• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Integrated Structure Analysis Method of Active Surface Antenna by Using the Simplified Actuator

    2023-09-03 15:24:38YouBanPeiyuanChaiQianXuandShufeiFeng

    You Ban ,Peiyuan Chai ,Qian Xu ,and Shufei Feng

    1 School of Mechanical Engineering,Xinjiang University,Urumqi 830017,China;banyou_xd@163.com

    2 Xinjiang Astronomical Observatory,Chinese Academy of Sciences,Urumqi 830011,China

    3 School of Mechanical Engineering,Dongguan University of Technology,Dongguan 523808,China

    Abstract The main surface of a large reflector antenna is composed of thousands of panels,which are inevitably deformed under natural load,leading to a great deterioration of electrical performance of the antenna.The active surface technique is an effective method to compensate antenna deformation error and has been widely used.The actuator is a complex component,it has not been established in the antenna structure analysis model,which limits the theoretical analysis ability of the active surface technology.To solve this problem,an integrated structure analysis method of active surface antenna by using the simplified actuator is proposed.First,according to the supporting characteristics and adjusting function of the actuator,the complex actuator is simplified a simple structure of support beams,support truss and adjustment beam.Second,the finite element model of the active surface antenna including the simplified actuator is established.Then,the relationship between the adjustment value (load) of adjustment beam and the deformation of the antenna structure is deduced,and the integrated analysis method for realizing the active adjustment of panels is established.Finally,the model and adjustment analysis method of the active surface antenna in this paper is applied to an 8 m antenna,and satisfactory structural analysis results are obtained,which shows the effectiveness and universality of the method,and provides a reference for the modeling and adjustment analysis of the active surface antenna.

    Key words: methods: numerical–telescopes–methods: analytical

    1.Introduction

    With the development of deep space exploration,radio astronomy and other fields,reflector antenna has been developing toward the direction of large aperture,high precision and high frequency (Baars &K?rcher 2018).The antenna will inevitably be affected by gravity,wind,temperature and other natural loads,the reflector will be deformed,the accuracy will be poor,leading to a significant decline in performance (Hoerner &Wong 1975).For the high-precision large reflector antenna with tens of meters of aperture,thousands of panels and thousands of tons of weight,it is difficult to achieve the accuracy index of millimeter or even sub-millimeter in its surface.In order to meet the accuracy of reflector,active surface technique is used to compensate the surface error of antenna and it is widely used in large reflector antennas with surface accuracy of millimeter or sub-millimeter(Wang et al.2018),Examples include 100 m Green Bank Telescope (GBT) in the United States (Richard 1998),64 m Sardinia Radio Telescope (SRT) in Italy (Orfei et al.2004),50 m Large Millimeter Telescope (LMT) in Mexico (Hughes et al.2010),and 65 m Tianma Radio Telescope (TMT) in Shanghai (Dong et al.2016).Active surface technology will also be used in the near future by the Xinjiang 110 m Qitai radio Telescope (QTT) (Wang 2014),which will be becoming the world’s largest fully steerable radio telescope.As shown in Figure 1,a panel is supported by four actuators and adjusted to the locations of the ideal reflector or best fitting reflector.Therefore,accurate calculation of antenna deformation and active surface analysis are important problems.

    Figure 1.Active surface of an antenna.

    Using the active surface technology to adjust the panels to designated locations has been discussed in many papers.Lian et al.(2021) gave the approximate relationship between the adjustment value and the elastic deformation of the panel.However,when the adjustment value is larger,the deformation error of the panel is also larger.Fu et al.(2015) put forward the calculation method about the ideal reflector and best fitting reflector with two parameters,five parameters and six parameters,and calculated the adjustment value of the main reflector and the sub-reflector after the gravity deformation of the large Cassegrain antenna structure.Wang et al.(2008) gave the influence relation matrix between the target point and the adjustment amount,and received satisfactory results.For Wang et al.(2017),according to the initial position of the actuator and the relationship between the adjustment point and the target point,a new mathematical model and program for directly calculating the motion of the actuator were established.Sun et al.(2021)provided a calculation method to adjust the reflector surface through the aperture phase profile.The adjustment values are calculated through the fitting surface,and the surface accuracy of the 65 m antenna is reduced from 0.28 to 0.19 mm.In (Wang et al.2021),the distribution of actuators and the design method of panels were studied,and the methods of triangular panels,node index and the fitting solution method of a single panel are given.This method provides a reference for the design and realization of the active surface or deformable sub-reflector for high performance large radio telescopes.Although many scholars have studied the active surface compensation technology,the calculation of active adjustment is based on the separation of actuator and panel,without considering the influence of the overall antenna structure on panel adjustment,which will limit the theoretical analysis ability of active surface technology.

    To solve this problem,an integrated structure analysis method of active surface antenna by using the simplified actuator is proposed in this paper.First,the complex structure of the actuator is simplified according to its supporting characteristics and adjusting functions.Second,the finite element model of the active surface antenna including the simplified actuator is established,and the simulation method of the actuator active adjustment panel is proposed,and the relationship between the adjustment value and the antenna structure deformation is given.Finally,this method is applied to the 8 m antenna,and good analysis results are obtained.The results show that the method is effective and universal,which provides a theoretical reference for modeling and active adjustment analysis of active surface antenna.

    2.Integrated Structure Analysis for Active Surface Antenna

    In this section,the finite element model of active surface antenna by using the simplified actuator and the realization method of adjustment the panel are introduced.

    2.1.The Simplified Actuator

    Because the actuators used by GBT (Richard 1998),SRT(Orfei et al.2004),LMT (Maga?a et al.2014) and TMT(Wang 2010;Dong et al.2016) have complex and different structures,they should be simplified and the functions and characteristics of actual actuators should be realized in simulation.The actuator is a complex mechanism.It converts the rotating motion of the motor into the linear motion of the screw through worm gear,ball screw and other transmission parts.The screws support the panels and adjust to the specified position.The motion essence of the actuator is linear motion,and its motor and transmission part can be used as the input part of the actuator.In the simplified model,they are the loads that control the adjustment value of the actuator.

    The linear motion of a screw can be analyzed by means of a rod or beam.Because the antenna works under different working conditions,the actuator will be affected by bending moment,torque or shear,it is better to use the beam to simulate the linear motion of the screw.Typically,one actuator is connected to the corners of four adjacent panels,so that the actuator has four support beams that move in sync.To achieve this,four beams need to be connected with support trusses,and an adjustment beam is attached below the support trusses and acts as a component to achieve the adjustment function,as shown in Figure 2.In order to facilitate the connection and calculation in the finite element model,the beam element is also used to analyze the support truss.

    Figure 2.Correspondence between actual actuator and the simplified actuator.

    In the early studies on the active surface,the panel was not built on the antenna model,but the deformation of the Backup structure(BUS) was equivalent to the panel deformation (Stutzki et al.2008).Later,the panel is installed on the upper node of the BUS.Because the surface of the antenna is composed of panels,the adjacent four panels connected to a BUS upper node.In order to avoid the panel being squeezed,the adjacent panel needs to retain a gap,so the designer uses four short beams to connect the upper node of the BUS and four adjacent panels(Lian et al.2022)(see Figure 3).However,these short beams are relatively inclined and cannot be adjusted.The simplified actuator model proposed in this paper can solve this problem to some extent.

    Figure 3.The comparison of the finite element model with and without the actuator.

    2.2.Structural Calculation Method of Active Surface Antenna Model

    A finite element model of an active surface antenna is established,including a BUS,actuators and panels.The simplified model of the actuator consists of four support beams,a support truss and an adjustment beam.The BUS is a space truss,usually simulated using beam elements.Because of the elastic deformation of the panel,shell element is more suitable for simulation.

    In order to calculate the deformation of the antenna structure,the stiffness equation should be established:

    whereKis the stiffness matrix,uis the node displacement vector,andPis the node load vector.The stiffness matrixKis formed by the combination of two elements according to their joint order.The calculation methods of beam element and shell element are described below.

    The beam element can not only bear axial force and bending moment,but also bear torque.The space beam element has two nodesiandj,and each node has 6 degrees of freedom.

    The stiffness matrix of axial displacement is similar to that of rod element:

    whereEis Young’s modulus,Aijis the cross-sectional area andlijis the length.

    When the beam is subjected to torsion,the torsion angle is similar to the axial displacement of the rod,and the stiffness matrix of the similar rod element is obtained:

    whereGis shear modulus andJis rotational moment of inertia.

    When the beam is bent in the plane,the corresponding stiffness matrix is:

    whereIijZandIijYare moments of inertia.

    The above stiffness matrices are combined in the order of degrees of freedom to obtain the complete element stiffness matrix in the local coordinate systemKbeam:

    The shell element consists of a membrane element and a bending element,and the element has 6 degrees of freedom on the node.In order to calculate accurately,the triangular shell element is used to simulate the elastic deformation of the panel.

    Triangular bending element consists of discrete Kirchhoff theory (DKT) element (Batoz et al.1980),whose stiffness matrix is:

    whereDis the elastic coefficient matrix,Bis the straindisplacement matrix,ξ and η represent the components of the area coordinates.KDKTwas obtained by the three-point Gaussian integral method.

    The improved membrane element with Allman degree of freedom can analyze large deformation (Cook 1986),and its stiffness matrix is:

    whereKLSTis the stiffness matrix of the linear strain triangle element,andTis a transformation matrix,it convertsKLSTtoKallman(Cook 1986).

    There have redundant zero-energy modes in this element,so define a penalty stiffness (Macneal &Harder 1988):

    where δ is the penalty parameter(0.01),Vis the volume andQis the relative rotation matrix.

    By addingKallmanandKs,a membrane element without defects is obtained,whose stiffness matrix is:

    The stiffness matrix of shell element in local coordinate system is obtained by combining membrane element and bending element in order of freedom.

    The above two types of elements are calculated in the local coordinate system,which needs to be converted to the global coordinate system to calculate the stiffness matrix.These stiffness matrices were combined according to the order of degrees of freedom of nodes to obtain the stiffness matrixK.

    The equivalent node loadPis calculated based on the given environmental load and mesh shape.The above stiffness matrixKand node load vectorPare substituted into Equation (1) to obtain all node displacementsuof the antenna.

    2.3.The Realization Method of the Simplified Actuator Adjustment the Panel

    Figure 4 is a schematic diagram of the simplified actuator active adjustment.An equal and opposite load is applied to both ends of the adjustment beam to stretch or shorten it,causing the support truss and the support beams to displace along the axis,and the panel is adjusted.The model simulates the motion and force of the actual actuator.

    Figure 4.Schematic diagram of the simplified actuator.

    According to Equation(1)and Figure 4,the upper and lower nodes of the adjustment beams transform in Equation (1),and the load is applied.The calculation method of active adjustment model of reflector antenna is obtained:

    whereKoo,Kod,Kouare the stiffness matrix of other nodes except the adjustment beams,uupis the displacement vector of the upper nodes of the adjustment beams,udownis the displacement vector about the lower nodes about the adjustment beams,uotheris the displacement vector about the other nodes.PdownandPupare the equivalent environmental load(gravity load) about the upper and lower nodes of the adjustment respectively,Fis the load applied,FdownandFupare equal and opposite load.

    In Equation (16),the actuator adjustment values can be converted into node displacement inputuupandFis the unknown external loads.Since the adjustment beam has only two nodes,the number ofuupandudownis the same,and the unknown quantity is balanced with the number of equations,with a unique solution.

    It can be obtained from Equation (16) that:

    The expression ofuotheraboutuupandudowncan be obtained from Equation (18) and Equation (19):

    The expression ofudownaboutuupcan be obtained from Equation (17) and Equation (20):

    Substitute Equation (21) into Equation (17) to get an expression:

    Since the stiffness matrix is only related to node coordinates,sufficient conditions are available to solve:

    Finally,by substitutingFfinto Equation (16),the relationship between the adjustment values and the antenna structure can be obtained,and the antenna structure deformation after active adjustment can be accurately analyzed.

    3.Numerical Results and Discussion

    In this section,the method of the second section is used to calculate the gravity deformation and adjust the panel for the 8-meter antenna,and the effectiveness of the method is verified.

    3.1.The 8 m Antenna Model

    In order to evaluate the feasibility of this method,a case of a reflector antenna with a diameter of 8 m and a focal length of 3 m is carried out.Figure 5 is a quarter diagram of the BUS.The BUS is steel structure with a circular cross-section.The 36 panels form a standard paraboloid with a thickness of 20 mm.

    Figure 5.Quarter diagram of the BUS.

    Figure 6 shows the finite element model of the antenna.The three-ring panels are evenly distributed along the circumference,and 48 actuators are distributed in the upper node of the BUS.The panels have little influence on the structural deformation of the whole antenna (Stutzki et al.2008),and the stiffness of the panel is a small value in the simulation.In order to make the deformation of the panel reasonable,its mass is equivalent to giving four actuators,and the mass of the panel is zero.The elastic deformation of the panel is mainly affected by the BUS and the actuator.

    Figure 6.Finite element model of 8 m antenna.

    3.2.The Calculation Result of Gravity Deformation

    The gravity deformation of the 8 m antenna finite element model with and without the actuator needs to be compared.In order to compare the results accurately,the weight of the actuator and the small short beam is zero.The results show that the actuator structure has little influence on the antenna deformation,as shown in Figure 7.

    Figure 7.The gravity deformation comparison of the 8 m antenna with and without the actuator when the reflector points skyward and horizontally (unit: mm).

    Before calculating the active adjustment simulation analysis,the stiffness Equation (1) of the finite element model needs to be verified.Figure 8 shows the gravity deformation of the 8 m antenna (The actuator has a normal weight) when it pointing skywards and horizontally.According to the grid division,elements information (nodes composition,nodes number and nodes coordinates) was obtained,and the equivalent load of nodes was calculated,and stiffness matrix and load vector were obtained.Equation (1) is solved and compared with the calculation results of the finite element software.As shown in Table 1,the maximum displacement error of all nodes of the antenna is 7.9×10?8mm when the antenna points skywards and 4.1×10?7mm in when the antenna points horizontally.The results show that Equation(1)can accurately calculate the gravity deformation of 8 m antenna,which lays a foundation for the calculation of subsequent active adjustment of panel deformation.

    Table 1Maximum Node Displacement Error of the Antenna before and after Adjusting the Panel

    Figure 8.Surface errors of 8 m antenna (unit mm).

    3.3.The Calculation Result of Adjustment the Panel

    In this paper,the ideal antenna structure was used to calculate the active adjustment model,and 48 actuators have 48 randomly adjustment values(5 mm),as shown in Figure 9.The adjustment value are converted into node displacement and substituted into Equation(23).The load is calculated and input into the finite element model to make the adjustment beam extend or shorten along the direction of the actuator,so as to achieve the function of adjusting the panel.It is worth mentioning that when the antenna is deformed by gravity,the direction of the actuators will change slightly,so the actuator should adjust the panel in the true direction.On the other hand,the adjustment beam can extension or shorten by the adjustment value,and the adjustment value reflects the displacement of the node connects panel and actuator (The node is on the support beam),so the node displacement of the support beam should be consistent with the adjustment beam.

    Figure 9.Randomly adjustment values.

    According to Figure 9,the same adjustment value is given to two conditions respectively,and the deformation of the panel after active adjustment is shown in Figure 10.Table 1 shows the maximum displacement error of each antenna node before and after active adjustment.When loading is applied,the maximum node displacement errors of the proposed method and the finite element software are 2.7×10?6mm and 1.9×10?6mm respectively,which meet the requirements of analysis accuracy.The maximum node displacement errors of the support beams are 0.0129 and 0.0248 mm,but the maximum relative adjustment value errors are only 4.16%and 5.19%.Because the structure is not completely rigid,the node displacement of the support beam has some error,but the maximum of this error is acceptable.The optimization of the simplified actuator structure and the influence of actuator pointing change on adjusting panel must be carried out in the follow-up work.In addition,the random adjustment value can cause the panel to be squeezed or stretched to an unreasonable shape,which can be avoided when calculating the adjustment value of the best fitting paraboloid.

    Figure 10.Deformation of the panel after adjustment (unit mm).

    4.Conclusion

    In this paper,an integrated structure analysis method of active surface antenna by using the simplified actuator is proposed.This method can realize the simulation analysis of antenna including actuator,including establishing the stiffness equation of finite element model,and deducing the calculation formula of the actuator adjustment value and antenna structure deformation.The results show that the method is correct and effective.Through case analysis,a good accuracy of antenna structure analysis was obtained,and the subsequent work to be improved was defined,such as optimizing the actuator structure and the effect on adjusting panel when the actuator direction change.In the future,the optimized actuator model will be used to adjust the panel and a surface data will be given when the surface is adjusted to the best fit paraboloid.

    Finally,this method has reference value for modeling and adjustment analysis of active surface antenna.

    Acknowledgments

    This work was supported by the National Key Research and Development Program of China (Nos.2021YFC2203501 and 2021YFC2203601),the National Natural Science Foundation of China (No.52165053),the China Postdoctoral Science Foundation (2021M702751),the Tianshan Young Talent Project of Xinjiang (2020Q068) and the Doctor Scientific Research Project of Xinjiang.

    ORCID iDs

    国产探花极品一区二区| 桃花免费在线播放| 一本色道久久久久久精品综合| 又粗又硬又长又爽又黄的视频| 国产亚洲午夜精品一区二区久久| 国产视频首页在线观看| 国产免费一区二区三区四区乱码| 韩国av在线不卡| 国产精品蜜桃在线观看| 少妇精品久久久久久久| 久久久欧美国产精品| 99re6热这里在线精品视频| 欧美激情极品国产一区二区三区| 寂寞人妻少妇视频99o| 最近中文字幕2019免费版| 一级片免费观看大全| 国产精品无大码| 亚洲av.av天堂| 国产精品欧美亚洲77777| 校园人妻丝袜中文字幕| 国产老妇伦熟女老妇高清| 国产乱来视频区| 18禁观看日本| 国产日韩欧美视频二区| 久久久a久久爽久久v久久| 性高湖久久久久久久久免费观看| 亚洲在久久综合| 久久国产精品大桥未久av| 欧美精品人与动牲交sv欧美| 久久精品国产自在天天线| av免费在线看不卡| 极品人妻少妇av视频| 国产欧美日韩综合在线一区二区| 中文字幕色久视频| 久久国产亚洲av麻豆专区| 国产老妇伦熟女老妇高清| 天天躁夜夜躁狠狠躁躁| 尾随美女入室| 欧美精品一区二区大全| 五月伊人婷婷丁香| 欧美精品av麻豆av| 亚洲国产最新在线播放| 日韩av不卡免费在线播放| 国产精品 国内视频| 免费播放大片免费观看视频在线观看| 国产亚洲欧美精品永久| 亚洲色图综合在线观看| 国产精品99久久99久久久不卡 | 国产综合精华液| 亚洲,一卡二卡三卡| 女性被躁到高潮视频| 一区二区三区激情视频| 国产一区有黄有色的免费视频| 免费在线观看完整版高清| 国产有黄有色有爽视频| 中文字幕人妻熟女乱码| 免费av中文字幕在线| 在线观看免费高清a一片| 中文字幕av电影在线播放| www日本在线高清视频| 久久人人爽人人片av| 女的被弄到高潮叫床怎么办| 蜜桃在线观看..| 亚洲av电影在线进入| 亚洲av国产av综合av卡| 极品人妻少妇av视频| 中文字幕最新亚洲高清| 老司机影院成人| 欧美亚洲日本最大视频资源| 欧美变态另类bdsm刘玥| 你懂的网址亚洲精品在线观看| 久久99蜜桃精品久久| 色婷婷av一区二区三区视频| 国产亚洲欧美精品永久| 一区二区三区乱码不卡18| 一级黄片播放器| 亚洲av在线观看美女高潮| 精品一品国产午夜福利视频| 人人妻人人澡人人爽人人夜夜| 男女啪啪激烈高潮av片| 一本—道久久a久久精品蜜桃钙片| av天堂久久9| 色播在线永久视频| 香蕉精品网在线| 国产日韩欧美在线精品| 亚洲精品美女久久av网站| 最近最新中文字幕大全免费视频 | a 毛片基地| 欧美亚洲日本最大视频资源| 在线观看免费视频网站a站| 捣出白浆h1v1| 18在线观看网站| 亚洲美女视频黄频| 久久久久久久精品精品| 性色av一级| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产看品久久| 大陆偷拍与自拍| 超色免费av| 亚洲av男天堂| 亚洲,一卡二卡三卡| 国产黄色视频一区二区在线观看| 亚洲国产欧美日韩在线播放| 成人午夜精彩视频在线观看| 色网站视频免费| 麻豆av在线久日| 久久久久久伊人网av| 9色porny在线观看| 国产成人aa在线观看| 久久精品国产a三级三级三级| 蜜桃在线观看..| 亚洲欧美精品自产自拍| 久久久久精品久久久久真实原创| 国产成人av激情在线播放| 欧美人与性动交α欧美软件| 精品99又大又爽又粗少妇毛片| 欧美变态另类bdsm刘玥| 男女啪啪激烈高潮av片| 久久ye,这里只有精品| 天天躁日日躁夜夜躁夜夜| 香蕉精品网在线| 久热这里只有精品99| 国产男女超爽视频在线观看| 免费播放大片免费观看视频在线观看| 国产一区二区 视频在线| 男人爽女人下面视频在线观看| 熟妇人妻不卡中文字幕| 成人亚洲精品一区在线观看| 亚洲精品久久久久久婷婷小说| 一级毛片 在线播放| 18禁裸乳无遮挡动漫免费视频| 成人影院久久| 国产男女内射视频| 国产精品熟女久久久久浪| av线在线观看网站| videosex国产| 久久99蜜桃精品久久| 欧美中文综合在线视频| 亚洲av免费高清在线观看| www.自偷自拍.com| 国产精品香港三级国产av潘金莲 | 欧美日韩成人在线一区二区| 日本av免费视频播放| 夫妻午夜视频| 一本大道久久a久久精品| 亚洲精品国产av蜜桃| 波多野结衣av一区二区av| 看十八女毛片水多多多| 日本av免费视频播放| 久久午夜综合久久蜜桃| 超碰97精品在线观看| 少妇的逼水好多| 国产成人精品久久二区二区91 | 人妻一区二区av| av在线app专区| 日本-黄色视频高清免费观看| 国产成人91sexporn| 观看美女的网站| 人妻系列 视频| 亚洲三级黄色毛片| 国产熟女欧美一区二区| 亚洲综合色网址| 人妻系列 视频| 国产白丝娇喘喷水9色精品| 一本—道久久a久久精品蜜桃钙片| 9191精品国产免费久久| 久久精品国产综合久久久| 午夜精品国产一区二区电影| 少妇的逼水好多| 久久免费观看电影| 自拍欧美九色日韩亚洲蝌蚪91| 国语对白做爰xxxⅹ性视频网站| 精品99又大又爽又粗少妇毛片| av有码第一页| 免费在线观看黄色视频的| 观看美女的网站| 久久精品久久久久久久性| 国产成人午夜福利电影在线观看| 母亲3免费完整高清在线观看 | 中文乱码字字幕精品一区二区三区| 国产日韩欧美亚洲二区| 成人亚洲精品一区在线观看| 最新中文字幕久久久久| 啦啦啦中文免费视频观看日本| 精品国产超薄肉色丝袜足j| 国产成人精品一,二区| 色94色欧美一区二区| 日本色播在线视频| 色视频在线一区二区三区| 人妻系列 视频| 久久久久久人人人人人| 日韩精品免费视频一区二区三区| 亚洲一码二码三码区别大吗| 日日撸夜夜添| 在线观看免费高清a一片| 久久人人97超碰香蕉20202| 国产探花极品一区二区| 日本色播在线视频| 久久热在线av| 97精品久久久久久久久久精品| 久久久欧美国产精品| 日韩一本色道免费dvd| 国产成人精品婷婷| a级毛片黄视频| 午夜影院在线不卡| av.在线天堂| 桃花免费在线播放| 一本久久精品| videos熟女内射| 欧美激情高清一区二区三区 | 最近手机中文字幕大全| 国产黄色视频一区二区在线观看| 午夜福利乱码中文字幕| 大话2 男鬼变身卡| 久久久久人妻精品一区果冻| 久久久久久久国产电影| 中文字幕人妻丝袜制服| 男女国产视频网站| 中文字幕亚洲精品专区| 欧美xxⅹ黑人| 青春草亚洲视频在线观看| 久久久久久人妻| 男女下面插进去视频免费观看| 日本av手机在线免费观看| 国产一区有黄有色的免费视频| 一区二区三区精品91| 亚洲婷婷狠狠爱综合网| 成人午夜精彩视频在线观看| 免费在线观看黄色视频的| 男人爽女人下面视频在线观看| 久久精品国产亚洲av涩爱| 日韩大片免费观看网站| 少妇熟女欧美另类| 日韩熟女老妇一区二区性免费视频| 国产亚洲欧美精品永久| 久久久久久久大尺度免费视频| 亚洲国产精品一区二区三区在线| 两个人看的免费小视频| 国产乱人偷精品视频| 国产精品 国内视频| 男男h啪啪无遮挡| 久久久精品免费免费高清| 视频区图区小说| 欧美精品亚洲一区二区| videosex国产| 男女高潮啪啪啪动态图| 精品亚洲成a人片在线观看| 亚洲激情五月婷婷啪啪| 亚洲精品av麻豆狂野| 青春草视频在线免费观看| 亚洲一区二区三区欧美精品| 国产亚洲最大av| 秋霞在线观看毛片| 黄片小视频在线播放| 老鸭窝网址在线观看| 国产亚洲午夜精品一区二区久久| 久久人人爽人人片av| 日韩一区二区视频免费看| 亚洲精品视频女| 搡老乐熟女国产| 国产精品国产三级国产专区5o| 黄色一级大片看看| 日韩一卡2卡3卡4卡2021年| 国产精品熟女久久久久浪| 人妻 亚洲 视频| 欧美日韩成人在线一区二区| 久久97久久精品| 男女午夜视频在线观看| 99精国产麻豆久久婷婷| av片东京热男人的天堂| 国产精品久久久久成人av| 男人添女人高潮全过程视频| 国产有黄有色有爽视频| 日韩av免费高清视频| 狂野欧美激情性bbbbbb| kizo精华| 欧美日韩成人在线一区二区| 国产成人免费无遮挡视频| 少妇 在线观看| 欧美+日韩+精品| 国产熟女午夜一区二区三区| av国产精品久久久久影院| 18禁观看日本| 国产av码专区亚洲av| 欧美精品国产亚洲| 亚洲精品成人av观看孕妇| 人妻一区二区av| 免费人妻精品一区二区三区视频| 免费观看性生交大片5| 女的被弄到高潮叫床怎么办| av有码第一页| 成人国语在线视频| 婷婷色综合www| 考比视频在线观看| 青草久久国产| 欧美日韩亚洲国产一区二区在线观看 | 亚洲美女黄色视频免费看| 高清不卡的av网站| 丁香六月天网| 午夜日本视频在线| 亚洲色图综合在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品日韩在线中文字幕| 久久久久久久精品精品| 91成人精品电影| 伊人亚洲综合成人网| 国产精品女同一区二区软件| 久久人人97超碰香蕉20202| 成人亚洲欧美一区二区av| av又黄又爽大尺度在线免费看| 成年人午夜在线观看视频| 极品少妇高潮喷水抽搐| 久久鲁丝午夜福利片| 99热网站在线观看| 丝袜脚勾引网站| 亚洲,欧美,日韩| 日日撸夜夜添| 亚洲五月色婷婷综合| 老汉色av国产亚洲站长工具| 国产精品秋霞免费鲁丝片| 一级毛片我不卡| 久久久欧美国产精品| 亚洲欧美成人综合另类久久久| av不卡在线播放| 国产精品不卡视频一区二区| 亚洲国产av新网站| 亚洲国产色片| 欧美人与善性xxx| 十分钟在线观看高清视频www| 一级黄片播放器| 亚洲人成77777在线视频| 欧美另类一区| 三上悠亚av全集在线观看| 男女下面插进去视频免费观看| 黄色怎么调成土黄色| 日韩制服丝袜自拍偷拍| 黄频高清免费视频| av一本久久久久| 香蕉精品网在线| 精品国产露脸久久av麻豆| 国产高清国产精品国产三级| 999精品在线视频| 夫妻性生交免费视频一级片| 国产成人精品婷婷| 啦啦啦啦在线视频资源| 日本-黄色视频高清免费观看| 国产高清国产精品国产三级| 狠狠精品人妻久久久久久综合| 日本免费在线观看一区| 一级毛片电影观看| 亚洲成人一二三区av| 国产精品av久久久久免费| www.熟女人妻精品国产| 女的被弄到高潮叫床怎么办| 交换朋友夫妻互换小说| 在线观看免费高清a一片| 国产av一区二区精品久久| av福利片在线| 国产精品熟女久久久久浪| 捣出白浆h1v1| 2018国产大陆天天弄谢| 欧美成人精品欧美一级黄| 叶爱在线成人免费视频播放| 青草久久国产| www日本在线高清视频| 成年人免费黄色播放视频| 在线观看三级黄色| 欧美日韩亚洲高清精品| 男女下面插进去视频免费观看| 亚洲精品av麻豆狂野| 亚洲精品久久成人aⅴ小说| av福利片在线| 国精品久久久久久国模美| 美女午夜性视频免费| 精品国产乱码久久久久久小说| 我要看黄色一级片免费的| 精品少妇黑人巨大在线播放| 爱豆传媒免费全集在线观看| 超碰97精品在线观看| 国产成人精品无人区| 一区二区三区四区激情视频| 人妻 亚洲 视频| 美女国产视频在线观看| 亚洲三区欧美一区| 国产成人精品久久久久久| 观看美女的网站| 久久久久久久亚洲中文字幕| 青草久久国产| 日韩免费高清中文字幕av| 男人添女人高潮全过程视频| 亚洲欧美成人综合另类久久久| 国产精品免费视频内射| 日韩熟女老妇一区二区性免费视频| 男女高潮啪啪啪动态图| 日日啪夜夜爽| 大香蕉久久成人网| 日韩欧美精品免费久久| 考比视频在线观看| 成人国产麻豆网| 人妻系列 视频| 中文字幕人妻丝袜制服| 国产在视频线精品| 观看美女的网站| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区亚洲一区在线观看| av在线老鸭窝| 国产男人的电影天堂91| 久久精品aⅴ一区二区三区四区 | 老汉色∧v一级毛片| 亚洲熟女精品中文字幕| 晚上一个人看的免费电影| 成人黄色视频免费在线看| 丝袜在线中文字幕| 日韩伦理黄色片| 在线亚洲精品国产二区图片欧美| 久久这里只有精品19| 极品少妇高潮喷水抽搐| 亚洲成国产人片在线观看| 午夜影院在线不卡| 一边亲一边摸免费视频| 成年女人在线观看亚洲视频| 国产人伦9x9x在线观看 | 王馨瑶露胸无遮挡在线观看| 久久女婷五月综合色啪小说| 欧美人与性动交α欧美软件| 国产福利在线免费观看视频| 男人爽女人下面视频在线观看| 亚洲激情五月婷婷啪啪| 国产精品一二三区在线看| 免费观看a级毛片全部| 狠狠精品人妻久久久久久综合| 久久这里只有精品19| 精品亚洲成a人片在线观看| 久久久久视频综合| 亚洲三级黄色毛片| 欧美国产精品一级二级三级| av视频免费观看在线观看| 制服人妻中文乱码| 尾随美女入室| 亚洲色图综合在线观看| 亚洲国产精品成人久久小说| 91午夜精品亚洲一区二区三区| 国产日韩欧美视频二区| 制服诱惑二区| 日韩制服丝袜自拍偷拍| 亚洲精品乱久久久久久| 在线观看人妻少妇| 最近最新中文字幕免费大全7| 韩国精品一区二区三区| 一本—道久久a久久精品蜜桃钙片| 精品视频人人做人人爽| 国产亚洲最大av| 高清视频免费观看一区二区| 久久精品久久精品一区二区三区| 国产免费现黄频在线看| 丰满少妇做爰视频| 免费女性裸体啪啪无遮挡网站| 国产片特级美女逼逼视频| 欧美精品人与动牲交sv欧美| 建设人人有责人人尽责人人享有的| 少妇被粗大猛烈的视频| 97在线人人人人妻| 777米奇影视久久| 成年女人在线观看亚洲视频| 人人澡人人妻人| 国产一区二区三区综合在线观看| 国产一区二区在线观看av| 成人二区视频| 日韩一卡2卡3卡4卡2021年| 日本欧美视频一区| 亚洲av电影在线观看一区二区三区| 久久久久精品人妻al黑| 国产免费一区二区三区四区乱码| 美女大奶头黄色视频| 妹子高潮喷水视频| 桃花免费在线播放| 一区二区日韩欧美中文字幕| 日本爱情动作片www.在线观看| 亚洲av电影在线进入| 国产精品久久久久久精品电影小说| 天天躁夜夜躁狠狠久久av| 国产亚洲一区二区精品| 国产一区二区在线观看av| 日韩精品免费视频一区二区三区| 国产综合精华液| 亚洲av电影在线进入| 下体分泌物呈黄色| 男人操女人黄网站| 在线观看人妻少妇| 亚洲精品国产色婷婷电影| 美女高潮到喷水免费观看| 欧美人与性动交α欧美软件| 国产精品成人在线| 精品人妻一区二区三区麻豆| 熟女少妇亚洲综合色aaa.| 久久婷婷青草| 青青草视频在线视频观看| 女人久久www免费人成看片| 天天躁日日躁夜夜躁夜夜| 中文天堂在线官网| 飞空精品影院首页| 中文字幕色久视频| a级片在线免费高清观看视频| 天美传媒精品一区二区| 亚洲精品美女久久久久99蜜臀 | 99热国产这里只有精品6| 另类精品久久| 一区二区三区精品91| 香蕉精品网在线| 成年女人毛片免费观看观看9 | 免费在线观看视频国产中文字幕亚洲 | 王馨瑶露胸无遮挡在线观看| 中文天堂在线官网| 国产精品99久久99久久久不卡 | 国产男女内射视频| 精品少妇黑人巨大在线播放| 日韩免费高清中文字幕av| 一级,二级,三级黄色视频| 亚洲国产成人一精品久久久| 一级片'在线观看视频| 国产成人一区二区在线| 色播在线永久视频| 亚洲精品日韩在线中文字幕| 九九爱精品视频在线观看| 久久久久国产一级毛片高清牌| 欧美老熟妇乱子伦牲交| 国产精品久久久久久av不卡| 国产成人精品无人区| 晚上一个人看的免费电影| 成年女人毛片免费观看观看9 | 三上悠亚av全集在线观看| 在线观看三级黄色| 中文字幕人妻丝袜一区二区 | 波多野结衣av一区二区av| 伦理电影免费视频| 人人妻人人澡人人爽人人夜夜| 国产 精品1| 婷婷色麻豆天堂久久| 久久久久久人人人人人| 国产男人的电影天堂91| 在线精品无人区一区二区三| 夜夜骑夜夜射夜夜干| 亚洲人成电影观看| 精品人妻一区二区三区麻豆| 国产高清国产精品国产三级| 香蕉丝袜av| 韩国av在线不卡| 十分钟在线观看高清视频www| 亚洲欧美成人精品一区二区| 国产在视频线精品| 久久99蜜桃精品久久| 一级爰片在线观看| 人人澡人人妻人| 男女免费视频国产| 婷婷色av中文字幕| xxx大片免费视频| 久久精品国产亚洲av涩爱| 日本欧美国产在线视频| av福利片在线| h视频一区二区三区| 99久久综合免费| 视频在线观看一区二区三区| 丝瓜视频免费看黄片| av一本久久久久| 国产精品av久久久久免费| 天堂俺去俺来也www色官网| 中国三级夫妇交换| 尾随美女入室| 五月天丁香电影| 欧美bdsm另类| 午夜福利一区二区在线看| 大片免费播放器 马上看| 亚洲av中文av极速乱| 女人高潮潮喷娇喘18禁视频| 国产视频首页在线观看| 美女脱内裤让男人舔精品视频| 一级黄片播放器| 性少妇av在线| 亚洲国产精品999| 又黄又粗又硬又大视频| 一区在线观看完整版| 在线观看一区二区三区激情| 亚洲 欧美一区二区三区| 纵有疾风起免费观看全集完整版| 午夜精品国产一区二区电影| 欧美另类一区| 日本免费在线观看一区| 秋霞在线观看毛片| 一区二区av电影网| 赤兔流量卡办理| 午夜老司机福利剧场| 最新的欧美精品一区二区| 老女人水多毛片| 日本av手机在线免费观看| 成人毛片60女人毛片免费| 中文字幕制服av| 久久久精品94久久精品| 国产成人精品在线电影| 久久久久久免费高清国产稀缺| 国产男人的电影天堂91| 久久女婷五月综合色啪小说| 亚洲欧美中文字幕日韩二区| 一区在线观看完整版| 久久精品aⅴ一区二区三区四区 | 亚洲第一青青草原| 久久国产亚洲av麻豆专区| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品第二区| 可以免费在线观看a视频的电影网站 | 中文字幕亚洲精品专区| 欧美中文综合在线视频| 叶爱在线成人免费视频播放| 亚洲av综合色区一区| 在线观看三级黄色| 亚洲人成77777在线视频|