美女逼逼视频| 国产永久视频网站| 久热久热在线精品观看| 免费电影在线观看免费观看| 小蜜桃在线观看免费完整版高清| 啦啦啦中文免费视频观看日本| 成人亚洲精品一区在线观看 | 国产乱来视频区| 亚洲熟女精品中文字幕| 乱码一卡2卡4卡精品| 欧美精品国产亚洲| 亚洲性久久影院| 国产精品久久久久久av不卡| 亚洲成人中文字幕在线播放| 中文字幕免费在线视频6| 一级毛片 在线播放| 在线观看一区二区三区激情| 久久久精品欧美日韩精品| 不卡视频在线观看欧美| 亚洲综合精品二区| 日韩人妻高清精品专区| 久久久久久久大尺度免费视频| 久久久久久久久大av| 午夜精品一区二区三区免费看| 国产精品爽爽va在线观看网站| 日韩,欧美,国产一区二区三区| 精品久久久精品久久久| 国内少妇人妻偷人精品xxx网站| 女人被狂操c到高潮| 久久精品国产自在天天线| av在线老鸭窝| 国产精品精品国产色婷婷| 国产一区二区三区综合在线观看 | 亚洲av成人精品一区久久| 亚洲欧洲日产国产| 免费大片黄手机在线观看| 婷婷色综合www| 久久精品人妻少妇| 国产爽快片一区二区三区| 最近最新中文字幕免费大全7| 一级爰片在线观看| 综合色av麻豆| 白带黄色成豆腐渣| 下体分泌物呈黄色| 国产一区二区在线观看日韩| 精品久久久噜噜| 美女xxoo啪啪120秒动态图| 九草在线视频观看| 中文乱码字字幕精品一区二区三区| 自拍偷自拍亚洲精品老妇| 免费黄网站久久成人精品| 爱豆传媒免费全集在线观看| 亚洲无线观看免费| 一区二区三区乱码不卡18| 午夜福利高清视频| 国产91av在线免费观看| 一边亲一边摸免费视频| 久久久久国产网址| 国产片特级美女逼逼视频| 亚洲欧美日韩无卡精品| 99热这里只有是精品50| 国产综合精华液| 老司机影院毛片| 亚洲欧美一区二区三区国产| 日韩精品有码人妻一区| 久久这里有精品视频免费| 久久6这里有精品| 身体一侧抽搐| 如何舔出高潮| 午夜激情久久久久久久| 成人高潮视频无遮挡免费网站| 日韩免费高清中文字幕av| 亚洲一区二区三区欧美精品 | 精品久久国产蜜桃| 伦理电影大哥的女人| 亚洲国产色片| 久久精品久久久久久噜噜老黄| 男人添女人高潮全过程视频| 亚洲,一卡二卡三卡| 人妻夜夜爽99麻豆av| 国产精品久久久久久久久免| 大码成人一级视频| 国产一区二区三区综合在线观看 | 日韩一区二区视频免费看| 免费观看无遮挡的男女| av网站免费在线观看视频| 亚洲精品国产av蜜桃| 国产黄a三级三级三级人| 日韩国内少妇激情av| 午夜福利视频1000在线观看| 亚洲自拍偷在线| 国产一区有黄有色的免费视频| 在线观看国产h片| 九九在线视频观看精品| 久久精品久久久久久久性| 中国三级夫妇交换| 精品一区二区三区视频在线| 日韩中字成人| a级一级毛片免费在线观看| 91精品伊人久久大香线蕉| 中文字幕av成人在线电影| 丝瓜视频免费看黄片| 亚洲精品国产成人久久av| 三级男女做爰猛烈吃奶摸视频| 韩国av在线不卡| 亚洲伊人久久精品综合| 久久亚洲国产成人精品v| 日日摸夜夜添夜夜爱| 久久热精品热| 伊人久久国产一区二区| 国产精品精品国产色婷婷| 国产精品久久久久久久电影| 一级av片app| 久久久国产一区二区| 五月开心婷婷网| 国产精品熟女久久久久浪| av免费观看日本| av专区在线播放| 18禁在线无遮挡免费观看视频| 午夜福利在线在线| 国产色爽女视频免费观看| 美女xxoo啪啪120秒动态图| 国产黄片美女视频| 国内精品宾馆在线| 国产熟女欧美一区二区| 亚洲欧美中文字幕日韩二区| 亚洲性久久影院| 搞女人的毛片| 亚洲色图综合在线观看| 黄色一级大片看看| 性插视频无遮挡在线免费观看| 国产熟女欧美一区二区| 51国产日韩欧美| 欧美日韩在线观看h| 中文字幕人妻熟人妻熟丝袜美| 国产黄a三级三级三级人| 亚洲最大成人中文| 春色校园在线视频观看| 亚洲一区二区三区欧美精品 | 国内少妇人妻偷人精品xxx网站| 亚洲精品成人av观看孕妇| 精品国产乱码久久久久久小说| 国产亚洲av片在线观看秒播厂| 91久久精品国产一区二区三区| 精品酒店卫生间| 国产精品嫩草影院av在线观看| 久久99蜜桃精品久久| 又爽又黄a免费视频| 欧美国产精品一级二级三级 | 免费在线观看成人毛片| 精品国产乱码久久久久久小说| 中文在线观看免费www的网站| 欧美另类一区| 久久精品国产亚洲av涩爱| 成人无遮挡网站| 国产永久视频网站| 晚上一个人看的免费电影| 99热国产这里只有精品6| 欧美97在线视频| 天美传媒精品一区二区| 亚洲成人av在线免费| 在现免费观看毛片| 亚洲熟女精品中文字幕| 真实男女啪啪啪动态图| 91久久精品国产一区二区三区| 三级经典国产精品| 中文乱码字字幕精品一区二区三区| 深夜a级毛片| 国产高清三级在线| 超碰av人人做人人爽久久| 高清午夜精品一区二区三区| 亚洲成人久久爱视频| 国内揄拍国产精品人妻在线|