• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fault-tolerance wide voltage conversion gain DC/DC converter for more electric aircraft

    2023-09-05 09:44:12BinxinZHUJiaxinLIUYuLIUKaihongWANG
    CHINESE JOURNAL OF AERONAUTICS 2023年7期

    Binxin ZHU, Jiaxin LIU, Yu LIU, Kaihong WANG

    college of Electrical Engineering and New Energy (Hubei Provincial Research Center on Microgrid Engineering Technology),China Three Gorges University, Yichang 443002, China

    KEYWORDS Cuk converter;Fault tolerance;High reliability;More Electric Aircraft(MEA);Wide voltage conversion gain

    Abstract In this paper,a fault-tolerance wide voltage conversion gain DC/DC converter for More Electric Aircraft (MEA) is proposed.The proposed converter consists of a basic Cuk converter module and n expandable units.By adjusting the operation state of the expandable units, the voltage conversion gain of the proposed converter could be regulated,which makes it available for wide voltage conversion applications.Especially, since mutual redundancy can be realized between the basic Cuk converter module and the expandable units, the converter can continuously work when an unpredictable fault occurs to the fault-tolerant parts of the proposed converter,which reflects the fault tolerance of the converter and significantly improves the reliability of the system.Moreover,the advantages of small input current ripple, automatic current sharing and low voltage stress are also integrated in this converter.The working principle and features of the proposed converter are mainly introduced, and an experimental prototype with 800 W output power has been manufactured to verify the practicability and availability of the proposed converter.

    1.Introduction

    To reduce greenhouse gas emissions and fuel consumption,much attention has been focused on More Electric Aircraft(MEA).1–3At present,the bus voltage of MEA is divided into 270 V and 28 V, and its power supply system is shown in Fig.1.Normally,270 V DC bus is preferred to reduce the size,weight,and cost of wire and machine.4Since the rated voltage of some DC energy sources, such as fuel cells, batteries and supercapacitors, is at 24–48 V, the output voltage will be accompanied by the variation with working conditions.Therefore,converters with wide voltage gain are required to connect DC energy sources and DC bus.Meanwhile, fault tolerance is also required to ensure the reliability of the power supply system.5–6.

    Fig.1 Power supply system in MEA.

    Fault tolerance means that when an unintended sudden failure occurs to a component or components, the system can continuously work.Generally, fault tolerance of the converter can be achieved by hardware redundancy, which can be divided into four categories: switch-level, leg-level,module-level, and system-level.7–8Switch-level fault-tolerant method can be simply summarized as adding additional auxiliary switches in the converter to make the topology have the fault-tolerant ability.9–12As mentioned in Ref.,12an additional switch connects the input terminal and output terminal of the buck converter.The converter can form a buck-boost converter through the additional switch to continue to operate when original switch of the converter is failed.However, this topology cannot be extended,which severely limits its applications.For leg-level fault-tolerant design,a redundant branch is usually added to replace the faulted branch to ensure the normal operation of the converter.13–17For example, the interleaved connection can not only reduce the ripple of the input current,but also realize the redundancy of branches.Although the converter has high reliability, the parasitic parameters in the circuit may greatly affect its input current, which results in the imbalance of input current between phases.Consequently, sophisticated control is needed to balance the current of each phase.In addition,system-level redundancy places the entire converter as a redundant backup, which greatly improves system reliability, but incurs extremely high costs.8In order to balance the hardware redundancy and cost of the converter,leg-level design or module-level design is considered as a promising choice.In the module-level,redundant modules are connected in series or in parallel in the converter.18–24The common way to achieve redundancy is adopting the Input-Parallel Output-Series (IPOS) structure.This method can improve the voltage conversion ratio of the converter, and meanwhile the interleaved conduction mode of the switches can also decrease the input current ripple of the converter.20.

    However, the input and output voltage of the boost IPOS converter are not in common ground, and the anti-jamming capability is poor.While the duty cycle of the switches is less than 0.5, the input current of each phase is imbalanced.21–24The imbalance of input current problem is solved by fixing the duty cycle of some switches equal to 0.5 in Ref.22.Limited duty cycle and imbalanced input current are solved by adding an auxiliary diode to the converter in Ref.,23but the input and output voltage are still not in common ground.In Ref.,24the above-mentioned problems can be solved by adding capacitors and diodes,but the voltage of capacitors at the output terminal is imbalanced.Therefore, it is indispensable to search for a more valuable topology with redundancy ability and apply it to aerospace systems.

    In this paper,a fault-tolerance wide voltage conversion gain DC/DC converter for MEA is proposed,which is composed of a basic Cuk converter module and n expandable units.A structure similar to the IPOS is used in the proposed converter,which can effectively solve the above problems.The input and output voltage of the converter are in the common ground, and the automatic input-current sharing can be realized whenever the duty cycle of the switches is greater than 0.5 or less than 0.5.Each module can be redundant to other modules, which makes the converter with reliability.Moreover,by controlling the working state of each expandable unit,the proposed converter can achieve a wide voltage conversion gain.

    The structure of this paper is organized as follows.First,the operation principle and performance of the converter are described.Then,fault redundancy and adjustable voltage conversion gain of the proposed converter are analyzed.In addition, the characteristics and performance of the proposed converter are compared with those of other similar converters.Finally, experimental results and correlations analysis are described.

    2.Operation principle and performance

    2.1.Operation principle

    As shown in Fig.2, the topology of the proposed converter consists of a basic Cuk converter module and multiple expandable units.Each expandable unit includes two capacitors, two inductors, a switch, and a diode.The basic Cuk converter module with one expandable unit is taken as an example to simplify analysis process,which is shown in Fig.3.The following hypotheses are made in the analysis: (A) All components are ideal devices,taking no account of the parasitic parameters of components in the circuit; (B) Owing to the fact that the capacitance of all capacitors is large enough, the voltage ripples are much smaller than their DC values; (C) When converter is in steady state, it works in continuous conduction mode (CCM); (D) The driving signals of S1and S11are interleaved with 180° phase shift.

    The operation waveforms of the proposed converter in one switching period are shown in Fig.4.When duty cycles of the switches range from 0.5 to 1,there are three working modes of the converter, corresponding to Mode 1 to Mode 3, and their relevant waveforms are shown in Fig.4(a).When duty cycle is less than 0.5,it is also divided into three working modes:Mode 2 to Mode 4, and the relevant waveforms are shown in Fig.4(b).The relevant equivalent circuits of the converter in one switching period are shown in Fig.5.The details can be described as follows.

    Fig.2 Proposed converter with n expandable units.

    Fig.3 Proposed converter with one expandable unit.

    Fig.4 Key waveforms for one switching period (Duty cycle D1 = D11 = D).

    Fig.5 Equivalent circuits of working states (1: switch is turned on, 0: switch is turned off).

    Mode 1 [t0–t1] & [t2–t3] (corresponding to Fig.5(a)): Both switches S1and S11are conducting.During this mode,voltage source uinsupplies power to inductors L1,L11,while inductors L2,L12,capacitors C2,C12and load R are charged reversely by capacitors C1, C11.The currents of inductors L11, L12reach their peak values at t1.

    Mode 2[t1–t2]&[t5–t6](corresponding to Fig.5(b)):Switch S11and diode D1turn on, switch S1and diode D11turn off.During this mode, the current of inductor L1continuously increases linearly.Capacitor C11is charged by voltage source uinand inductor L11.Inductor L12and capacitor C12supply power to load R.The current of inductor L11decreases linearly.

    Mode 3[t3–t4]&[t7–t8](corresponding to Fig.5(c)):Switch S1and diode D11turn off, switch S11and diode D1turn on.During this mode, the current of inductor L11continuously increases linearly.Voltage source uinand inductor L1supply power to capacitor C1.Load R is charged by inductor L2and capacitor C2.The current of inductor L1decreases linearly.

    Mode 4 [t6–t7] & [t8–t9] (corresponding to Fig.5(d)): Both switches S1and S11are in the off-state.During this mode,capacitors C1and C11are charged by voltage source uinand inductors L1, L11, while inductors L2, L12and capacitors C2,C12supply power to load R.

    2.2.Conversion ratio

    Suppose that duty cycles of S1and S11are different, and the volt-second balance formulas for inductors L1, L2, L11and L12are obtained as follows:

    2.3.Voltage and current stress of components

    The voltage stresses of the switches and diodes can be calculated as

    When duty cycle D1=D11=...=Dn1=D(n=1,2,...),the voltage stresses of the semiconductor devices can be expressed as

    According to Eq.(7), the voltage stress of semiconductor device of the proposed converter is lower than that of the conventional Cuk converter when the input voltage and output voltage are the same.

    By neglecting the effect of inductor current ripple on the results, the current stress analysis is simplified.The amperesecond balance formulas for capacitors C1, C2, C11and C12are deduced:

    Compared with Eq.(9) and Eq.(10), it can be concluded that when all switches have the same duty cycle, the average current flowing through each phase is equal.Consequently,automatic input-current sharing of the proposed converter can be realized.

    3.Fault redundancy and adjustable voltage conversion gain

    The basic Cuk converter module and expandable units of the converter can be redundant for each other,which can improve the reliability of the converter.The unit including inductor L1,switch S1and capacitor C1in the basic Cuk converter module,and the units containing inductors Ln1,switches Sn1and capacitors Cn1in expandable cells are fault-tolerant parts of the proposed converter.When any fault-tolerant part of the above unit is failed, the converter can work continuously.Take the basic Cuk converter module with one expandable unit as an example as shown in Fig.6.Since switches are the most vulnerable component in a converter,switch failures of the converter are discussed here.The basic Cuk converter module can work continuously when the switch S11of the expandable unit is not working, and vice versa.And the voltage conversion gain of the converter will change accordingly.The detailed analysis is given as follows.

    Fig.6 Equivalent circuit for single switch operation.

    Suppose that switch S1is open circuit and switch S11is working normally.The relevant waveforms and equivalent circuits are shown in Fig.7 and Fig.8, respectively.

    Interval 1 [t0–t1] (corresponding to Fig.8(a)): Switch S11and diode D1are conducting,voltage source uinsupplies power to inductor L11,inductor L12and load R are charged by capacitors C11and C12,and capacitor C2supplies power to inductor L2.

    Interval 2 [t1–t2] (corresponding to Fig.8(b)): The current flowing through capacitor C12is reversed at t1.

    Interval 3 [t2–t3] (corresponding to Fig.8(c)): Switch S11is turned off, diode D11is turned on, and voltage source uinand inductor L11supply power to capacitor C11.Inductor L2and capacitors C2and C12supply power to load R.

    Fig.7 Key waveforms for case that only switch S11 is in operation.

    Fig.8 Equivalent circuit for case that S1 is open circuit and switch S11 is working.

    Interval 4 [t3–t4] (corresponding to Fig.8(d)): The current flowing through capacitor C12is reversed at t3.

    During one switch period, the voltage of capacitor C1equals the voltage source uinand remains constant,so the current of capacitor C1is 0 and capacitor C1corresponds to an open circuit.Therefore, the current flowing through inductance L1is 0.The voltage of inductor L1is also 0, which is equivalent to a wire.

    Therefore, the volt-second balance formulas for inductors L2, L11and L12are obtained:

    When the converter is extended to a basic Cuk Converter module with n expandable units, it can continue to operate normally regardless of the failure of the basic Cuk converter module or the expandable unit.When total of m modules and units fail (m ≤n) and the duty cycles of all switches are the same,the voltage gain conversion ratio formula of the converter can be expressed as

    4.Performance comparison

    Compared with other similar converters, advantages of the proposed converter are shown in Table 1.20,25,26

    The interleaved parallel structure can effectively reduce the input current ripple of Cuk converter and realize the mutual redundancy between phases.However, conventional interleaved parallel structure cannot improve the voltage conversion gain of the converter, and the input current of each phase cannot achieve automatic current sharing which means complicated control is needed to realize the current sharing of each input phase.The converter proposed in this paper can solve the above problems perfectly without changing the number of devices.

    The topologies in Ref.,20Ref.,25and Ref.26adopt structure IPOS structure, which realizes automatic input-current sharing.However, the input voltage and output voltage of these topologies are not in common ground, which results in poor anti-interference ability of the converter.In addition, none of these topologies can be extended, so that the voltage conversion gain of these converters and their applications are limited.The converter proposed in Ref.20 combines a boost converter with an elementary self-lift Cuk converter which has strong fault-tolerance and can continue to work normally even after any switch is failed.Ref.25 improves the voltage gain of the converter by adding a switch and a diode to the IPOS buckboost converter.However, the switches S1and S3of the converter are floating ground, which makes the driving circuit design complicated.When switch S2is failed,the input current is imbalanced and the reliability of the converter is reduced.The IPOS quasi-Z-source DC-DC converter is proposed in Ref.26, which evidently improves the voltage conversion gain of the converter, but this structure requires more components and the duty cycle of the converter must be less than 0.5,otherwise the converter cannot work properly.

    In practice, the voltage conversion gain of the converters proposed in Ref.20, Ref.25 and Ref.26 and conventional interleaved Cuk converter can only be regulated by changing the duty cycle; however, the proposed converter can adjust the output voltage conversion ratio by controlling both the duty cycle and the working state of the expandable units.Thus,a wide voltage conversion gain can be achieved in the proposed converter.

    5.Simulation and experimental results

    5.1.Simulation results

    To verify the practicability of the proposed converter in highpower states,the converter with three expandable units is simulated.The relevant simulation parameters are shown in Table 2.

    Voltage waveforms of switches, diodes and capacitors are shown in Figs.9(a)-(d).The average voltages satisfy the calculation results of Eq.(4) and Eq.(7).

    Current waveforms of inductors are shown in Figs.9(e)and(f).The average currents satisfy the calculation results of Eq.(11).

    Table 1 Comparison with other interleaved parallel converters.

    Table 2 Specification of simulation circuit.

    Fig.9 Simulation waveforms.

    The input and output voltage and current waveforms are represented in Fig.9(g).When input voltage uinis 48 V,output voltage uois 270 V,the input current is 2083 A and the output current is 520 A.

    When switch S31is failed or stops working at 0.25 s, the simulation results are shown in Fig.10.The current flowing through L31drops rapidly to 0 A,and the average output voltage uoremains 270 V which effectively verifies the reliability of the proposed converter when working in high-power states.

    5.2.Experimental results

    To validate the aforementioned theoretical analysis,an 800 W prototype with two expandable units is built.The specific models and parameters of the components used in the prototype are collected in Table 3,and the expandable cell and main circuit of the prototype are displayed in Fig.11.

    The voltage stresses of the switches and diodes are shown in Figs.12(a) and(b), respectively.Initial phase difference of the three PWM waves is 120°,and duty cycle of all switches is kept at 0.65.The voltage stress of the switches and diodes is about 138 V, which is consistent with the theoretical analysis.

    The voltage waveforms of capacitors C1, C11and C21are shown in Fig.12(c).The voltage values are about 138 V,228 V and 318 V respectively.Fig.12(d)represents the voltage waveforms of capacitors C2, C12and C22, all about 90 V,which correspond to the calculation results of Eq.(4).

    Fig.12(e) shows the current waveforms of three input inductors L1,L11and L21,and the value of the current is about 5.56 A.The current waveforms of three output inductors L2,L12and L22are shown in Fig.12(f) and the current value is about 2.96 A.

    The input and output voltage and current waveforms are represented in Fig.13.When input voltage uinis 48 V, output voltage uois 270 V, the input current is about 18A, and the output current is about 3 A.

    When the working state of the expandable unit changes,the output voltage of the converter connected to the DC bus is required to be stable.Take the sudden change of the working state of switch S21as an example.As can be seen from Fig.14,when the three switches are working normally,the output voltage is about 270 V, the input current is about 18 A, and the current flowing through L21is about 5.6 A.When switch S21stopped working, the current flowing through L21was rapidly reduced to 0 A.After 25 ms,the input current and output voltage were stabilized at 18 A and 270 V.The experimental result shows that a wide voltage conversion gain can be achieved in the proposed converter by controlling the switches of each expandable unit, and the basic Cuk converter and expandable units can be redundant for each other, which proves that the fault tolerance of the converter can make the system highly reliable.

    Fig.10 Waveform when switch S31 operating state changes in simulation.

    Table 3 Specification of experimental prototype.

    Fig.11 Photograph of prototype.

    Fig.12 Voltage and current waveforms of prototype.

    Fig.15 shows the efficiency curves of the proposed converter with different expandable units.The peak efficiency of the converter reaches 94.21%, when output power is 500 W.When output power of the converter with two expandable units is 800 W, the efficiency is 92.5%.The specific losses include diode loss PD, switch loss PS, inductor loss PL,capacitor loss PCand other losses Pothercaused by circuit parasitic parameters.Fig.16 reveals the loss percentage distributions of the devices of this converter.

    Fig.13 Input and output waveforms.

    Fig.14 Switch S21 operating state changes.

    Fig.17 shows the comparison between the theoretical and actual voltage conversion gain of the proposed converter.Due to the presence of parasitic components, the voltage conversion gain of the actual circuit will not reach its theoretical value.With the increase of duty cycle, the deviation between theoretical value and actual value will increase.When the voltage gain is fixed to 5.25 and the number of expandable units is 1 and 2, the duty cycle is adjustable, ranging from 0.7377 to 0.6521.When the number of expandable units is 1 and 2 and duty cycle ranges from 0.7377 to 0.6521, the voltage gain is in the range of 8.44 to 3.81.Therefore,by controlling the duty cycle and the working state of the expandable units, the proposed converter can achieve wide-range voltage conversion gain.

    Fig.15 Power efficiency curves of proposed converter when expandable units are 1 and 2.

    Fig.16 Calculated loss distribution.

    Fig.17 Comparison of theoretical and actual voltage conversion gain.

    6.Conclusions

    A fault-tolerance wide voltage conversion gain DC/DC converter for MEA is proposed in this paper.Theoretical analysis and experimental results show that the proposed converter has the following advantages:

    (1) The voltage conversion gain of the proposed converter can be adjusted by controlling the working state of each expandable unit, which makes the proposed converter achieve a wide voltage conversion gain.

    (2) The basic Cuk converter module and expandable units of the converter can be redundant for each other.When any unpredictable fault occurs to the fault-tolerant parts, the proposed converter can work continuously,which reflects the fault tolerance of the converter and effectively improves the reliability of the system.

    (3) Compared with the conventional Cuk Converter, the voltage stress of the semiconductor devices of the proposed converter is lower, and automatic input-current sharing can also be realized.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    This study was supported by the National Natural Science Foundation of China(No.51707103)and the Hubei Provincial Key Laboratory on Operation and Control of Cascaded Hydropower Station, China (No.2022KJX08).

    国产黄色小视频在线观看| 黄色丝袜av网址大全| 99久久无色码亚洲精品果冻| 色播亚洲综合网| 一个人免费在线观看电影| 欧美激情在线99| 69av精品久久久久久| 性色avwww在线观看| 真人一进一出gif抽搐免费| 亚洲五月婷婷丁香| 国产精华一区二区三区| 麻豆国产av国片精品| 18禁裸乳无遮挡免费网站照片| 免费观看人在逋| 国产蜜桃级精品一区二区三区| 一本精品99久久精品77| 首页视频小说图片口味搜索| 嫩草影院入口| 十八禁人妻一区二区| 青草久久国产| 麻豆国产av国片精品| 国产日本99.免费观看| 精品无人区乱码1区二区| 最新在线观看一区二区三区| 色综合欧美亚洲国产小说| 国产欧美日韩一区二区精品| 一区福利在线观看| 亚洲综合色惰| 国产成人福利小说| 色哟哟·www| 亚洲精品亚洲一区二区| 国产成人啪精品午夜网站| 嫩草影院入口| 亚洲片人在线观看| 美女cb高潮喷水在线观看| 亚洲不卡免费看| 久久久成人免费电影| 老司机深夜福利视频在线观看| 99久久精品热视频| 丰满人妻熟妇乱又伦精品不卡| 色哟哟·www| 波多野结衣巨乳人妻| 91在线观看av| 亚洲无线观看免费| 中文在线观看免费www的网站| 夜夜夜夜夜久久久久| 美女cb高潮喷水在线观看| 日本黄色视频三级网站网址| 久久国产精品影院| 国产精品一区二区三区四区免费观看 | 一区二区三区四区激情视频 | 91久久精品国产一区二区成人| bbb黄色大片| 天堂影院成人在线观看| 精品不卡国产一区二区三区| 精品久久久久久,| 亚洲无线在线观看| 欧美xxxx性猛交bbbb| 亚洲在线观看片| 看十八女毛片水多多多| eeuss影院久久| 听说在线观看完整版免费高清| av女优亚洲男人天堂| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 成年女人永久免费观看视频| 精品熟女少妇八av免费久了| 老女人水多毛片| 国产黄片美女视频| 国产蜜桃级精品一区二区三区| 99国产精品一区二区蜜桃av| 首页视频小说图片口味搜索| 欧美+日韩+精品| 国产精品久久久久久亚洲av鲁大| av在线天堂中文字幕| 麻豆成人午夜福利视频| 天堂网av新在线| 九九在线视频观看精品| 精品一区二区免费观看| 欧美在线一区亚洲| 国产精品永久免费网站| 小说图片视频综合网站| 一二三四社区在线视频社区8| 一边摸一边抽搐一进一小说| 国产高清三级在线| 三级国产精品欧美在线观看| 日韩欧美一区二区三区在线观看| 亚洲国产欧美人成| 此物有八面人人有两片| 内地一区二区视频在线| 国产中年淑女户外野战色| 在线免费观看不下载黄p国产 | 久久午夜亚洲精品久久| 国产高清三级在线| 国产精品一区二区免费欧美| 看黄色毛片网站| .国产精品久久| 国产爱豆传媒在线观看| 3wmmmm亚洲av在线观看| 高清日韩中文字幕在线| 一二三四社区在线视频社区8| 国产高清视频在线观看网站| 成人特级av手机在线观看| 免费大片18禁| 亚洲精品久久国产高清桃花| 日韩 亚洲 欧美在线| 亚洲在线自拍视频| 好男人电影高清在线观看| 国产av不卡久久| 性插视频无遮挡在线免费观看| 很黄的视频免费| 国产淫片久久久久久久久 | 国产三级在线视频| 国产精品综合久久久久久久免费| 性插视频无遮挡在线免费观看| a在线观看视频网站| 69av精品久久久久久| 十八禁人妻一区二区| 免费在线观看亚洲国产| 精品久久久久久久久久久久久| 中文字幕av在线有码专区| 黄色配什么色好看| 亚洲综合色惰| 51国产日韩欧美| 免费一级毛片在线播放高清视频| 日本与韩国留学比较| 免费看美女性在线毛片视频| 国内久久婷婷六月综合欲色啪| av天堂中文字幕网| 亚洲熟妇中文字幕五十中出| 国内精品久久久久久久电影| 99久久九九国产精品国产免费| 久久亚洲精品不卡| 国产亚洲精品久久久com| 久久久久久久亚洲中文字幕 | 97超级碰碰碰精品色视频在线观看| 中文资源天堂在线| 一区福利在线观看| 日韩高清综合在线| 亚洲人成网站高清观看| 色在线成人网| 欧美一区二区亚洲| 免费黄网站久久成人精品 | 国产人妻一区二区三区在| 麻豆一二三区av精品| 国产乱人视频| 欧美在线一区亚洲| 成人美女网站在线观看视频| 亚洲专区中文字幕在线| 亚洲aⅴ乱码一区二区在线播放| 人妻久久中文字幕网| 三级男女做爰猛烈吃奶摸视频| 亚洲激情在线av| 日韩亚洲欧美综合| 欧美激情国产日韩精品一区| 亚洲av美国av| bbb黄色大片| 熟妇人妻久久中文字幕3abv| 欧美午夜高清在线| 亚洲欧美激情综合另类| 亚洲人成网站在线播放欧美日韩| 亚洲av电影在线进入| 国产单亲对白刺激| 亚洲电影在线观看av| 丰满乱子伦码专区| 亚洲第一电影网av| 中文字幕av成人在线电影| 观看美女的网站| 黄色丝袜av网址大全| 国产高潮美女av| 国内毛片毛片毛片毛片毛片| 国产色爽女视频免费观看| 国内少妇人妻偷人精品xxx网站| 免费大片18禁| 老女人水多毛片| 91字幕亚洲| 亚洲七黄色美女视频| 国产精品永久免费网站| 国产男靠女视频免费网站| 久久6这里有精品| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 老鸭窝网址在线观看| 欧美一级a爱片免费观看看| av在线观看视频网站免费| www.999成人在线观看| 99热6这里只有精品| 少妇熟女aⅴ在线视频| 在线免费观看的www视频| 少妇人妻精品综合一区二区 | 90打野战视频偷拍视频| 成熟少妇高潮喷水视频| 悠悠久久av| 深爱激情五月婷婷| 精品一区二区三区av网在线观看| 亚洲精品日韩av片在线观看| 能在线免费观看的黄片| 亚洲经典国产精华液单 | 亚洲成av人片在线播放无| 午夜a级毛片| 一本一本综合久久| 国产白丝娇喘喷水9色精品| 长腿黑丝高跟| 亚洲精品乱码久久久v下载方式| 麻豆久久精品国产亚洲av| 99国产综合亚洲精品| 丰满人妻熟妇乱又伦精品不卡| 色哟哟哟哟哟哟| 国内毛片毛片毛片毛片毛片| 免费人成在线观看视频色| 亚洲精品一区av在线观看| АⅤ资源中文在线天堂| 日本a在线网址| 美女大奶头视频| 五月玫瑰六月丁香| 国产精品精品国产色婷婷| 99精品久久久久人妻精品| 色av中文字幕| 日韩精品中文字幕看吧| 国产真实伦视频高清在线观看 | 国产野战对白在线观看| 国模一区二区三区四区视频| 亚洲,欧美,日韩| 搡女人真爽免费视频火全软件 | 欧美bdsm另类| 精品无人区乱码1区二区| 免费av不卡在线播放| 亚洲无线在线观看| 国产在视频线在精品| 日韩人妻高清精品专区| 久久久久国内视频| 久久久久国产精品人妻aⅴ院| 97超视频在线观看视频| 女人被狂操c到高潮| 一级黄色大片毛片| 欧美日韩乱码在线| 美女被艹到高潮喷水动态| 最新中文字幕久久久久| 国内精品久久久久久久电影| 亚洲午夜理论影院| 三级男女做爰猛烈吃奶摸视频| 国产久久久一区二区三区| 日本一本二区三区精品| 免费av不卡在线播放| av欧美777| 久久99热这里只有精品18| 亚洲av第一区精品v没综合| 成人av在线播放网站| 可以在线观看毛片的网站| 国产高清视频在线播放一区| 麻豆国产97在线/欧美| 1024手机看黄色片| 看黄色毛片网站| 国产免费一级a男人的天堂| 九九热线精品视视频播放| 亚洲久久久久久中文字幕| 亚洲av成人不卡在线观看播放网| 欧美成狂野欧美在线观看| 成人高潮视频无遮挡免费网站| 国产精品三级大全| 国内精品久久久久精免费| 国产一区二区在线观看日韩| 国产精品美女特级片免费视频播放器| 精品不卡国产一区二区三区| 最近中文字幕高清免费大全6 | 99热这里只有是精品在线观看 | 国产成人av教育| 婷婷亚洲欧美| 欧美一区二区亚洲| 在线国产一区二区在线| 精品久久久久久久久av| 久久久精品大字幕| 美女黄网站色视频| 久久精品国产亚洲av天美| 亚洲乱码一区二区免费版| 亚洲成av人片免费观看| 免费av不卡在线播放| 免费观看人在逋| 国产伦精品一区二区三区四那| 黄色女人牲交| 精品99又大又爽又粗少妇毛片 | 国产精品自产拍在线观看55亚洲| 亚洲三级黄色毛片| 丰满人妻一区二区三区视频av| 男人狂女人下面高潮的视频| 人人妻人人澡欧美一区二区| 51国产日韩欧美| 亚洲 欧美 日韩 在线 免费| 丝袜美腿在线中文| 人妻制服诱惑在线中文字幕| 国产伦人伦偷精品视频| 成人精品一区二区免费| 天堂动漫精品| 最近最新中文字幕大全电影3| 亚洲精品一区av在线观看| 1024手机看黄色片| 国产一区二区三区视频了| 欧美黑人巨大hd| 国产精品人妻久久久久久| 欧美黄色片欧美黄色片| 日韩欧美在线二视频| 日韩成人在线观看一区二区三区| 色视频www国产| 亚洲专区中文字幕在线| 能在线免费观看的黄片| 一进一出抽搐gif免费好疼| 听说在线观看完整版免费高清| 成熟少妇高潮喷水视频| 中文字幕人妻熟人妻熟丝袜美| 国内精品久久久久久久电影| 亚洲av中文字字幕乱码综合| 国产三级在线视频| 一个人免费在线观看的高清视频| 一边摸一边抽搐一进一小说| 中文字幕久久专区| av天堂中文字幕网| 免费av毛片视频| 高清毛片免费观看视频网站| 99久久成人亚洲精品观看| 亚洲国产精品合色在线| 久久精品国产清高在天天线| 欧美日韩乱码在线| 亚洲人成网站在线播| 免费av不卡在线播放| 久久久久久国产a免费观看| 别揉我奶头 嗯啊视频| av天堂在线播放| 麻豆国产av国片精品| 成人特级黄色片久久久久久久| 欧美在线一区亚洲| 黄色配什么色好看| 国产黄色小视频在线观看| 亚洲成av人片在线播放无| 精品久久国产蜜桃| 免费观看精品视频网站| 亚洲熟妇熟女久久| 啦啦啦观看免费观看视频高清| avwww免费| 亚洲欧美精品综合久久99| 精品人妻1区二区| 青草久久国产| 国产午夜福利久久久久久| 久久天躁狠狠躁夜夜2o2o| 欧美绝顶高潮抽搐喷水| 91在线精品国自产拍蜜月| 9191精品国产免费久久| 国产精品爽爽va在线观看网站| 国产av麻豆久久久久久久| 99热只有精品国产| 天堂影院成人在线观看| www.色视频.com| 国产精品伦人一区二区| 婷婷精品国产亚洲av在线| 欧美日韩福利视频一区二区| 精品国产亚洲在线| 舔av片在线| 别揉我奶头 嗯啊视频| 国产成人福利小说| 亚洲精品久久国产高清桃花| 日韩大尺度精品在线看网址| 97碰自拍视频| 免费人成视频x8x8入口观看| 日本三级黄在线观看| 午夜福利高清视频| 我要看日韩黄色一级片| 国产又黄又爽又无遮挡在线| 女同久久另类99精品国产91| 男女下面进入的视频免费午夜| 免费观看的影片在线观看| 在线播放国产精品三级| 99久久久亚洲精品蜜臀av| 色精品久久人妻99蜜桃| 免费av观看视频| 五月伊人婷婷丁香| 精品欧美国产一区二区三| 久久久久国产精品人妻aⅴ院| 丰满乱子伦码专区| 高清在线国产一区| 亚洲精品日韩av片在线观看| 国产精品美女特级片免费视频播放器| 黄色配什么色好看| ponron亚洲| av视频在线观看入口| 可以在线观看毛片的网站| 亚洲精品日韩av片在线观看| 男人和女人高潮做爰伦理| 久久性视频一级片| 人人妻人人看人人澡| 午夜福利在线观看免费完整高清在 | 国产成人a区在线观看| 小说图片视频综合网站| 90打野战视频偷拍视频| 精品久久久久久成人av| 国产精品综合久久久久久久免费| 欧美日韩福利视频一区二区| 好男人电影高清在线观看| 中文字幕精品亚洲无线码一区| 中文字幕av成人在线电影| 美女 人体艺术 gogo| 精品人妻1区二区| 久久久久久久精品吃奶| 99国产精品一区二区三区| 男人的好看免费观看在线视频| 国产主播在线观看一区二区| 婷婷精品国产亚洲av在线| 国产激情偷乱视频一区二区| 在线天堂最新版资源| 成年女人永久免费观看视频| 色av中文字幕| 欧美+日韩+精品| 亚洲乱码一区二区免费版| 日本 欧美在线| 久久久国产成人精品二区| 亚洲av中文字字幕乱码综合| 亚洲在线观看片| 日韩精品中文字幕看吧| 亚洲精品一区av在线观看| 美女黄网站色视频| 观看美女的网站| 亚洲精品乱码久久久v下载方式| 中文字幕免费在线视频6| 一本综合久久免费| 99久久99久久久精品蜜桃| 国产精品亚洲一级av第二区| 国内揄拍国产精品人妻在线| or卡值多少钱| 亚洲人成网站在线播| 色噜噜av男人的天堂激情| 一级av片app| 婷婷色综合大香蕉| 桃色一区二区三区在线观看| 久久精品人妻少妇| 精品免费久久久久久久清纯| 亚洲国产精品sss在线观看| 最近视频中文字幕2019在线8| 美女高潮喷水抽搐中文字幕| 成人无遮挡网站| 国产日本99.免费观看| 美女高潮喷水抽搐中文字幕| 最近最新免费中文字幕在线| 桃色一区二区三区在线观看| 亚洲 欧美 日韩 在线 免费| 天堂√8在线中文| 久久伊人香网站| 99国产极品粉嫩在线观看| 日韩欧美精品免费久久 | 亚洲精品456在线播放app | 国产在视频线在精品| 欧美区成人在线视频| 少妇的逼好多水| av女优亚洲男人天堂| 中文字幕高清在线视频| 久久精品人妻少妇| 免费搜索国产男女视频| 欧美最新免费一区二区三区 | 91狼人影院| 嫩草影院精品99| 搞女人的毛片| 精品久久久久久久末码| 亚洲电影在线观看av| www.www免费av| 精品一区二区三区人妻视频| 精品无人区乱码1区二区| 国产男靠女视频免费网站| 免费看日本二区| eeuss影院久久| 亚洲天堂国产精品一区在线| 床上黄色一级片| 真人做人爱边吃奶动态| 欧美一区二区亚洲| 亚洲经典国产精华液单 | 国产高潮美女av| 狂野欧美白嫩少妇大欣赏| 欧美+亚洲+日韩+国产| 日本撒尿小便嘘嘘汇集6| av国产免费在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产伦精品一区二区三区视频9| 国内久久婷婷六月综合欲色啪| 亚洲,欧美精品.| 中文字幕久久专区| 美女xxoo啪啪120秒动态图 | 精品欧美国产一区二区三| ponron亚洲| 久久久久性生活片| 日韩成人在线观看一区二区三区| 久久伊人香网站| 亚洲av.av天堂| 脱女人内裤的视频| 国产精品自产拍在线观看55亚洲| 国产精品国产高清国产av| 久久天躁狠狠躁夜夜2o2o| 欧美日韩黄片免| 一进一出抽搐动态| 日韩成人在线观看一区二区三区| 一本精品99久久精品77| 哪里可以看免费的av片| 欧美+日韩+精品| 性色avwww在线观看| 国产极品精品免费视频能看的| 很黄的视频免费| 亚洲真实伦在线观看| 99久久精品国产亚洲精品| 久久国产乱子免费精品| 国产aⅴ精品一区二区三区波| 亚洲18禁久久av| 真人做人爱边吃奶动态| 亚洲黑人精品在线| 久久精品91蜜桃| 美女 人体艺术 gogo| 婷婷色综合大香蕉| 又黄又爽又刺激的免费视频.| 欧美日韩中文字幕国产精品一区二区三区| 免费看光身美女| 18美女黄网站色大片免费观看| 国产乱人视频| 成年女人毛片免费观看观看9| 男女做爰动态图高潮gif福利片| 国产久久久一区二区三区| 国产欧美日韩精品亚洲av| 欧美日韩国产亚洲二区| 国模一区二区三区四区视频| 身体一侧抽搐| 18美女黄网站色大片免费观看| 91午夜精品亚洲一区二区三区 | 少妇熟女aⅴ在线视频| 亚洲精品影视一区二区三区av| 两个人的视频大全免费| 99久久精品国产亚洲精品| 久久这里只有精品中国| 美女被艹到高潮喷水动态| 91麻豆精品激情在线观看国产| 午夜精品一区二区三区免费看| 观看美女的网站| 91狼人影院| 美女cb高潮喷水在线观看| 女同久久另类99精品国产91| 99久久无色码亚洲精品果冻| 黄色日韩在线| a在线观看视频网站| 在线观看66精品国产| 嫩草影院入口| 午夜两性在线视频| 可以在线观看的亚洲视频| eeuss影院久久| 99热这里只有是精品50| 亚洲av一区综合| 日韩中文字幕欧美一区二区| 一级黄片播放器| 久久这里只有精品中国| 中文字幕久久专区| 91久久精品国产一区二区成人| 久久香蕉精品热| xxxwww97欧美| 丰满的人妻完整版| 国产在线男女| 中亚洲国语对白在线视频| 身体一侧抽搐| 欧美另类亚洲清纯唯美| АⅤ资源中文在线天堂| 757午夜福利合集在线观看| 真人一进一出gif抽搐免费| 丁香欧美五月| 天堂网av新在线| 免费看美女性在线毛片视频| 精品国产亚洲在线| 国产69精品久久久久777片| 宅男免费午夜| 在线国产一区二区在线| 男女视频在线观看网站免费| 好男人电影高清在线观看| 成人亚洲精品av一区二区| 欧美一区二区国产精品久久精品| 伦理电影大哥的女人| 亚洲成人久久爱视频| av国产免费在线观看| 丁香六月欧美| 69av精品久久久久久| 老熟妇乱子伦视频在线观看| 嫩草影院入口| 又紧又爽又黄一区二区| 国产精品一及| 美女xxoo啪啪120秒动态图 | 91午夜精品亚洲一区二区三区 | 国产亚洲av嫩草精品影院| 亚洲中文字幕日韩| 丝袜美腿在线中文| 久久久久久久久久成人| 精品久久久久久久久av| 欧美一级a爱片免费观看看| 一进一出好大好爽视频| 国产色婷婷99| 五月玫瑰六月丁香| 午夜福利成人在线免费观看| 精品人妻视频免费看| 色尼玛亚洲综合影院| 久久精品夜夜夜夜夜久久蜜豆| 成熟少妇高潮喷水视频| 男女下面进入的视频免费午夜| 国产探花在线观看一区二区| 岛国在线免费视频观看| 国产乱人视频| 尤物成人国产欧美一区二区三区| 久久精品综合一区二区三区| .国产精品久久| 亚洲成a人片在线一区二区| 88av欧美| 激情在线观看视频在线高清| 国产视频内射| 最新中文字幕久久久久| 欧美高清成人免费视频www| 美女cb高潮喷水在线观看| 久久精品久久久久久噜噜老黄 | 久久欧美精品欧美久久欧美| 天堂影院成人在线观看| 国产精品爽爽va在线观看网站| 国产一区二区三区视频了|