• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of GW8 Gene Editing on Appearance Quality of Erect-Panicle Type (dep1) Japonica Rice

    2023-09-05 08:22:10MaoTingChenHongfaLiXinLiuYanZhongShunchengWangShiyuZhaoYizhouZhangZhanNiShanjunHuangHeLiXuHuShikai
    Rice Science 2023年5期

    Mao Ting, Chen Hongfa, Li Xin, Liu Yan, Zhong Shuncheng, Wang Shiyu, Zhao Yizhou, Zhang Zhan, Ni Shanjun, Huang He, Li Xu, Hu Shikai

    Letter

    Effect ofGene Editing on Appearance Quality of Erect-Panicle Type ()Rice

    Mao Ting1, 2, Chen Hongfa2, Li Xin1, Liu Yan1, Zhong Shuncheng1, Wang Shiyu1, Zhao Yizhou1, Zhang Zhan1, Ni Shanjun1, Huang He1, Li Xu1, Hu Shikai2

    (Liaoning Institute of Saline-Alkali and Utilization, Panjin 124010, China; State Key Laboratory of Rice Biology and Breeding / China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China)

    Most high-yieldingrice varieties in China carry, a multi-effective regulator of plant architecture and grain shape, resulting in erect panicle with short and round grain shape. However, its appearance quality needs to be improved since long-grain rice is favored by the market.is a dominant gene regulating grain shape, and its loss-of-function genotype leads to elongated grains with a better quality in appearance. Whether long-grainrice retaining other high quality traits can be created bygene editing under the genetic background ofremains unsystematically analyzed. In this study, a series ofgene editing near-isogenic lines (NILs) were constructed with different target regions on the promoter region (NIL-gw8), the 1stexon region (NIL-gw8) and the miR156 target region of the 3rd exon (NIL-gw8) under the genetic background of.Grain quality and yield components analyses showed that the grain length to width ratio ofediting offspring increased significantly, and the chalkiness degree decreased obviously, however, owing to the decrease of 1000-grain weight and effective panicle number, the yield also showed a significant downward trend. Among all thegene editing offspring plants, those edited at the miR156 target region showed the largest grain length to width ratio, the lowest chalkiness degree and the best eating quality. These results indicated that the miR156 target region editing of thegene had the best effect on improving the appearance quality of erect-panicle typerice.

    Rice is one of the most important staple food crops, feeding more than half of the global population. Grain shape affects both yield and quality, and its genetic improvement and gene mining have gained much attention (Li et al, 2018; Liu et al, 2018).is a positive regulator of grain width (Wang et al, 2012), encoding a squamosa promoter binding protein domain-containing transcription factor, OsSPL16, which regulates grain width by affecting the proliferation of glume cells. High expression ofpromotes cell division and grain filling rate, thereby promoting grain width and yield (Sun et al, 2018). Loss-of-function ofin Basmati rice leads to elongated grains and improved appearance quality. There are two loss-of-function alleles in, including a 10-bp deletion type in the promoter region and a 2-bp deletion in the miR156 region of the 3rd exon (Wang et al, 2012). However, the loss-of-function alleles ofarevery little distribution inrice (Yi et al, 2016; Mao et al, 2021).Conversely, theallele is widely used in high-yieldingrice breeding, resulting in short and round grain shape (Xu et al, 2014). According to previous studies, editing of different grain shape genes is greatly influenced by the genetic background of(Mao et al, 2021; Tao et al, 2023).Therefore, the genetic effect ofshould be considered comprehensively to improve appearance quality ofrice by introducing long-grain shape alleles.

    In this study, we designed three target loci in: the promoter region, the 1st exon region and the miR156 target region inthe 3rd exon, in an erect-panicle type (genotype)rice variety Yanfeng 47 (hereinafter referred to as NIL-YF47), and evaluated the application potential of thegene in breeding of long-grainrice by determining the yield and quality of the genetically edited ricematerials with different target loci, which would enrich the theoretical basis for the genetic improvement ofrice quality. First, we sequencedthe target sites of CRISPR-Cas9 edited rice materials.The results indicated that the mutations had been introduced into different target sites of, and all of them were single base insertion types(Fig. S1-A and -B). Except for the promoter mutation, which cannot predict the amino acid changes, the other mutations caused premature termination of amino acid translation at different positions(Fig. S1-A and -C). Also, thegene expression was significantly reduced in the glume cells ofthe editing offspring at 2 d before heading (Fig. S1-D). Further, the basic characteristics of the gene edited materials were examined, including the plant architecture, whole growth duration, plant height and the number of leaves in main stem (Fig. S1-E to -H). The genetic background control, NIL-YF47, had 162 d whole growth period,with a plant height of 99.1 cm and the mean number of leaves in main stem of 15. In all theedited materials, these characteristics remained insignificantly different from NIL-YF47. Subsequently, the NILs of theedited materials were constructed, including NIL-gw8, NIL-gw8and NIL-gw8.

    The grain shape was compared among the NILs (Fig. 1-A to -E).For grain length, relative to NIL-YF47(4.88 mm), the longest grains were found in NIL-gw8of 5.33 mm, followed by NIL-gw8and NIL-gw8with the grain lengths of 5.23 and 5.06 mm, respectively. The grain widths of NIL-gw8, NIL-gw8and NIL-gw8were 2.64, 2.31 and 2.28 mm, respectively. The variations in grain length and width led to alterations in the grain length to width ratio, with NIL-gw8showing the highest of 2.33, followed byNIL-gw8and NIL-gw8of 2.19 and1.98, respectively, and all of which were significantly different from that of NIL-YF47(1.78). To explore the factors influencing grain shape in the NILs, we analyzed the changes in glume cell length, width and the key regulatory hormones at 2 d before heading. Compared with NIL-YF47, all theediting offspring showed significantly greater glume length with shorter glume cell width (Fig. 1-F to -H).Moreover, the key regulatory hormones for glume development, indole-3-acetic acid (IAA), gibberellin A3(GA3) and brassinolide (BR) were all significantly lower in theediting offspring(Fig.1-I to -K).

    Fig. 1. Comparison of grain shape of near-isogenic lines (NILs) and analysis of relevant influencing factors.

    A and B, Performances of grain length (A) and grain width (B) of NILs. Scale bars, 5 mm. C?E, Comparisons of grain length (C), grain width (D) and grain length to width ratio (E) of NILs. F?H, Comparisons of glume epidermal cell size (F), cell length (G) and cell width (H) of NILs. Scale bar, 10 μm. I?K, Comparisons of the levels of indole-3-acetic acid (IAA) (I),gibberellin A3(GA3) (J) and brassinolide (BR) (K) in developing glumes of NILs.Data are Mean ± SD (= 9).

    Different lowercase letters above the bars indicate significant differences at< 0.05 determined by the Student- Newman-Keuls test.

    After being processed into milled rice, the chalkiness degrees of the NILs were examined (Fig. 2-A and -B). Compared with NIL-YF47(7.06%), the chalkiness degrees of all theediting offspring were significantly lower, with NIL-gw8showing the lowest at 1.50%, followed by NIL-gw8(2.11) and NIL-gw8(3.58%). Numerous studies have shown thatgrain filling characteristics have a strong influence on chalkiness formation (Wang et al, 2008; Li et al, 2014). Therefore, we analyzed the effects of average grain filling rate as well as related hormones and enzymes at the peak grain filling stage (10 d after fertilization) on chalkiness formation. The average grain filling rate was the highest in NIL-YF47, followed by NIL-gw8, NIL-gw8and NIL-gw8, which were consistent with the variations in chalkiness degree (Fig. 2-C). The four starch-filling enzyme activities of adenosine diphosphateglucose (ADPG), granule-bound starch synthase (GBSS), starch branching enzymes (SBE) and soluble starch synthase (SSS) were also in good agreement with the average grain filling rates (Fig. 2-D to -G). Several key hormone levels in the gene editing offspring were also significantly reduced (Fig. 2-H to -L), but the degree of agreement with the grain filling rate was not as good as that of starch-related enzymes. It is worth noting that NIL-gw8, which displayed the lowest chalkiness degree, also showed lower hormone levels with the exception of IAA.

    Fig. 2. Comparison of chalkiness degree of near-isogenic lines (NILs) and analysis of releted influencing factors.

    A and B, Comparisons of chalkiness degree in endosperms of NILs. Scale bar, 5 mm. C, Average grain filling rate of NILs. D?G, Comparisons of enzyme activities of adenosine diphosphate glucose (ADPG) (D), granule-bound starch synthase (GBSS) (E), starch branching enzymes (SBE) (F) and soluble starch synthase (SSS) (G) in endosperms of NILs. H?L, Comparisons of hormone levels of indole-3-acetic acid (IAA) (H), abscisic acid (ABA) (I), cytokinins (CTK) (J), zeatin (ZT) (K) and zeatin riboside (ZR) (L) in endosperms of NILs.Data are Mean ± SD (= 9).

    Different lowercase letters above the bars indicate significant differences at< 0.05 determined by the Student- Newman-Keuls test.

    Since grain shape, chalkiness degree and filling characteristics all affect taste quality to various degrees (Lestari et al, 2009), comparisons of the nutritional and taste qualities of the NILs were performed. In terms of amylose content, NIL-YF47showed 17.40%, and that of NIL-gw8was significantly reduced to 16.78% (Fig. S2-A), presumably due to the significant reduction in the activities of ADPG, GBSS, SBE and SSS. Similarly, NIL-YF47showed 69.5 mm gel consistency, while NIL-gw8showed a significantly increased gel consistency of 72.2 mm (Fig. S2-B). The protein content and alkali spreading value did not show significant differences among the NILs (Fig. S2-C and -D). Finally, the differences in amylose content and gel consistency significantly affected the taste value (Fig. S2-E), with NIL-gw8achieving a taste value of 72.77, which was significantly higher than that of NIL-YF47(70.66).

    Finally, we compared the yield-related traits, including the number of effective panicles per plant, the number of filled grains per panicle and 1000-grain weight, among the NILs in two consecutive growing seasons in 2020 and 2021. In 2020, the number of effective panicles per plant was 14.7 for NIL- YF47, which was significantly lower in NIL-gw8and NIL-gw8(Fig. S3-A). As shown in Fig. S3-B, there was no significant difference in the number of filled grains per panicle among the NILs. In terms of 1000-grain weight, NIL-gw8, NIL-gw8and NIL-gw8were 25.11, 23.01 and 23.11 g,respectively, which were significantly lower than NIL-YF47(26.55 g) (Fig. S3-C). Due to the significant decrease in 1000-grain weight and the number of effective panicles per plant, the yields of gene edited materials were significantly reduced by 7.56%?12.59% compared with NIL-YF47(Fig. S3-D). In 2021, the performance of each yield-related trait was slightly better than that in 2020, whereas the overall trend was similar to that in 2020 (Fig. S3-E to -H).

    The application of erect-panicle genefacilitates theformation of high-yielding populations with good ventilation, strong light penetration, and adaptability to dense-planting. However, it also brings the problems of shorter grain shape and slightly higher chalkiness degree due to the uncoordinated strong and weak grain filling (Chen et al, 2012). Therefore, in the context of the widespread use ofin high-yieldingrice, cultivating of rice varieties with longer grain shape and better appearance quality has become a focus issue (Xu et al, 2014; Huang and Qian, 2017). In this study, the different target sites ofediting allcaused inordinately changes in grain shape. Considering the glume cell size and the 1000-grain weight, we speculated that the changes in the glume cells caused by the down-regulation of hormone levels were the main reason for the reduced 1000-grain weight and increased length to width ratio in the NILs, which is similar to the results of previous studies (Li et al, 2018; Mao et al, 2021). Numerous studies showed that chalky endosperm is filled with loosely packed, spherical starch granules, which is mainly caused by the uncoordinated strong and weak grain filling (Wang et al, 2012; Li et al, 2014). All theediting offspring in this study showed a lower grain filling rate compared with NIL-YF47, while the starch-filling enzyme activities and hormone levels were also significantly down-regulated. According to Wang et al (2015), themodule significantly affects the expression of starch biosynthesis genes, and numerous studies have shown that the formation of grain shape, especially grain width, is closely related to grain filling rate (Ishimaru et al, 2013; Wang et al, 2015). Therefore, we speculated that thegene editing may affect the expression of starch biosynthesis genes, thereby causing changes in starch-filling related enzymes and hormones, and ultimately affecting rice grain shape by changing the balance of source-sink flow. In this study, the starch-filling enzyme activities and hormone levels decreased in a large amplitude, and this may be due to the fact that the tested samples were at the peak grain filling stage, which is consistent with the results of our previous study (Mao et al, 2021). The designedmiR156 editing target contains its 20 bp specific sequence, however, mutation occurred at the prior one base of their specific sequence, which may not change the cleavage site of miR156. According to Wang et al (2012), theAmolallele functions as a loss-of-function mutation with slender grains and increased grain yield compared with the plants carrying the ‘Basmati’ allele. Similarly, the grain length, chalkiness and yield of miR156 editing lines were superior than those of the other editing lines in this study. Therefore, we speculated that the editing of the 3rd exon near or in which miR156 is located may cause a stronger loss-of-function type, and the significant down-regulation of gene expression may also partially confirm this speculation.

    High yield and superior quality have always been the goals of crop genetic improvement, but it is often difficult to reconcile the two, and grain filling rate may be an important factor to balance yield and appearance quality (Xu and Chen, 2016; Hao et al, 2021; Kan et al, 2022). In this study, originating from a significant decline in grain filling rate, the 1000-grain weight and effective panicle number were significantly decreased, which caused a significant decline in yield of all theediting offspring. Therefore, we speculated that introduction of other grain shape genes on the basis of improvedloci, which are conducive to the increase of grain filling rate, such asor, may be an effective way to balance source-sink flow and create high-yielding and superior-qualityrice. Among theedited materials in this study, NIL-gw8displayed the largest length to width ratio of 2.3, which was significantly different from famousrice known for their long grain shape, such as Daohuaxiang 2 and Jiahe 212, whose aspect ratio reaches about 2.5 (Chen et al, 2018). The mechanism of creating high qualityrice with larger length to width ratio by introducing multiple genes for elongated grain will be the key question of interest.

    Taken together, all theediting offspring increased grain length to width ratio by 6%?30%, with a chalkiness degree reduction of 49%?78%. Among them, NIL-gw8showed the highest length to width ratio and the lowest chalkiness degree. In addition, owning to the significant improvement of amylose and gel consistency, the taste quality of NIL-gw8was significantly better than that ofNIL-YF47. Therefore, in the context of rice varieties with abackground, the editing of the miR156 region ofprovided a promising means to select for improved grain qualities inrice, and all the results provided a theoretical basis for the application of manipulating rice functional genes in breeding practices.

    ACKNOWLEDGEMENTS

    This study was supported by the Central Guidance on Local Science and Technology Development Fund of Liaoning Province, China (Grant No. 2023JH6/100100039), Applied Basic Research Fund of Liaoning Province, China (Grant No. 2022JH2/101300283), National Natural Science Foundation of China (Grant Nos. 32071991 and 32188102), Science Foundationof Liaoning Province, China (Grant No. 2019-ZD-0397), Zhejiang Provincial Natural Science Foundation of China (Grant No. LDQ23C130001), and Key Research and Development Program of Zhejiang Province, China (Grant No. 2021C02056).

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science; http://www.ricescience.org.

    File S1. Methods.

    Fig. S1. Basic characteristics of target loci sequences, amino acidvariations,expression variations and plant architecture of near-isogenic lines (NILs).

    Fig. S2. Comparisons of nutritional and taste qualities of near-isogenic lines (NILs).

    Fig. S3. Comparisons of yield characteristics among near-isogenic lines (NILs).

    Chen M J, Liu G F, Yu H, Wang B, Li J Y. 2018. Towards molecular design of rice plant architecture and grain quality., 63: 1276–1289. (in Chinese with English abstract)

    Chen W F, Xu Z J, Tang L. 2012. Advances and prospects of rice breeding for super high yield in China., 43(6): 643–649. (in Chinese with English abstract)

    Hao J Q, Wang D K, Wu Y B, Huang K, Duan P G, Li N, Xu R, Zeng D L, Dong G J, Zhang B L, Zhang L M, Inzé D, Qian Q, Li Y H. 2021. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice., 14(8): 1266–1280.

    Huang H Y, Qian Q. 2017. Progress in genetic research of rice grain shape and breeding achievements of long-grain shape and good qualityrice., 31(6): 665–672. (in Chinese with English abstract)

    Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, Miyagawa H, Katoh E. 2013. Loss of function of the IAA-glucose hydrolase geneenhances rice grain weight and increases yield., 45(6): 707–711.

    Kan Y, Mu X R, Zhang H, Gao J, Shan J X, Ye W W, Lin H X. 2022.controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis., 8(1): 53–67.

    Lestari P, Ham T H, Lee H H, Woo M O, Jiang W Z, Chu S H, Kwon S W, Ma K, Lee J H, Cho Y C, Koh H J. 2009. PCR marker-based evaluation of the eating quality ofrice (L.)., 57(7): 2754–2762.

    Li N, Xu R, Duan P G, Li Y H. 2018. Control of grain size in rice., 31(3): 237–251.

    Li Y B, Fan C C, Xing Y Z, Yun P, Luo L J, Yan B, Peng B, Xie W B, Wang G W, Li X H, Xiao J H, Xu C G, He Y Q. 2014.encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice., 46(4): 398–404.

    Liu Q, Han R X, Wu K, Zhang J Q, Ye Y F, Wang S S, Chen J F, Pan Y J, Li Q, Xu X P, Zhou J W, Tao D Y, Wu Y J, Fu X D. 2018. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice., 9: 852.

    Mao T, Zhu M D, Sheng Z H, Shao G N, Jiao G A, Mawia A M, Ahmad S, Xie L H, Tang S Q, Wei X J, Hu S K, Hu P S. 2021. Effects of grain shape genes editing on appearance quality of erect-panicle geng/rice., 14(1): 74.

    Sun S Y, Wang L, Mao H L, Shao L, Li X H, Xiao J H, Ouyang Y D, Zhang Q F. 2018. A G-protein pathway determines grain size in rice., 9: 851.

    Tao Y J, Wang J, Xu Y, Wang F Q, Li W, Jiang Y J, Chen Z H, Fan F J, Zhu J P, Li X, Jie Y. 2023. Rational design of grain size to improve rice yield and quality., 30(1): 1?5.

    Wang E T, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He Z H. 2008. Control of rice grain-filling and yield by a gene with a potential signature of domestication., 40(11): 1370–1374.

    Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. 2012. Control of grain size, shape and quality byin rice., 44(8): 950–954.

    Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. 2015. Theregulatory module determines grain shape and simultaneously improves rice yield and grain quality., 47(8): 949–954.

    Xu Q, Xu N, Xu H, Tang L, Liu J, Sun J, Wang J Y. 2014. Breeding value estimation of the application ofandto improvement ofL., 34(4): 1933–1942.

    Xu Z J, Chen W F. 2016. Research progress and related problems onsuper rice in northern China., 49(2): 239–250. (in Chinese with English abstract)

    Yi C D, Wang D R, Wei J, Li W, Cheng X J, Wang Y, Zhou Y, Liang G H, Gu M H. 2016. Development of functional markers and identification of haplotypes for rice grain shape gene, 42(9): 1297. (in Chinese with English abstract)

    December 2022

    Copyright ? 2023, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2022.12.002

    Li Xu (chinalixu1983@163.com);

    Hu Shikai (hushikai@caas.cn)

    25 October 2022;

    19

    人人澡人人妻人| 超碰97精品在线观看| 人人澡人人妻人| 欧美日韩av久久| 三上悠亚av全集在线观看| 成年动漫av网址| 国产高清三级在线| 高清毛片免费看| 亚洲四区av| 99久久中文字幕三级久久日本| 中文字幕人妻丝袜制服| 成年动漫av网址| 国产爽快片一区二区三区| www日本在线高清视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久久国产精品麻豆| 男人舔女人的私密视频| 欧美国产精品va在线观看不卡| 日韩制服骚丝袜av| 男女免费视频国产| 新久久久久国产一级毛片| 国产精品熟女久久久久浪| 香蕉国产在线看| 大话2 男鬼变身卡| 国产在线免费精品| 日韩制服丝袜自拍偷拍| 丰满饥渴人妻一区二区三| 2021少妇久久久久久久久久久| 老司机影院成人| 乱人伦中国视频| 国产毛片在线视频| 人成视频在线观看免费观看| 亚洲国产精品专区欧美| 伦理电影免费视频| 高清欧美精品videossex| 啦啦啦啦在线视频资源| 久热这里只有精品99| 国产精品久久久久久久电影| 少妇被粗大猛烈的视频| 久久影院123| 久久久久精品性色| 亚洲欧美日韩另类电影网站| 国产成人av激情在线播放| 精品久久蜜臀av无| 亚洲综合色惰| 国产探花极品一区二区| 久久久a久久爽久久v久久| 久久精品久久久久久久性| 王馨瑶露胸无遮挡在线观看| 国产成人av激情在线播放| 国产男人的电影天堂91| 自拍欧美九色日韩亚洲蝌蚪91| 久久99精品国语久久久| 91午夜精品亚洲一区二区三区| 婷婷色麻豆天堂久久| 性高湖久久久久久久久免费观看| 热99久久久久精品小说推荐| 国产淫语在线视频| 久久精品国产a三级三级三级| 人妻人人澡人人爽人人| 国语对白做爰xxxⅹ性视频网站| 午夜免费鲁丝| 亚洲一级一片aⅴ在线观看| 99热国产这里只有精品6| av黄色大香蕉| 水蜜桃什么品种好| 亚洲国产精品一区三区| xxx大片免费视频| 欧美精品一区二区免费开放| 亚洲精品乱码久久久久久按摩| 欧美xxⅹ黑人| 亚洲av电影在线进入| 新久久久久国产一级毛片| 国产精品麻豆人妻色哟哟久久| 久久精品国产a三级三级三级| 飞空精品影院首页| 另类精品久久| 久热久热在线精品观看| 黄网站色视频无遮挡免费观看| 国产精品一区www在线观看| 成人漫画全彩无遮挡| 久久国产亚洲av麻豆专区| 少妇的逼好多水| 亚洲成国产人片在线观看| 日本vs欧美在线观看视频| 一级片免费观看大全| 高清黄色对白视频在线免费看| 成人亚洲精品一区在线观看| 九草在线视频观看| 少妇高潮的动态图| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久99精品国语久久久| 国产一区二区在线观看日韩| 亚洲国产av新网站| www.熟女人妻精品国产 | 免费大片黄手机在线观看| 最近最新中文字幕大全免费视频 | 97在线视频观看| 日本爱情动作片www.在线观看| 国产精品久久久久久av不卡| 有码 亚洲区| 爱豆传媒免费全集在线观看| 午夜激情久久久久久久| 青青草视频在线视频观看| 久久影院123| 9色porny在线观看| 在线观看国产h片| 激情五月婷婷亚洲| 日韩中字成人| 久久久久精品久久久久真实原创| av在线观看视频网站免费| 午夜av观看不卡| 少妇人妻 视频| 波多野结衣一区麻豆| av福利片在线| 久久久久久伊人网av| 七月丁香在线播放| 桃花免费在线播放| 一本色道久久久久久精品综合| 美女国产视频在线观看| 国产成人91sexporn| av又黄又爽大尺度在线免费看| 国产成人精品婷婷| 少妇人妻 视频| 国产精品免费大片| 亚洲av福利一区| 少妇的逼好多水| 国产成人av激情在线播放| 91久久精品国产一区二区三区| xxxhd国产人妻xxx| 亚洲 欧美一区二区三区| 国产国拍精品亚洲av在线观看| 五月玫瑰六月丁香| 欧美国产精品一级二级三级| 夫妻午夜视频| 亚洲av.av天堂| 国产欧美日韩综合在线一区二区| 亚洲精品日本国产第一区| 色婷婷久久久亚洲欧美| 欧美 亚洲 国产 日韩一| a 毛片基地| 日韩欧美精品免费久久| 久久午夜综合久久蜜桃| 国产片内射在线| 成人国语在线视频| 久久ye,这里只有精品| 桃花免费在线播放| 激情五月婷婷亚洲| 美女福利国产在线| 丰满少妇做爰视频| 性色avwww在线观看| videossex国产| 9191精品国产免费久久| 亚洲 欧美一区二区三区| 最后的刺客免费高清国语| 2021少妇久久久久久久久久久| 夜夜骑夜夜射夜夜干| 18禁在线无遮挡免费观看视频| 丝袜美足系列| 久久综合国产亚洲精品| 国产1区2区3区精品| 最近最新中文字幕免费大全7| 一级毛片电影观看| 久久影院123| 久久97久久精品| 黄色毛片三级朝国网站| 免费日韩欧美在线观看| 水蜜桃什么品种好| 亚洲精品国产av蜜桃| 青春草视频在线免费观看| 欧美变态另类bdsm刘玥| 在线天堂中文资源库| 在线天堂最新版资源| 亚洲色图 男人天堂 中文字幕 | 久久99一区二区三区| 亚洲欧美一区二区三区黑人 | 久久av网站| 精品少妇黑人巨大在线播放| 免费观看在线日韩| 日韩av不卡免费在线播放| 亚洲精品美女久久久久99蜜臀 | 深夜精品福利| 亚洲精品美女久久久久99蜜臀 | av播播在线观看一区| av免费观看日本| 成人国产麻豆网| 中文精品一卡2卡3卡4更新| 视频中文字幕在线观看| 国产日韩一区二区三区精品不卡| 久久久久久久精品精品| 国产亚洲精品久久久com| 九色亚洲精品在线播放| 熟妇人妻不卡中文字幕| 国产一区二区三区综合在线观看 | 免费久久久久久久精品成人欧美视频 | 国产伦理片在线播放av一区| 18+在线观看网站| 久久久久久人妻| 午夜免费观看性视频| 久久久久久久久久成人| 91精品三级在线观看| 90打野战视频偷拍视频| 免费高清在线观看日韩| 日本色播在线视频| 高清不卡的av网站| 亚洲欧美中文字幕日韩二区| 秋霞在线观看毛片| 一边摸一边做爽爽视频免费| 热re99久久精品国产66热6| 中文字幕亚洲精品专区| 熟女av电影| 欧美人与善性xxx| 国产有黄有色有爽视频| 2022亚洲国产成人精品| 日韩精品有码人妻一区| 一级片'在线观看视频| 天堂8中文在线网| 日本欧美国产在线视频| av在线app专区| 欧美97在线视频| 两个人免费观看高清视频| 亚洲在久久综合| 色94色欧美一区二区| 观看av在线不卡| 国国产精品蜜臀av免费| 精品少妇久久久久久888优播| 午夜91福利影院| 曰老女人黄片| 国产亚洲精品第一综合不卡 | 色哟哟·www| 亚洲精品成人av观看孕妇| 久久av网站| 婷婷色麻豆天堂久久| 日韩av免费高清视频| 久久久久久人人人人人| 国产一区有黄有色的免费视频| 午夜免费男女啪啪视频观看| 91午夜精品亚洲一区二区三区| av一本久久久久| 黄色视频在线播放观看不卡| 蜜桃国产av成人99| 亚洲精华国产精华液的使用体验| 制服丝袜香蕉在线| 色吧在线观看| 一区二区三区乱码不卡18| 免费黄网站久久成人精品| 国产精品.久久久| 久久这里只有精品19| 高清不卡的av网站| a 毛片基地| 国产精品蜜桃在线观看| 午夜福利,免费看| 日本午夜av视频| av免费在线看不卡| 亚洲色图综合在线观看| 久久精品夜色国产| 欧美3d第一页| 精品一品国产午夜福利视频| 国产探花极品一区二区| 美女脱内裤让男人舔精品视频| 在线观看免费日韩欧美大片| 免费久久久久久久精品成人欧美视频 | 你懂的网址亚洲精品在线观看| 只有这里有精品99| www.熟女人妻精品国产 | 18禁国产床啪视频网站| 精品熟女少妇av免费看| 精品久久久久久电影网| 亚洲av.av天堂| 国产精品熟女久久久久浪| 久久精品熟女亚洲av麻豆精品| 欧美3d第一页| 免费观看无遮挡的男女| 侵犯人妻中文字幕一二三四区| 久久狼人影院| 久久久久精品人妻al黑| 国产精品一国产av| 美女国产视频在线观看| 亚洲精品av麻豆狂野| 成年人午夜在线观看视频| 18禁观看日本| 在线观看免费视频网站a站| 亚洲av中文av极速乱| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久久成人av| 国产日韩欧美在线精品| 亚洲久久久国产精品| 国国产精品蜜臀av免费| 91精品三级在线观看| 菩萨蛮人人尽说江南好唐韦庄| 免费大片18禁| 欧美成人精品欧美一级黄| 亚洲中文av在线| 视频区图区小说| 人妻人人澡人人爽人人| 97在线人人人人妻| 在线看a的网站| xxx大片免费视频| www日本在线高清视频| 久久久a久久爽久久v久久| 日本免费在线观看一区| 看非洲黑人一级黄片| 日日摸夜夜添夜夜爱| 亚洲五月色婷婷综合| 男女无遮挡免费网站观看| 男女免费视频国产| 国产精品人妻久久久影院| 国产成人av激情在线播放| 人妻少妇偷人精品九色| 国产毛片在线视频| 亚洲国产av影院在线观看| 91在线精品国自产拍蜜月| 免费黄色在线免费观看| 男女午夜视频在线观看 | 交换朋友夫妻互换小说| 亚洲精品色激情综合| av在线播放精品| 乱人伦中国视频| www.av在线官网国产| 波多野结衣一区麻豆| 搡老乐熟女国产| 国产一级毛片在线| 国产探花极品一区二区| 国产永久视频网站| 桃花免费在线播放| 亚洲欧美清纯卡通| 97在线人人人人妻| 你懂的网址亚洲精品在线观看| 黄片无遮挡物在线观看| 天美传媒精品一区二区| 在线观看www视频免费| 91成人精品电影| www.av在线官网国产| 欧美日韩成人在线一区二区| 免费久久久久久久精品成人欧美视频 | 亚洲伊人久久精品综合| 18禁在线无遮挡免费观看视频| 最近2019中文字幕mv第一页| 天天影视国产精品| 亚洲国产日韩一区二区| 大香蕉久久成人网| 亚洲欧洲日产国产| 欧美精品亚洲一区二区| 国产高清三级在线| 国产免费福利视频在线观看| 精品一区二区三区四区五区乱码 | 一区在线观看完整版| 男女国产视频网站| 欧美精品亚洲一区二区| 亚洲丝袜综合中文字幕| 国产免费福利视频在线观看| 久久久久视频综合| 热99国产精品久久久久久7| 妹子高潮喷水视频| 欧美+日韩+精品| 69精品国产乱码久久久| 一二三四中文在线观看免费高清| 免费看av在线观看网站| 80岁老熟妇乱子伦牲交| 久久国产精品大桥未久av| 菩萨蛮人人尽说江南好唐韦庄| 久久久久精品性色| 99国产精品免费福利视频| 两性夫妻黄色片 | 国内精品宾馆在线| 新久久久久国产一级毛片| 日本免费在线观看一区| 日本vs欧美在线观看视频| 午夜老司机福利剧场| 国产成人精品一,二区| 亚洲激情五月婷婷啪啪| 国产亚洲欧美精品永久| 日韩 亚洲 欧美在线| av在线老鸭窝| 视频在线观看一区二区三区| 黑人欧美特级aaaaaa片| 欧美 日韩 精品 国产| 亚洲av电影在线进入| 久久久久久伊人网av| 热re99久久国产66热| 韩国精品一区二区三区 | 观看美女的网站| 少妇 在线观看| 成年女人在线观看亚洲视频| 亚洲精品自拍成人| 午夜免费鲁丝| 热re99久久精品国产66热6| 亚洲,欧美,日韩| 欧美日韩视频精品一区| 观看美女的网站| 丰满少妇做爰视频| 一级爰片在线观看| 看十八女毛片水多多多| 亚洲av男天堂| 人妻人人澡人人爽人人| 人妻 亚洲 视频| 国产精品一国产av| 男男h啪啪无遮挡| 精品亚洲成国产av| 国产精品成人在线| 人妻人人澡人人爽人人| 深夜精品福利| 18禁裸乳无遮挡动漫免费视频| 久久久久久人人人人人| 一区二区av电影网| 十八禁高潮呻吟视频| 99久久中文字幕三级久久日本| 久久久久久久亚洲中文字幕| 97在线视频观看| a级片在线免费高清观看视频| 国产日韩一区二区三区精品不卡| 九草在线视频观看| 精品久久久精品久久久| 亚洲av欧美aⅴ国产| 亚洲欧美一区二区三区国产| a级毛片在线看网站| 国产乱来视频区| 欧美日韩视频精品一区| 久久精品国产鲁丝片午夜精品| 国产极品粉嫩免费观看在线| 久久人人97超碰香蕉20202| 国产欧美日韩综合在线一区二区| 丁香六月天网| √禁漫天堂资源中文www| 宅男免费午夜| 国产成人免费无遮挡视频| 国产高清不卡午夜福利| 色婷婷久久久亚洲欧美| 国产极品天堂在线| 亚洲精品国产av蜜桃| av片东京热男人的天堂| 精品视频人人做人人爽| 久久人人爽av亚洲精品天堂| 亚洲成色77777| 国产精品久久久久成人av| 22中文网久久字幕| 婷婷成人精品国产| 久久久久久伊人网av| 国产免费又黄又爽又色| 亚洲精品国产色婷婷电影| 亚洲在久久综合| 丝袜美足系列| 纵有疾风起免费观看全集完整版| 久久99热6这里只有精品| 少妇被粗大猛烈的视频| 亚洲国产毛片av蜜桃av| 欧美少妇被猛烈插入视频| 亚洲久久久国产精品| 精品少妇内射三级| 男女下面插进去视频免费观看 | 日产精品乱码卡一卡2卡三| 丝袜在线中文字幕| 成人国产av品久久久| 久久久久国产精品人妻一区二区| 两性夫妻黄色片 | 如日韩欧美国产精品一区二区三区| 蜜桃国产av成人99| 免费高清在线观看视频在线观看| av卡一久久| 日韩成人伦理影院| 国产成人91sexporn| 欧美日韩亚洲高清精品| 永久网站在线| 精品久久国产蜜桃| 建设人人有责人人尽责人人享有的| 精品人妻熟女毛片av久久网站| 亚洲精品,欧美精品| 2021少妇久久久久久久久久久| 看免费成人av毛片| 两个人看的免费小视频| 考比视频在线观看| 九色成人免费人妻av| 巨乳人妻的诱惑在线观看| 亚洲美女黄色视频免费看| 99热全是精品| 免费高清在线观看视频在线观看| 日韩在线高清观看一区二区三区| av在线播放精品| 国产精品久久久久久久电影| 少妇熟女欧美另类| 国产麻豆69| 国产色婷婷99| 综合色丁香网| 中文字幕另类日韩欧美亚洲嫩草| 一边摸一边做爽爽视频免费| 日本wwww免费看| 国产又爽黄色视频| 视频中文字幕在线观看| 国产熟女欧美一区二区| 国产日韩欧美视频二区| 极品人妻少妇av视频| 久久精品aⅴ一区二区三区四区 | 亚洲婷婷狠狠爱综合网| 男女啪啪激烈高潮av片| 九九爱精品视频在线观看| 久久人人爽人人爽人人片va| 久久久久精品人妻al黑| 欧美国产精品va在线观看不卡| 亚洲精品,欧美精品| 精品亚洲乱码少妇综合久久| 激情五月婷婷亚洲| 90打野战视频偷拍视频| 国产黄色视频一区二区在线观看| 久久精品久久久久久噜噜老黄| 日本欧美视频一区| 免费大片18禁| 欧美日韩一区二区视频在线观看视频在线| 国产精品国产三级国产专区5o| 国产精品一国产av| 超碰97精品在线观看| 日本av免费视频播放| 另类精品久久| 一区在线观看完整版| 香蕉精品网在线| 26uuu在线亚洲综合色| 欧美亚洲日本最大视频资源| 亚洲天堂av无毛| 国产成人欧美| 久久99蜜桃精品久久| 国产乱来视频区| 久久99精品国语久久久| 啦啦啦啦在线视频资源| 在线观看免费日韩欧美大片| 热re99久久精品国产66热6| 观看av在线不卡| 纯流量卡能插随身wifi吗| 成人国语在线视频| 高清视频免费观看一区二区| 最近中文字幕高清免费大全6| 国产欧美亚洲国产| 男男h啪啪无遮挡| 波野结衣二区三区在线| 亚洲成人手机| 国产男女超爽视频在线观看| 18禁在线无遮挡免费观看视频| 黑丝袜美女国产一区| 性色avwww在线观看| 欧美日韩综合久久久久久| 国产免费一区二区三区四区乱码| 久久精品人人爽人人爽视色| 黄色怎么调成土黄色| 国产毛片在线视频| 搡老乐熟女国产| 人妻一区二区av| 在线观看国产h片| 深夜精品福利| 欧美性感艳星| 在线精品无人区一区二区三| 国产日韩一区二区三区精品不卡| 蜜桃在线观看..| 久久影院123| 国产成人一区二区在线| 国产成人av激情在线播放| 亚洲国产日韩一区二区| 黄色毛片三级朝国网站| 亚洲成色77777| 嫩草影院入口| 国产av精品麻豆| 高清欧美精品videossex| 午夜福利网站1000一区二区三区| 亚洲欧美一区二区三区国产| 国产精品国产三级专区第一集| 婷婷色av中文字幕| av福利片在线| 十八禁高潮呻吟视频| 国产一区亚洲一区在线观看| 久久精品aⅴ一区二区三区四区 | 1024视频免费在线观看| 建设人人有责人人尽责人人享有的| 91aial.com中文字幕在线观看| 久久久久久人人人人人| 五月伊人婷婷丁香| 成人综合一区亚洲| 91精品伊人久久大香线蕉| 婷婷色麻豆天堂久久| 久久久a久久爽久久v久久| 久久青草综合色| 纵有疾风起免费观看全集完整版| 欧美成人午夜免费资源| 国产日韩一区二区三区精品不卡| 成年美女黄网站色视频大全免费| 女的被弄到高潮叫床怎么办| 亚洲欧洲日产国产| 欧美日韩综合久久久久久| 超碰97精品在线观看| 免费久久久久久久精品成人欧美视频 | 午夜av观看不卡| 成年女人在线观看亚洲视频| 好男人视频免费观看在线| 成人手机av| 成年动漫av网址| 午夜91福利影院| 国产 一区精品| 一区二区日韩欧美中文字幕 | 黄色一级大片看看| 亚洲五月色婷婷综合| 日韩三级伦理在线观看| 亚洲中文av在线| 麻豆精品久久久久久蜜桃| 亚洲国产欧美在线一区| 久久久国产精品麻豆| 国产亚洲一区二区精品| 国产国拍精品亚洲av在线观看| 久久女婷五月综合色啪小说| 欧美3d第一页| 色哟哟·www| 国产熟女欧美一区二区| 18禁动态无遮挡网站| www.熟女人妻精品国产 | 在线观看www视频免费| 日韩av免费高清视频| 最近中文字幕2019免费版| 如何舔出高潮| 成人影院久久| 男女下面插进去视频免费观看 |