• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance of FAST with an Ultra-Wide Bandwidth Receiver at 500–3300 MHz

    2023-09-03 15:24:46ChuanPengZhangPengJiangMingZhuJunPanChengChengHongFeiLiuYanZhuChunSunandFASTCollaboration

    Chuan-Peng Zhang ,Peng Jiang ,Ming Zhu ,Jun Pan ,Cheng Cheng ,Hong-Fei Liu ,Yan Zhu,Chun Sun,and FAST Collaboration

    1 National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China;cpzhang@nao.cas.cn

    2 Guizhou Radio Astronomical Observatory,Guizhou University,Guiyang 550000,China

    3 College of Earth Sciences,Guilin University of Technology,Guilin 541004,China

    Abstract The Five-hundred-meter Aperture Spherical radio Telescope (FAST) has been running for several years.A new ultra-wide bandwidth (UWB) receiver,simultaneously covering 500–3300 MHz,has been mounted in the FAST feed cabin and has passed a series of observational tests.The whole UWB band is separated into four independent bands.Each band has 1,048,576 channels in total,resulting in a spectral resolution of 1 kHz.At 500–3300 MHz,the antenna gain is around 14.3–7.7 K Jy-1,the aperture efficiency is around 0.56–0.30,the system temperature is around 88–130 K,and the half-power beamwidth is around 7.6′–1.6′.The measured standard deviation of pointing accuracy is better than~7.9″when zenith angle is within 26.4°.The sensitivity and stability of the UWB receiver are confirmed to satisfy expectations through spectral observations,e.g.,H I and OH.The FAST UWB receiver has already demonstrated good performance in capturing sensitive observations for various scientific goals.

    Key words: instrumentation: detectors–telescopes–line: profiles

    1.Introduction

    The Five-hundred-meter Aperture Spherical radio Telescope (FAST),with an effective diameter of 300 m,has obtained many groundbreaking achievements,for example,in observations of pulsars,fast radio bursts,star formation and galaxy evolution (e.g.,Cheng et al.2020;Han et al.2021;Li et al.2021;Ching et al.2022;Niu et al.2022;Xu et al.2022),since construction was completed on 2016 September 25(Nan et al.2011;Jiang et al.2019,2020).Until now,the FAST has mainly worked at frequencies of 1000–1500 MHz with a 19-beam receiver.Recently,a new cryogenic ultra-wide bandwidth (UWB) receiver at 500–3300 MHz was developed by Liu et al.(2022) and mounted in the FAST feed cabin for scientific observations.The 19-beam receiver uses all three helium cryogenic compressors and occupies most of the space in the feed cabin,so there it not enough space to place any more cryogenic compressors for an UWB receiver.However,the FAST UWB receiver has now passed a series of tests and could carry out several kinds of spectral observations.

    At 500–3300 MHz,the FAST UWB receiver is able to simultaneously cover 330 radio combination lines for Hnα,Henα and Cnα (n=235–126),respectively.This could help us to investigate the active star-formation regions in the Milky Way (e.g.,Chen et al.2020;Zhang et al.2021;Hou et al.2022).Furthermore,the UWB receiver could simultaneously cover the hydrogen (H I at 1420.406 MHz) and hydroxyl radical (OH at 1612.231,1665.402,1667.359 and 1720.530 MHz) lines,and their high redshift signals withz?1.8.This gives us an opportunity to study star formation and evolution not only in the Milky way,but also in the nearby galaxies and especially to provide us with multiwavelength spectral data.In addition,the UWB receiver has been able to catch the methyladyne (CH) line at 3263.794 MHz.This would provide us with high spatial resolution data (~1.6′) for better inspections of our galaxy.Furthermore,the UWB receiver has a sufficient sensitivity and high spectral resolution (1 kHz).This allows us to study the kinematic properties of star formation in the Milky Way and the hyperfine structures of some spectral lines (e.g.,OH at~1665.402 MHz).

    Thanks to the advantageous characteristics of the FAST,we are able to complete a series of observational tests in a short time.In this report,we mainly present the performance of the FAST UWB receiver and relevant antenna parameters at 500–3300 MHz.General parameters of the FAST UWB receiver are listed in Table 1.In Section 2,we introduce the measurement parameters of the UWB receiver system including the noise dipole,beam properties,pointing accuracy,antenna gain,aperture efficiency,and system temperature.In Section 3,we present the properties of the spectral backend,and the measurement results in spectral H I and OH observations.A summary is presented in Section 4.

    Table 1General Parameters of the FAST with the UWB Receiver

    2.Measurement Parameters of the UWB Receiver

    2.1.The Noise Source

    Like the FAST 19-beam array,the UWB receiver also contains a stabilized noise injection system (Jiang et al.2020).The noise is injected between the feed and the low-noise amplifiers.The noise source is a single diode whose signal is split into each polarization.The noise diode has two adjustable power output modes with 1.5–2.0 K for low-power noise temperatures and 13.5–22.0 K for high-power noise temperatures.Based on the test results of a series of hot-load measurements,the noise diode is stable and meets the requirements of data calibration.The low-and high-power noise temperatures are shown in Figure 1 and listed in Table 2.The full noise diode data for UWB 500–3300 MHz can be downloaded online.

    Table 2Detailed Parameters of Noise Diode Temperature(Tcal),Antenna Gain,Aperture Efficiency(η),System Temperature(Tsys),and Half-power Beamwidth(HPBW)for the UWB Receiver

    Figure 1.The high-and low-power noise diode temperatures of the average of two polarizations XX and YY for the FAST UWB 500–3300 MHz measured on 2022 June 17.

    2.2.Beam Size

    To measure the beam properties of FAST UWB receiver,we directly make mapping observations toward a radio point source 3C286 on the sky on 2023 March 26.The used observation mode is OTF along the direction of the RA,and sampling time is 0.2 s,scanning velocity is 20″per second,and the scanning space is 12″.The mapping area is around 20′ × 20′,which is large enough for covering the whole beam structure at 500–3300 MHz.Figure 2 displays examples of observed and fitted beam structures at 800,1400,2000,and 2900 MHz.Table 2 lists all the measured half-power beamwidth (HPBWs) at 500–3300 MHz.Figure 3 shows the observed HPBWs and the theoretical HPBW=1.22 λ/Dwith an assumed telescope diameterD=300 m at 500–3300 MHz.We find that below~2400 MHz,the observed HPBW is smaller than the theoretical HPBW.This indicates that the telescope effective aperture is larger than 300 m below~2400 MHz.We notice that the measured UWB HPBWs are consistent with the FAST 19-beam receiver between 1000 and 1500 MHz.

    Figure 2.The beam structures at 800,1400,2000,and 2900 MHz measured by observing calibrator 3C286 on 2023 March 26.The used observation mode is OTF along the direction of the RA,and sampling time is 0.2 s,scanning velocity is 20″ per second and the scanning space is 12″.

    Figure 3.The HPBW distribution(blue dotted line)for UWB 500–3300 MHz measured by observing radio point source 3C286 within ZA of 26.4°on 2023 March 26.The red curve indicates the theoretical HPBW=1.22 λ/D with an assumed telescope diameter D=300 m.

    2.3.Pointing Accuracy

    In the FAST feed cabin,the UWB receiver has been placed at the phase center based on many pointing tests.According to antenna measurements,the UWB observations have the same pointing accuracy as the FAST 19-beam array.The measured standard deviation of pointing accuracy is better than~7.9″within zenith angle(ZA)of 26.4°(Jiang et al.2020).For example,the measured pointing error is~7.0″ when measuring the beam structures using the radio point source 3C286 on 2023 March 26.The pointing accuracy of~7.0″only takes around one twelfth of the HPBW (HPBW3300MHz≈ 1.6′) at the frequency of 3300 MHz for the FAST.Therefore,the pointing accuracy meets the requirements for current UWB receiver observations.

    2.4.Antenna Gain and Aperture Efficiency

    Figure 4 shows the antenna gain distribution within ZA of 26.4°for UWB 500–3300 MHz measured by observing a stable flux calibrator 3C286 on 2023 March 5.With absolute measurement of noise dipole,the UWB observed ON-OFF data could be calibrated to antenna temperature (Ta,3C286) in Kelvin.The flux density (in Jy) of 3C286 within UWB band could be fitted with a polynomial function (Perley &Butler 2017)

    Figure 4.The antenna gains within ZA of 26.4°for UWB 500–3300 MHz measured by observing flux calibrator 3C286 on 2023 March 5.Four separated UWB bands are indicated with different colors.

    whereS3C286and ν are the flux density in Jy and the frequency in GHz,respectively.Then the antenna gain could be estimated as

    The derived UWB gain at~1400 MHz is~12.0 K Jy-1,which is lower than that of the FAST 19-beam array (~16.0 K Jy-1),mainly because the UWB receiver is uncooled.Up to 3200 MHz,the UWB gain is~9.5 K Jy-1.This meets the requirement for CH observation at~3263.794 MHz.The full antenna gain parameters for UWB 500–3300 MHz can be download online and are partly listed in Table 2.

    As can be seen in Figure 4,the antenna gain becomes low at the high-frequency end,probably because the reflector precision or the reflection efficiency becomes low at such a high-frequency band.The wild fluctuation at the low-frequency end could have resulted from the serious radio frequency interference (RFI) pollution at 500–920 MHz.Generally,the variation of the monitored antenna gain is less than~10%from 2022 August to 2023 March.This indicates that the FAST UWB receiver is relatively stable,but it still needs long-term monitoring for better data calibration.

    Assuming that the aperture efficiency of the FAST is 300 m at 500–3300 MHz,the corresponding geometric illumination area produces a theoretical gain withG0=25.6 K Jy-1(Jiang et al.2020).The aperture efficiency η of the FAST UWB receiver can be estimated by η=Gain/G0.The maximum and minimum gains are,respectively,0.56 and 0.30 at 500–3300 MHz.All derived aperture efficiencies are listed in Table 2.

    2.5.System Temperature

    System temperature is a synthetic contribution from the noise of receiver (Trec),the continuum brightness temperature of the sky(Tsky),emission of the Earth's atmosphere(Tatm),and radiation of the surrounding terrain (Tscat) (Campbell 2002;Jiang et al.2020) as

    Figure 5 displays the system temperature (Tsys) within ZA of 26.4° for UWB 500–3300 MHz measured by observing cold sky on 2023 March 5.The raw data were converted to antenna temperature with the noise data in Figure 1.The data points,which are deviated from the main curve,result from strong RFI.The UWB system temperatures are 90–130 K for the band of 500–3300The high system temperature mostly arises from the uncooled UWB receiver,whose parameters are presented in Liu et al.(2022).The measured system temperature (Tsys) for UWB 500–3300 MHz are also listed in Table 2.Such high system temperatures require lengthy integration times for compensation.In the future,once there is enough space in the feed cabin,the UWB receiver will have a cryogenic low-noise front-end installed;then,a lower system noise temperature and a higher detection sensitivity could be achieved.

    Figure 5.The system temperature within ZA of 26.4°for UWB 500–3300 MHz measured by observing cold sky on 2023 March 5.Four separated UWB bands are indicated with different colors.

    3.Spectral-line Backend and Observations

    3.1.Backend

    At the backend,the whole UWB passband is separated into four subbands,0–1100 MHz,800–1900 MHz,1600–2700 MHz,and 2400–3500 MHz.Each subband has 1,048,576 channels,so the frequency resolution is~1049.04 Hz (or~1 kHz).Any two adjacent bands have some overlapping frequency ranges to compensate for the shortcomings of the analog filter.The effective frequency ranges are 500–1000 MHz,900–1800 MHz,1700–2600 MHz,and 2500–3400 MHz,but the recommended frequency ranges for science observations are 500–950 MHz for UWB-1,950–1750 MHz for UWB-2,1750–2550 MHz for UWB-3,and 2550–3300 MHz for UWB-4 (see details in Table 1).Combining the four subbands,the UWB could simultaneously and effectively cover the frequency ranging from 500 to 3300 MHz(see Figure 1).The observed data are recorded in the spectral-line backend using a dual linear polarization (XX and YY) mode.The sampling time is adjustable,e.g.,in 0.1 s,0.2 s,0.5 s,or 1.0 s.

    3.2.Observation Modes

    All the observation modes available in the FAST 19-beam array can be used in the UWB receiver,such as Drift,OnOff,OTF,and so on(see details in Jiang et al.2020).However,we have to remember that the UWB only has one receiver available for observation.The setup parameters for scanning velocity is also the same as those for the FAST 19-beam array.The maximum scanning velocity is 15″ and 30″ per second in direction of DEC and RA,respectively.

    3.3.Radio Frequency Interference

    In radio astronomy,RFI becomes more and more serious for radio observational facilities (Kesteven 2005;An et al.2017;Zeng et al.2021;Zhang et al.2022).RFI always influences the search and study of interesting astronomical objects.Figure 6 displays the whole bandwidth with one minute integration using UWB 500–3300 MHz.In many tests,we found that,in different sky directions,the RFI distribution at different frequencies is generally similar to that shown in Figure 6,but the intensities vary.Additionally,the low frequency bands(500–950 MHz)have more serious RFI pollution than the other high-frequency bands (Zhang et al.2020).All the emission lines are basically RFI,except for the H I line at 1420 MHz.The extremely strong and evident RFIs mainly come from communication satellites and navigation satellites (Wang et al.2021).Therefore,we must carefully avoid areas of strong RFI.

    Figure 6.The spectral bandpass and RFI distribution with one minute integration for UWB 500–3300 MHz measured by observing cold sky on 2022 November 23.The emission lines basically are RFI,except for the H I line at 1420 MHz.

    3.4.H I and OH lines

    Figure 7 shows Arp 220 (IC 4553) OH emission and H I absorption lines observed by the UWB receiver with 600 s ontime integration.Arp 220 is a well-known starburst galaxy with a redshift of 0.018 40(Baan et al.1982).The observed redshift frequencies of the OH and H I lines are,respectively,1637 and 1395 MHz,which are covered by the UWB-4 and UWB-2 bands,respectively.In 600 s integration,the measured spectral rms is around 15.27 mJy with an original channel space of 1.0 kHz.For the H I absorption line of Arp 220 (see the H I line in Figure 7),the measured flux density by the FAST UWB receiver is only~3% higher than the Arecibo 300 m observations (Mirabel 1982).In addition,for the OH emission line of Arp 220 with the rest frequency of 1665.402 MHz (see the right OH peak in Figure 7),the measured flux density by the UWB is also only~3% higher than the Arecibo 300 m observations(Baan et al.1982).However,for the OH emission line of Arp 220 at its rest frequency of 1667.359 MHz(see the left OH peak in Figure 7),the measured flux density by the UWB is~10% higher than the Arecibo 300 m observations(Baan et al.1982).This is probably because the OH flux density of Arp 220 at 1665.402 MHz is variable (Darling &Giovanelli 2002).Generally,our flux density and velocity measurements (OH and Hi lines) of Arp 220 are coincide well with Arecibo 300 m observations (Baan et al.1982;Mirabel 1982;Mirabel &Sanders 1988).This further suggests that the FAST UWB receiver already demonstrates good performance for spectral scientific observation at 500–3300 MHz.

    Figure 7.Arp 220 (IC 4553) OH emission and H I absorption lines simultaneously covered by the UWB-3 and UWB-2 bands,respectively.Arp 220 is a well-known starburst galaxy with redshift of 0.01840 (Baan et al.1982).For the FAST UWB observed lines,the integration time is 10 minutes,and they have been smoothed into a frequency resolution of 12.0 kHz,leading to an rms of 4.41 mJy.The dotted and dashed curves present the OH and H I lines observed by Arecibo 300 m from Baan et al.(1982)and Mirabel(1982),respectively.The integration time is 25 minutes for the Arecibo OH line,but for the Arecibo H I line there is no integration-time parameter recorded in Mirabel (1982).

    4.Summary

    The FAST has been running well since it began its commission when construction was completed on 2016 September 25.The 19-beam receiver covering 1.05–1.45 GHz is used for most of its scientific observations.However,highfrequency observations,e.g.,OH lines at rest frequencies of 1665 and 1667 MHz,are needed to study star formation in the Milky Way and nearby galaxies.The precision of the designed FAST reflector has met observational requirements at the high frequency of around 3000 MHz.

    A new uncooled UWB receiver,simultaneously covering 500–3300 MHz,was mounted in the FAST feed cabin in 2022 June,and has passed a series of observational tests.The whole UWB band has been separated into four independent bands,but the recommended frequency ranges for users are UWB-1 for 500–950 MHz,UWB-2 for 950–1750 MHz,UWB-3 for 1750–2550 MHz,and UWB-4 for 2550–3300 MHz.Each band has 1,048,576 channels in the total frequency range,resulting in an adequately high spectral resolution of 1 kHz.At 500–3300 MHz,the antenna gain is around 14.3–7.7 K Jy-1,the aperture efficiency is around 0.56–0.30,the system temperature is around 88–130 K and the HPBW is around 7.6′–1.5′.The measured antenna parameters above are listed in Table 2 for data reduction.The measured standard deviation of pointing accuracy is better than~7.9″,when ZA is within 26.4°.In addition,the sensitivity and stability of the UWB receiver are confirmed to satisfy expectations through spectral H I and OH observations.The measured Arp 220 (OH and H I lines) flux density and velocity coincide well with Arecibo 300 m observations.This further suggests that the FAST UWB receiver already demonstrates good performance in taking sensitive observations for various scientific goals at 500–3300 MHz.

    In the future,once there is enough space in the FAST feed cabin,the UWB receiver will have a cryogenic low-noise frontend,and then the performance of the UWB receiver will be significantly improved.For example,the system temperature would decrease~50 K and the antenna gain would increase~2.5 K Jy-1.That will help us to make more sensitive observations towards more various scientific goals than at present.

    Acknowledgments

    This work is supported by the National Key R&D Program of China No.2018YFE0202900.C.P.Z.acknowledges support by the West Light Foundation of the Chinese Academy of Sciences(CAS).C.C.and H.F.L.thank support by the National Natural Science Foundation of China Nos.11803044,11933003,12173045,and 12273072.This work is sponsored partly by the CAS South America Center for Astronomy(CASSACA)and the China Manned Space Project No.CMS-CSST-2021-A05.FAST is a Chinese national mega-science facility,operated by the National Astronomical Observatories of CAS (NAOC).We also wish to thank the anonymous referee for comments and suggestions that improved the clarity of the paper.

    国产激情久久老熟女| 少妇粗大呻吟视频| 又黄又粗又硬又大视频| 亚洲av中文字字幕乱码综合 | 午夜福利成人在线免费观看| 最新在线观看一区二区三区| aaaaa片日本免费| 别揉我奶头~嗯~啊~动态视频| bbb黄色大片| 别揉我奶头~嗯~啊~动态视频| 在线观看日韩欧美| 日韩视频一区二区在线观看| 欧美精品亚洲一区二区| 正在播放国产对白刺激| 午夜成年电影在线免费观看| 高清在线国产一区| 久久这里只有精品19| 嫁个100分男人电影在线观看| 中文字幕人妻熟女乱码| 亚洲精品国产一区二区精华液| 色尼玛亚洲综合影院| 丰满人妻熟妇乱又伦精品不卡| 免费观看精品视频网站| 国产成+人综合+亚洲专区| 色老头精品视频在线观看| 国语自产精品视频在线第100页| 12—13女人毛片做爰片一| 最好的美女福利视频网| 深夜精品福利| 日韩视频一区二区在线观看| 香蕉丝袜av| 亚洲性夜色夜夜综合| 亚洲精品久久成人aⅴ小说| 两个人免费观看高清视频| 久久精品国产亚洲av高清一级| 成人免费观看视频高清| 国产一区二区三区在线臀色熟女| 国产三级黄色录像| 成在线人永久免费视频| 久久久久久久精品吃奶| 国产成人精品无人区| 人成视频在线观看免费观看| 国产精品 国内视频| 麻豆av在线久日| av超薄肉色丝袜交足视频| 大香蕉久久成人网| 久99久视频精品免费| 两人在一起打扑克的视频| 午夜激情福利司机影院| 欧美日韩一级在线毛片| 在线看三级毛片| 人人妻人人澡人人看| 人人妻人人澡人人看| 亚洲av电影不卡..在线观看| 色av中文字幕| 最新美女视频免费是黄的| 国产1区2区3区精品| 99精品在免费线老司机午夜| 中文字幕精品免费在线观看视频| 天天一区二区日本电影三级| 久热爱精品视频在线9| 国产亚洲av高清不卡| 亚洲 欧美 日韩 在线 免费| 国产精品亚洲一级av第二区| 亚洲三区欧美一区| 午夜福利高清视频| 日韩精品免费视频一区二区三区| 国产蜜桃级精品一区二区三区| 国产黄a三级三级三级人| 久久久精品欧美日韩精品| 亚洲精华国产精华精| 国产精华一区二区三区| 欧美日韩一级在线毛片| 亚洲第一欧美日韩一区二区三区| 色尼玛亚洲综合影院| 国产1区2区3区精品| 中文字幕精品免费在线观看视频| 欧美精品亚洲一区二区| 色哟哟哟哟哟哟| 999久久久精品免费观看国产| 伊人久久大香线蕉亚洲五| 国产在线观看jvid| 91麻豆精品激情在线观看国产| 久久精品影院6| 少妇裸体淫交视频免费看高清 | 手机成人av网站| 超碰成人久久| 妹子高潮喷水视频| 午夜免费成人在线视频| 亚洲欧美激情综合另类| 男女视频在线观看网站免费 | a在线观看视频网站| 国产成人av教育| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美日韩高清在线视频| 国产精品乱码一区二三区的特点| 亚洲一区二区三区色噜噜| 午夜免费成人在线视频| 亚洲,欧美精品.| 搡老妇女老女人老熟妇| 99精品久久久久人妻精品| 色av中文字幕| 国产激情偷乱视频一区二区| 日韩国内少妇激情av| 国产爱豆传媒在线观看 | 亚洲片人在线观看| 嫩草影院精品99| 黄片大片在线免费观看| 国产成人av教育| xxx96com| 99国产精品一区二区三区| 国产午夜福利久久久久久| 亚洲真实伦在线观看| 少妇被粗大的猛进出69影院| 亚洲成av片中文字幕在线观看| 男女之事视频高清在线观看| 欧美成人一区二区免费高清观看 | 在线视频色国产色| 色综合亚洲欧美另类图片| 国产精品日韩av在线免费观看| 大型av网站在线播放| 18禁裸乳无遮挡免费网站照片 | 亚洲国产中文字幕在线视频| 99精品在免费线老司机午夜| 激情在线观看视频在线高清| 日本免费一区二区三区高清不卡| 亚洲国产精品999在线| 亚洲成av片中文字幕在线观看| 搡老妇女老女人老熟妇| 可以在线观看的亚洲视频| 亚洲avbb在线观看| 久久久久久久久免费视频了| 欧美乱色亚洲激情| 999久久久国产精品视频| 国产主播在线观看一区二区| videosex国产| 最近最新中文字幕大全免费视频| 久久久国产成人免费| 特大巨黑吊av在线直播 | 草草在线视频免费看| 免费高清视频大片| 亚洲七黄色美女视频| 黄色片一级片一级黄色片| 日韩欧美在线二视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲人成网站在线播放欧美日韩| 搡老岳熟女国产| 国产一区二区激情短视频| 国产成人精品久久二区二区91| 久久这里只有精品19| 人妻丰满熟妇av一区二区三区| 手机成人av网站| 午夜影院日韩av| 亚洲av成人av| 在线观看午夜福利视频| 亚洲欧美精品综合久久99| 久久国产亚洲av麻豆专区| 一级黄色大片毛片| 色在线成人网| 国产成年人精品一区二区| 两个人视频免费观看高清| 中文字幕精品亚洲无线码一区 | 久久精品91蜜桃| 午夜福利欧美成人| 叶爱在线成人免费视频播放| 最近最新中文字幕大全免费视频| 麻豆国产av国片精品| 精品第一国产精品| 亚洲色图av天堂| 啦啦啦免费观看视频1| 国产精品爽爽va在线观看网站 | 黄色毛片三级朝国网站| 亚洲av五月六月丁香网| 女人高潮潮喷娇喘18禁视频| 19禁男女啪啪无遮挡网站| 69av精品久久久久久| 首页视频小说图片口味搜索| 看黄色毛片网站| 亚洲中文字幕一区二区三区有码在线看 | 一进一出抽搐gif免费好疼| 在线观看一区二区三区| 性色av乱码一区二区三区2| 午夜激情福利司机影院| 国产激情欧美一区二区| 一边摸一边做爽爽视频免费| 99re在线观看精品视频| 少妇裸体淫交视频免费看高清 | 欧美zozozo另类| 国产日本99.免费观看| 99久久99久久久精品蜜桃| 99久久久亚洲精品蜜臀av| 老汉色av国产亚洲站长工具| 日韩大码丰满熟妇| 国产精品 欧美亚洲| av电影中文网址| svipshipincom国产片| 观看免费一级毛片| 婷婷精品国产亚洲av| 在线观看一区二区三区| 欧美激情高清一区二区三区| 91国产中文字幕| 国产av一区在线观看免费| 国产精品98久久久久久宅男小说| 国产亚洲精品第一综合不卡| 亚洲av电影在线进入| 1024手机看黄色片| 久久人妻av系列| 女同久久另类99精品国产91| 男人舔女人下体高潮全视频| а√天堂www在线а√下载| 特大巨黑吊av在线直播 | 免费女性裸体啪啪无遮挡网站| 女警被强在线播放| 免费观看精品视频网站| 女同久久另类99精品国产91| 午夜福利一区二区在线看| 啪啪无遮挡十八禁网站| 欧美一级毛片孕妇| 熟妇人妻久久中文字幕3abv| 欧美av亚洲av综合av国产av| 亚洲无线在线观看| 99精品久久久久人妻精品| 亚洲欧美日韩高清在线视频| 激情在线观看视频在线高清| av在线播放免费不卡| 久久精品国产亚洲av高清一级| 成人国语在线视频| 成人18禁高潮啪啪吃奶动态图| 欧美绝顶高潮抽搐喷水| 日韩精品青青久久久久久| 美女高潮到喷水免费观看| 免费观看人在逋| 1024视频免费在线观看| 国产成人一区二区三区免费视频网站| 国产v大片淫在线免费观看| 亚洲专区字幕在线| 国产男靠女视频免费网站| 亚洲无线在线观看| 国产成人av教育| 看黄色毛片网站| 神马国产精品三级电影在线观看 | 变态另类丝袜制服| 精品熟女少妇八av免费久了| 黄色a级毛片大全视频| 久久香蕉精品热| 久久久久久久久久黄片| 在线观看午夜福利视频| √禁漫天堂资源中文www| 亚洲色图av天堂| 婷婷六月久久综合丁香| 视频在线观看一区二区三区| 一本精品99久久精品77| 亚洲成人免费电影在线观看| 国产欧美日韩精品亚洲av| 好男人在线观看高清免费视频 | 日韩精品免费视频一区二区三区| 欧美zozozo另类| 国产久久久一区二区三区| 777久久人妻少妇嫩草av网站| 日韩精品免费视频一区二区三区| 国产精品久久久久久人妻精品电影| 91麻豆av在线| 日韩国内少妇激情av| 97人妻精品一区二区三区麻豆 | 婷婷丁香在线五月| 免费无遮挡裸体视频| 少妇被粗大的猛进出69影院| 国产成人影院久久av| 国产片内射在线| 国产视频一区二区在线看| 色综合亚洲欧美另类图片| 久久性视频一级片| 高潮久久久久久久久久久不卡| 亚洲一区二区三区色噜噜| 国产av不卡久久| 三级毛片av免费| 无限看片的www在线观看| 波多野结衣av一区二区av| 亚洲av第一区精品v没综合| 亚洲国产精品久久男人天堂| 亚洲专区国产一区二区| 在线免费观看的www视频| 午夜福利视频1000在线观看| 亚洲人成网站高清观看| 久久久久久九九精品二区国产 | 欧美黑人欧美精品刺激| 欧美激情 高清一区二区三区| 国产av一区二区精品久久| 午夜福利高清视频| netflix在线观看网站| 亚洲男人的天堂狠狠| a在线观看视频网站| 欧美成人性av电影在线观看| 一本久久中文字幕| 校园春色视频在线观看| 婷婷亚洲欧美| 欧美在线黄色| 日本 欧美在线| 国产精品一区二区免费欧美| 国内少妇人妻偷人精品xxx网站 | 老熟妇乱子伦视频在线观看| 他把我摸到了高潮在线观看| tocl精华| 好看av亚洲va欧美ⅴa在| 18禁黄网站禁片免费观看直播| 亚洲精华国产精华精| 国产人伦9x9x在线观看| 久久久久久九九精品二区国产 | av超薄肉色丝袜交足视频| 看免费av毛片| 最好的美女福利视频网| 成人午夜高清在线视频 | 丰满的人妻完整版| 中文字幕人妻熟女乱码| 夜夜躁狠狠躁天天躁| 久久午夜亚洲精品久久| 可以免费在线观看a视频的电影网站| 国语自产精品视频在线第100页| 岛国视频午夜一区免费看| av片东京热男人的天堂| 搞女人的毛片| 在线免费观看的www视频| 在线看三级毛片| 亚洲专区国产一区二区| 在线天堂中文资源库| 国产单亲对白刺激| 欧美精品亚洲一区二区| 啦啦啦 在线观看视频| 97超级碰碰碰精品色视频在线观看| 色婷婷久久久亚洲欧美| 亚洲男人天堂网一区| 国产视频内射| 变态另类成人亚洲欧美熟女| 美女高潮到喷水免费观看| 亚洲欧美精品综合久久99| 精品一区二区三区视频在线观看免费| 一个人免费在线观看的高清视频| 欧美国产日韩亚洲一区| 老熟妇仑乱视频hdxx| 日韩av在线大香蕉| 亚洲精品av麻豆狂野| 亚洲片人在线观看| 久久性视频一级片| 熟妇人妻久久中文字幕3abv| 免费高清视频大片| 亚洲avbb在线观看| 精品电影一区二区在线| 欧美在线一区亚洲| 精品高清国产在线一区| 一区二区日韩欧美中文字幕| 三级毛片av免费| 国产亚洲精品久久久久久毛片| 日韩欧美免费精品| xxx96com| 精品国产一区二区三区四区第35| 大香蕉久久成人网| 国产精品亚洲美女久久久| 十八禁网站免费在线| 国产视频内射| 妹子高潮喷水视频| 欧美日韩亚洲综合一区二区三区_| 欧美久久黑人一区二区| 日韩免费av在线播放| a级毛片在线看网站| 国产成人精品久久二区二区免费| 草草在线视频免费看| 1024视频免费在线观看| 久久久久久久久中文| 少妇被粗大的猛进出69影院| e午夜精品久久久久久久| 国产精品亚洲一级av第二区| 亚洲性夜色夜夜综合| 国产aⅴ精品一区二区三区波| 波多野结衣高清无吗| 一本久久中文字幕| 亚洲国产精品合色在线| 色综合站精品国产| 正在播放国产对白刺激| 美女大奶头视频| 一级作爱视频免费观看| 国产精品免费视频内射| 日韩欧美免费精品| 精品国产乱子伦一区二区三区| 男人舔女人下体高潮全视频| 久99久视频精品免费| 一级黄色大片毛片| 久久久久久大精品| aaaaa片日本免费| 午夜激情av网站| 天天添夜夜摸| 一级毛片女人18水好多| 欧美午夜高清在线| 欧美中文日本在线观看视频| 久久久久久人人人人人| 亚洲精华国产精华精| 女人爽到高潮嗷嗷叫在线视频| 国产精品一区二区三区四区久久 | 亚洲人成网站在线播放欧美日韩| 亚洲人成77777在线视频| 精品国产乱子伦一区二区三区| 此物有八面人人有两片| 久久九九热精品免费| 亚洲午夜精品一区,二区,三区| or卡值多少钱| 精品久久久久久久久久免费视频| 男女下面进入的视频免费午夜 | 变态另类成人亚洲欧美熟女| 黄频高清免费视频| 日日爽夜夜爽网站| 99热只有精品国产| 一卡2卡三卡四卡精品乱码亚洲| 人人妻人人澡欧美一区二区| 欧美日韩福利视频一区二区| 精品少妇一区二区三区视频日本电影| 国产精品,欧美在线| 老司机午夜福利在线观看视频| 亚洲精品在线观看二区| 成年人黄色毛片网站| 啦啦啦观看免费观看视频高清| 久久国产乱子伦精品免费另类| 美女 人体艺术 gogo| 亚洲精品中文字幕在线视频| 精品久久久久久久末码| 亚洲一区二区三区不卡视频| 在线十欧美十亚洲十日本专区| 9191精品国产免费久久| 欧美午夜高清在线| 成人亚洲精品av一区二区| av天堂在线播放| 女警被强在线播放| 欧美亚洲日本最大视频资源| 又大又爽又粗| 国产亚洲精品一区二区www| 久久久水蜜桃国产精品网| 久久国产精品人妻蜜桃| avwww免费| 可以免费在线观看a视频的电影网站| 久久精品人妻少妇| 黄片大片在线免费观看| 手机成人av网站| а√天堂www在线а√下载| 美国免费a级毛片| 亚洲无线在线观看| 国产精品电影一区二区三区| 亚洲,欧美精品.| 久久久久精品国产欧美久久久| 国产主播在线观看一区二区| 亚洲免费av在线视频| 亚洲 国产 在线| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲一区二区三区色噜噜| 欧美黑人巨大hd| 亚洲自偷自拍图片 自拍| 最新美女视频免费是黄的| 国产精品香港三级国产av潘金莲| 日本撒尿小便嘘嘘汇集6| 免费在线观看影片大全网站| 丝袜人妻中文字幕| 色老头精品视频在线观看| 91av网站免费观看| 亚洲国产欧美网| 亚洲精品美女久久久久99蜜臀| 国产在线精品亚洲第一网站| 日韩欧美一区视频在线观看| 成人三级做爰电影| 久久人人精品亚洲av| 国产成人一区二区三区免费视频网站| 麻豆久久精品国产亚洲av| 久久久久九九精品影院| 久久国产精品影院| 免费人成视频x8x8入口观看| 亚洲国产日韩欧美精品在线观看 | 亚洲色图 男人天堂 中文字幕| 又紧又爽又黄一区二区| 国产精品久久久久久人妻精品电影| 国产熟女xx| 国产精品自产拍在线观看55亚洲| 精品久久久久久久人妻蜜臀av| 久久久久久国产a免费观看| 我的亚洲天堂| 欧美午夜高清在线| www.熟女人妻精品国产| 国产高清激情床上av| 亚洲avbb在线观看| 99re在线观看精品视频| 99久久综合精品五月天人人| 久久国产乱子伦精品免费另类| 国产区一区二久久| 人人妻人人澡欧美一区二区| 亚洲人成电影免费在线| 12—13女人毛片做爰片一| 精品欧美国产一区二区三| 在线观看www视频免费| 这个男人来自地球电影免费观看| 国产精品1区2区在线观看.| 国产成人精品无人区| 亚洲最大成人中文| 亚洲av第一区精品v没综合| 美国免费a级毛片| 听说在线观看完整版免费高清| 亚洲午夜理论影院| 欧美性猛交黑人性爽| 亚洲中文日韩欧美视频| 色综合站精品国产| 国产成人精品久久二区二区免费| 国产av不卡久久| 免费观看精品视频网站| 十八禁网站免费在线| 精品久久久久久久久久免费视频| 国产精品,欧美在线| 天堂影院成人在线观看| 欧美激情 高清一区二区三区| 中文在线观看免费www的网站 | 亚洲精品美女久久av网站| 50天的宝宝边吃奶边哭怎么回事| 欧美激情 高清一区二区三区| 日韩欧美国产在线观看| 精品乱码久久久久久99久播| 一本精品99久久精品77| 宅男免费午夜| 国产又黄又爽又无遮挡在线| 免费av毛片视频| 亚洲天堂国产精品一区在线| 国产精品免费一区二区三区在线| 最新美女视频免费是黄的| 免费在线观看完整版高清| 国产片内射在线| 黄片小视频在线播放| 亚洲在线自拍视频| 99在线人妻在线中文字幕| 国产99久久九九免费精品| 19禁男女啪啪无遮挡网站| 色播在线永久视频| 亚洲无线在线观看| 精品国产国语对白av| 91成年电影在线观看| av电影中文网址| 免费观看人在逋| 久久精品亚洲精品国产色婷小说| 18禁美女被吸乳视频| 国产黄片美女视频| a在线观看视频网站| 国产99白浆流出| 麻豆国产av国片精品| 自线自在国产av| 97超级碰碰碰精品色视频在线观看| 午夜福利18| 熟女少妇亚洲综合色aaa.| 丰满的人妻完整版| 国产在线精品亚洲第一网站| 亚洲精品美女久久久久99蜜臀| 久久青草综合色| 久久久国产精品麻豆| 搡老熟女国产l中国老女人| а√天堂www在线а√下载| 免费无遮挡裸体视频| 久久天躁狠狠躁夜夜2o2o| 麻豆成人av在线观看| 后天国语完整版免费观看| 一区二区三区高清视频在线| 美女 人体艺术 gogo| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久蜜臀av无| 男女做爰动态图高潮gif福利片| 国产精品永久免费网站| 欧美黑人欧美精品刺激| 丁香六月欧美| 亚洲中文av在线| 亚洲一区二区三区不卡视频| 欧美zozozo另类| 熟女电影av网| 久9热在线精品视频| 亚洲精品在线观看二区| 久久久久国产一级毛片高清牌| 一区二区日韩欧美中文字幕| 亚洲在线自拍视频| 成人亚洲精品一区在线观看| 一本综合久久免费| 免费搜索国产男女视频| 黄网站色视频无遮挡免费观看| 中文字幕人妻熟女乱码| 2021天堂中文幕一二区在线观 | 97人妻精品一区二区三区麻豆 | 欧美日韩黄片免| 久久久精品国产亚洲av高清涩受| 在线视频色国产色| 亚洲第一电影网av| 亚洲av成人av| 精品卡一卡二卡四卡免费| av视频在线观看入口| 亚洲五月色婷婷综合| 1024手机看黄色片| 国产男靠女视频免费网站| 欧美另类亚洲清纯唯美| 久久中文看片网| 看黄色毛片网站| av视频在线观看入口| 久久久久久免费高清国产稀缺| 久99久视频精品免费| 成人三级黄色视频| 制服人妻中文乱码| 成人亚洲精品一区在线观看| 女性被躁到高潮视频| 嫁个100分男人电影在线观看| 自线自在国产av| 精品午夜福利视频在线观看一区| 午夜免费观看网址| 日日摸夜夜添夜夜添小说| 99国产综合亚洲精品| 久热爱精品视频在线9| 久久久久九九精品影院| 精品不卡国产一区二区三区| 国产成人影院久久av| 神马国产精品三级电影在线观看 | 在线观看免费日韩欧美大片|