• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Progenitors of Type Ia Supernovae with Asymptotic Giant Branch Donors

    2023-09-03 15:24:28LuHanLiDongDongLiuandBoWang

    Lu-Han Li,Dong-Dong Liu,and Bo Wang

    1 Yunnan Observatories,Chinese Academy of Sciences,Kunming 650216,China;liudongdong@ynao.ac.cn,wangbo@ynao.ac.cn

    2 Key Laboratory for the Structure and Evolution of Celestial Objects,Chinese Academy of Sciences,Kunming 650216,China

    3 International Centre of Supernovae,Yunnan Key Laboratory,Kunming 650216,China

    4 University of Chinese Academy of Sciences,Beijing 100049,China

    Abstract Type Ia supernovae(SNe Ia)are among the most energetic events in the universe.They are excellent cosmological distance indicators due to the remarkable homogeneity of their light curves.However,the nature of the progenitors of SNe Ia is still not well understood.In the single-degenerate model,a carbon–oxygen white dwarf (CO WD)could grow its mass by accreting material from an asymptotic giant branch(AGB)star,leading to the formation of SNe Ia when the mass of the WD approaches to the Chandrasekhar-mass limit,known as the AGB donor channel.In this channel,previous studies mainly concentrate on the wind-accretion pathway for the mass-increase of the WDs.In the present work,we employed an integrated mass-transfer prescription for the semidetached WD+AGB systems,and evolved a number of WD+AGB systems for the formation of SNe Ia through the Roche-lobe overflow process or the wind-accretion process.We provided the initial and final parameter spaces of WD+AGB systems for producing SNe Ia.We also obtained the density distribution of circumstellar matter at the moment when the WD mass reaches the Chandrasekhar-mass limit.Moreover,we found that the massive WD+AGB sample AT 2019qyl can be covered by the final parameter space for producing SNe Ia,indicating that AT 2019qyl is a strong progenitor candidate of SNe Ia with AGB donors.

    Key words: stars: evolution–(stars:) supernovae: general–(stars:) binaries (including multiple): close–(stars:)white dwarfs

    1.Introduction

    Type Ia supernovae (SNe Ia) have strong Si II absorption lines,but no H and He lines near the maximum luminosity in their spectrum (Filippenko 1997).Due to the homogeneity of the SN Ia light curves,they are good distance indicators and used for precise distance measurements in cosmology,revealing the current accelerating expansion of the universe most possibly driven by dark energy (e.g.,Riess et al.1998;Perlmutter et al.1999;Howell 2011).It has been suggested that the local Hubble constant could be accurately measured if the Hubble flow samples of SNe Ia and the calibrations of Cepheid variables could be well combined (Riess et al.2019,2022).

    SNe Ia are thought to be the thermonuclear explosion of carbon–oxygen white dwarfs (CO WDs) with masses close to the Chandrasekhar-mass limit (MCh) in close binaries (e.g.,Hoyle &Fowler 1960;Nomoto et al.1984).However,the nature of progenitor system of SNe Ia,especially the donor is still unclear.In the past decades,many progenitor models have been proposed,in which the most popular models are the single-degenerate (SD)model and the double-degenerate (DD)model.(1) In the SD model,a CO WD increases its mass by accreting H-/He-rich material from a non-degenerate donor,and explodes as an SN Ia when its mass approaches toMCh.Typically,the non-degenerate donor of the WD can be a mainsequence (MS) star,a sub-giant,a red giant (RG),an asymptotic giant branch(AGB)star,or a He star(e.g.,Whelan&Iben 1973;Nomoto 1982;Li &van den Heuvel 1997;Langer et al.2000;Han &Podsiadlowski 2004,2006;Wang et al.2009;Wang &Han 2010).(2) In the DD model,a CO WD merges with another CO WD driven by the gravitational wave radiation,which may lead to the formation of an SN Ia if their total mass is larger thanMCh(e.g.,Iben&Tutukov 1984;Webbink 1984;Han 1998;Liu et al.2016,2017,2018).In addition,there are some other progenitor models to explain the observed variety of SNe Ia,such as the core-degenerate (CD)model,the hybrid CONe model,the common-envelope wind model,the double WD collision model(for recent reviews,see Livio &Mazzali 2018;Soker 2018;Wang 2018).

    Observationally,there are some massive WD+AGB systems that are SN Ia progenitor candidates,such as V407 Cyg,AT 2019qyl and TUVO-22albb.(1)V407 Cyg is considered as a symbiotic star containing a mira donor and a massive WD(e.g.,Tatarnikova et al.2003a,2003b;Hachisu &Kato 2012),which have almost the widest orbit among symbiotic stars with an orbital period of 43 yr (Munari et al.1990).The WD in V407 Cyg is at least 1.2M⊙(Mikolajewska 2010),and may be as massive as 1.35–1.37M⊙(Hachisu &Kato 2012).(2)AT 2019qyl is a nova with an O-rich AGB donor in the nearby Sculptor Group galaxy NGC 300(Jencson et al.2021).Jencson et al.(2021) estimated that the allowed range of the AGB star mass in AT 2019qyl isM2=1.2–2.0M⊙,with the best-fitting value isM2=1.2M⊙and the orbital periodP?1800 days by assuming the mass ratio to be 1.In the present work,we found that the estimated parameters of AT 2019qyl can be covered based on the WD+AGB channel,also known as the AGB donor channel.(3) TUVO-22albb,located in the nearby spiral galaxy NGC 300,is a probable very fast nova discovered by Modiano &Wijnands (2022) in their Transient UV Object project,and its donor has been suggested to be an AGB star by further comparison with color-magnitude diagram.

    The WD+AGB systems will form dense circumstellar medium (CSM) via the mass-loss of the AGB wind or the Roche-lobe overflow(RLOF)process.The interaction between SN ejecta and pre-explosion CSM can generate electromagnetic radiation in X-ray and radio bands (Chevalier 1982).Detecting the signal from the interaction between explosive ejecta of the SN and CSM can help us distinguish different progenitor systems.In the observations,the supernova remnant(SNR) of SN 1604,also known as Kepler’s SNR,is located relatively high above the Galactic plane.SN 1604 is considered as an SN Ia because of its prominent Fe-L emission and relatively little oxygen emission (Kinugasa &Tsunemi 1999;Reynolds et al.2007).Chiotellis et al.(2012) suggested that a WD and a 4–5M⊙AGB donor provided a possible pathway to explain the characteristics of Kepler’s SNR through hydrodynamical simulations.

    Some previous studies suggested that the AGB donor channel can produce SNe Ia through the wind-accretion,but it is relatively difficult to produce SNe Ia from the stable RLOF process (e.g.,Li &van den Heuvel 1997;Yungelson &Livio 1998;Han &Podsiadlowski 2004).The main reason for this is that previous studies usually assumed that the exceeding mass of the donor should be immediately transferred to the accretor as soon as the donor exceeds its Roche-lobe,which may overestimate the mass-transfer rate when the mass donor is a giant star and thus prevent the WD from increasing its mass toMCh(for more discussions see Liu et al.2019).Recently,Liu et al.(2019) adopted an integrated RLOF mass-transfer prescription described in Ge et al.(2010) to investigate the mass-transfer process of semidetached WD+RG systems and provided a significantly enlarged parameter space for producing SNe Ia.

    In the present work,we adopted the integrated RLOF masstransfer prescription of Ge et al.(2010) for the mass-transfer process of the semidetached WD+AGB systems.We provided the parameter space of WD+AGB systems for the production of SNe Ia both through the mass-transfer of RLOF and windaccretion.In Section 2,we describe the numerical methods and basic assumptions employed in this work.The corresponding results are presented in Section 3.Finally,a discussion and summary are given in Section 4.

    2.Numerical Methods

    By using the Eggleton stellar evolution code (Eggleton 1973),we evolve a large number of WD+AGB star systems,in which the WDs are treated as point mass.We adopt the typical Population I composition (H fractionX=0.7,He fractionY=0.28,and metallicityZ=0.02) for the initial MS models.In this work,we consider the mass-transfer both through RLOF and wind-accretion.When the mass of WDs grows up to 1.378M⊙,we assume that WDs would explode as SNe Ia.We consider the angular momentum loss due to the mass-loss,including the stellar wind of the donors and the mass-loss around the WDs through optically thick wind or nova outburst.

    2.1.The Roche-lobe Overflow Process

    We investigated the mass-transfer rate in semidetached WD+AGB systems by the integrated RLOF mass-transfer prescription shown in Ge et al.(2010),written as

    in whichRLis the effective Roche-lobe radius of the donor,Gis the gravitational constant,M2is the donor mass,the mass ratioq=M2/MWD,Γ is the adiabatic index,ρ is the local gas density,andPis the local gas pressure.The upper and lower limits of integral are stellar surface potential energy (φS) and the Roche-lobe potential energy (φL),respectively.The integration over potential φ is approximately expressed as follows:

    whereRis the donor radius.The combined coefficientf(q)is a slowly varying function of the mass ratioq:

    wherea2is defined as

    in whichxLis accurately approximated as

    2.2.The Wind-accretion Process

    In the present work,we employ the Reimers wind before the donor evolves to the AGB phase,and adopt the Blocker wind after the donor evolves to the AGB phase (Reimers 1975;Bloecker 1995).For the mass-accretion efficiency of WDs,we consider both the Bondi–Hoyle mass-accretion efficiency and the wind Roche-lobe overflow (WRLOF) mass-accretion efficiency,and adopted the larger one in the calculations.

    (1) The Bondi–Hoyle accretion efficiency (Bondi &Hoyle 1944;Boffin &Jorissen 1988) is written as:

    whereeis the orbital eccentricity(we assumed that binary orbit is circular ande=0),αaccis the accretion efficiency parameter that is generally set as 1.5 in MESA,vorbis the orbital velocity,vwis the wind velocity,we setvwto 5 km s-1,which is similar to Chen et al.(2011).Abate et al.(2013)suggested that stellar wind velocity of AGB star is in the range of 5–30 km s-1when the binary period is around 104days.A more detailed relationship between the wind velocity and the escape velocity can be seen in Eldridge et al.(2006).

    (2) WRLOF occurs when the wind acceleration radius of AGB star is larger than the Roche-lobe radius,during which WD can accrete material in the wind-accretion zone through the inner Lagrangian point (Mohamed &Podsiadlowski 2012;Abate et al.2013).The WRLOF mass-accretion efficiency can be expressed as

    2.3.Mass-growth Rate of WDs

    Generally,the WD mass-growth rate remains controversial,especially for the recurrent nova outbursts during the masstransfer process (e.g.,Yaron et al.2005;Nomoto et al.2007;Miko?ajewska &Shara 2017).In this work,we use the prescription provided by Hachisu et al.(1999) to calculate the WD mass-growth rate,which can be written as

    in which ηHis the mass-accumulation efficiency for H-shell burning(e.g.,Wang et al.2010),ηHeis the mass-accumulation efficiency for He-shell flashes (Kato &Hachisu 2004).

    When the WD mass-accretion rate is larger than a critical mass-accretion ratewe assume that the WD accumulates H-rich matter at the rate ofthe rest of matter wound be blown away in the form of the optically thick wind (e.g.,Nomoto 1982;Kato&Hachisu 1994;Hachisu et al.1996).The critical mass-accretion rate is

    in whichXis the H mass fraction,andMWDis the mass of WDs in units ofM⊙.The mass-accumulation efficiency of hydrogen can be expressed as follows:

    3.Results

    In order to explore the parameter space for producing SNe Ia,we evolved about 600 WD+AGB systems,for which the initial masses of the WDs are in the range from 1.15 to 1.25M⊙,the initial masses of the donors are in the range of 1.8–3.0M⊙.The initial orbital periods are in the range of 25–25,000 days;the donor in a binary with a shorter period will fill its Roche-lobe in the RG phase,and the binary with longer period will experience mass-transfer with a high rate and lose so much mass via the optically thick wind that the WD cannot increase its mass toMCh.

    3.1.Examples of Binary Evolution Calculations

    Figure 3 shows the comparison of the Bondi–Hoyle accretion efficiency and the WRLOF accretion efficiency for the wind-accretion case shown in Figure 2.From this figure,we can see that the Bondi–Hoyle accretion efficiency works before the donor evolves to the AGB phase.Note that the curve of the WRLOF accretion efficiency has two peaks aroundt=6.5×108yr,which corresponds to the Hertzsprung-Gap phase and the RGB phase.The donor expands rapidly during these two phases,leading to the decrease of its effective temperature.In this case,the value of theRddecreases and βacc,WRLOFsignificantly increases(see Equation(7)).When the donor evolves to the AGB phase att=8.0×108yr,it expands quickly and βacc,WRLOFsignificantly increases over βacc,BH,during which the WRLOF accretion efficiency starts to work.

    3.2.Parameter Space for Producing SNe Ia

    Figure 4 shows the initial and final contours of WD+AGB systems for producing SNe Ia with the initial WD masses of 1.15,1.20 and 1.25M⊙.The initial donor masses for producing SNe Ia are larger than 2M⊙.The intermediate-mass stars will develop convective envelopes when their masses decrease to be less than 1.5M⊙,after which the magnetic braking should work(e.g.,Rappaport et al.1983;Paxton et al.2015;Chen et al.2020;Deng et al.2021;Guo et al.2022).In the present work,we ignore the magnetic braking,even when the donors evolve into low-mass stars with masses less than 1.5M⊙.From this figure,we can see that as the initial WD mass increases,the initial parameter spaces of the RLOF case expands to the upper left,and the wind-accretion case expands upper right.It is notable that the position of AT 2019qyl can be basically covered by the final contours of the wind-accretion case,which indicates that AT 2019qyl is a strong progenitor candidate of SNe Ia.

    The surrounding boundaries of initial parameter space are determined by different reasons.The binaries beyond the upper boundaries cannot produce SNe Ia because too much material is lost via optically thick wind during the mass-transfer phase due to the large mass ratios.The lower boundaries of the two contours are set by the less massive donors and the low masstransfer rate,in which the WDs cannot increase their masses toMCh.The donors in binaries beyond the left RLOF boundaries will fill their Roche–lobes at the RGB phase.The binaries beyond the right wind-accretion boundaries and between the two contours are caused by the fact that these binaries have experienced relatively fast mass-transfer processes with and thus lost too much mass through the optically thick wind.

    3.3.Density Distribution of CSM

    Similar to Moriya et al.(2019),the assumptions for the wind velocity of the lost material during the mass-transfer process are shown as follows: (1) in the stable H-shell burning phase,we assume that about 1%of transferred mass escaping from the outer Lagrangian point and the wind velocity is supposed to approximately equal to the orbital velocity (~100 km s-1)(Huang &Yu 1996;Deufel et al.1999).This assumption is only used to estimate the density distribution of CSM.In the binary evolution calculations,we do not consider this mass escape from the outer Lagrangian point.(2)In the weak H-shell flash phase,the wind velocity is assumed to be similar to that of novae,which is assumed to be about 1000 km s-1.(3) In the optically thick wind phase,the wind velocity is assumed as the escape velocity at the radius of H-envelope and approximated as a speed of approximately 1000 km s-1.After these simplifications,the density of CSM can be expressed aswhereis the mass-loss rate of the binary,ais the distance from the binary,andVlossis the wind velocity of the lost material.

    Figure 5 presents the density distribution of CSM for the evolutionary cases in Figure 1 (RLOF) and Figure 2 (wind accretion) when the WD masses increase toMCh.From this figure,we can see that the distribution basically meets ρ ∝a-2.Note that the CSM in the region ofloga?22is similar for these two cases,because neither of their donors fill their Roche–lobes and the mass-loss originates from the stellar wind of the donors.There is a small peak atloga≈23.8.At this time,the two donors evolve to their RGB phase and the stellar wind becomes stronger.They evolve to AGB phase when loga≈22.5.We can also see that there is a peak in the curve of RLOF case aroundloga≈21 .The donor fills its Rochelobe at this time and the mass-transfer rate increases rapidly.In this case,a large amount of matter lost from the binary in the form of the optically thick wind.

    Figure 1.A typical binary evolution for producing an SN Ia through RLOF.In the left figure,the black solid curve stands for the evolutionary track of the mass donor in the HR diagram,and the red dashed–dotted curve shows the evolution of the orbital periods.The black crosses stand for the start of mass-transfer.In the right figure,the evolution of WD mass-accretion rate(),WD mass-growth rate(),binary mass-loss rate()and WD mass(MWD)as a function of time are shown as black solid,blue dashed,green dashed–dotted and red dashed–dotted curves,respectively.The asterisks stand for the position where an SN Ia explosion occurs.

    Figure 2.Similar to Figure 1,but for a typical binary evolution for producing an SN Ia through stellar wind-accretion.The red crosses in the left figure stand for the beginning of WD mass growth.In the right figure,the evolution of WD mass-accretion rate WD mass-growth rate binary mass-loss rate and WD mass (MWD) as a function of time are shown as black solid,blue dashed,green dashed–dotted and red dashed–dotted curves,respectively.The WD massaccretion rate in this case is equal to the donor mass-loss rate multiplied by mass-accretion efficiency.The asterisks stand for the position where an SN Ia explosion occurs.

    Figure 3.The comparison of Bondi–Hoyle accretion efficiency and WRLOF accretion for the wind-accretion case shown in Figure 2.Red solid and green dashed curves stand for Bondi–Hoyle accretion efficiency and WRLOF accretion accretion,respectively.The red cross stands for the beginning of WD mass growth.

    Figure 4.Initial and final regions of WD+AGB systems in their orbital period-donor mass (P M log -2) plane for producing SNe Ia with different initial WD masses.The thick and thin lines represent initial and final parameter space,respectively.The left and right contours represent the RLOF cases and windaccretion cases,respectively.The data for AT 2019qyl are taken from Jencson et al.(2021).

    4.Discussion and Summary

    The CSM forms during the mass-transfer process will interact with SN ejecta,which would generate radio synchrotron emission and X-ray emission.The physical processes and characteristic features of the interactions have been well studied(e.g.,Chevalier 1998;Chevalier &Fransson 2006;Maeda 2012).Meng &Han (2016) found that the X-ray and radio flux may be high enough to be detected for a nearby SN Ia from a WD+AGB system.From Figure 4,we can infer that the masses of CSM at the moment of SNe Ia explosion in RLOF cases and wind-accretion cases are in the range of 0.85–1.69M⊙and 0.15–1.29M⊙,respectively.According to binary evolution calculations,we can summarize that the massloss rate at the moment of SNe Ia explosion is in the range of 8.38×10-9-3.61×10-6M⊙yr-1for the RLOF cases,and 2.64×10-8-5.05×10-5M⊙yr-1for the wind-accretion cases.

    Unlike previous studies,we found that the semidetached WD+AGB binaries can also produce SNe Ia in the present work.In the RLOF process,the integrated mass-transfer prescription is more physical and suitable for semidetached binaries with giant donors.This prescription is based on laminar mass overflow and the stellar state equation that obeys the adiabatic power law.When the donor fills its Roche-lobe,the mass-transfer rate is lower than that of previous models,resulting in that the WDs can accumulate more material through stable RLOF process(for more discussions see Liu et al.2019).

    It is worth noting that the CD model for producing SNe Ia also involves the WD+AGB systems.In the CD model,the merger of a WD with the hot CO-core of an AGB star during or after a common envelop phase would produce an SN Ia (e.g.,Kashi &Soker 2011;Ilkov &Soker 2012,2013;Soker et al.2014;Aznar-Siguán et al.2015).Tsebrenko &Soker (2015)estimated that at least 20% of all SNe Ia are produced by this channel.Recently,Soker &Bear (2022) suggested that the merger of a WD with the hot CO-core of an He subgiant can explain the He-rich CSM of SN 2020eyj under the CD model.In this model,the common envelope ejection will form one or multiple shells.Soker et al.(2013)argue that the multiple shells of CSM in SN Ia PTF 11kx can be explained by a merger of WD and the hot core of an AGB star.But in this work,the CSM has a continuous distribution that basically meets ρ ∝a-2,which is the basic difference for the CSM distribution between the SD model and the CD model.It has been suggested that the Kepler’s SNR may be the result of SN Ia explosion in the SD model with an AGB donor(Chiotellis et al.2012).

    It has been suggested that an accretion disk is possibly formed around the WD during the mass-transfer process,and the accretion disk may become thermally unstable when the effective temperature in the disk falls below the hydrogen ionization temperature (e.g.,van Paradijs 1996;King et al.1997;Lasota 2001).Some previous studies have investigated the influence of the thermally unstable accretion of WD binaries (e.g.,Xu &Li 2009;Wang &Han 2010;Wang et al.2010).After considering the disk instability,it has been found that the mass-accumulation efficiency of WD can be significantly improved and the systems with less-massive donors can also produce possible SNe Ia,which would be helpful to explain the SNe Ia with long delay times(Chen&Li 2007;Xu&Li 2009;Wang&Han 2010;Wang et al.2010).In this case,we can infer that the lower boundaries of initial parameter space for producing SNe Ia would expand downwards because of the larger mass-accumulation efficiency of WD if the accretion-disk instability is considered in WD+AGB binaries.Ablimit et al.(2022) compared the evolution of non-magnetic and magnetized WD+RG binaries,and found that the accretion would occur on the two small polar caps of the WDs,which may potentially suppress nova outbursts.They suggested that the WD+RG binaries with shorter orbital periods and lower donor masses in the initial parameter space could produce SNe Ia if the magnetic confinement is considered.Therefore,we can speculate that magnetic confinement would have a similar effect on the AGB donor channel for producing SNe Ia .

    In the present work,the accretor is treated as a mass point,and thus the provided parameter space is also useful if the accretor is an oxygen-neon (ONe) WD,which may evolve to the accretion-induced collapse (AIC) events.Unlike CO WDs,massive ONe WDs in close binaries may experience the AIC process when their masses approach toMCh,which would lead to the formation of neutron star systems(e.g.,Taam&van den Heuvel 1986;Michel 1987;Canal et al.1990).The neutron stars can be spun up after the donors refill their Roche-lobe,which is a possible path for the formation of millisecond pulsars (e.g.,Bhattacharya &van den Heuvel 1991;Shao &Li 2012;Tauris et al.2013).In this case,the symbiotic systems may also evolve to NS systems via the AIC process.Wang et al.(2022) investigated the formation of millisecond pulsars through the RG donor channel,and found that there exists an anticorrelation between the final neutron star mass and the final orbital period based on this channel.Ablimit (2023) investigated the evolution of non-magnetic or magnetized ONe WDs+RG binaries,and found the initial parameter space shifts to be lower and narrower after considering the influence of the magnetic field.

    In this work,we studied the formation of SNe Ia from the semidetached and detached WD+AGB systems.We found that the semidetached WD+AGB system is a possible path for the formation of SNe Ia after a more physical mass-transfer method is adopted.In addition,we provided the parameter space of the semidetached and detached WD+AGB systems for the formation of SNe Ia.We also compared the density distribution of CSM from these two cases.We suggest that AT 2019qyl is a strong candidate for the progenitors of SNe Ia with AGB donors.In order to understand the AGB donor channel for the formation of SNe Ia,further numerical research on the masstransfer prescription for semidetached binaries with giant donors are needed,and large samples of observed WD+AGB systems are expected.

    Acknowledgments

    We acknowledge the useful comments and suggestions from the referee.This study is supported by the National Natural Science Foundation of China (Nos.12225304,12273105 and 11903075),the National Key R&D Program of China (Nos.2021YFA1600404,2021YFA1600403 and 2021YFA1600400),the Western Light Project of CAS (No.XBZG-ZDSYS-202117),the science research grants from the China Manned Space Project(No.CMS-CSST-2021-A12),the Youth Innovation Promotion Association CAS(No.2021058),the Yunnan Fundamental Research Projects (Nos.202001AS070029,202001AU070054,202101AT070027,202101AW070047 and 202201BC070003),the Frontier Scientific Research Program of Deep Space Exploration Laboratory(No.2022-QYKYJH-ZYTS-016) and International Centre of Supernovae,Yunnan Key Laboratory (No.202 302AN360001).

    ORCID iDs

    黄频高清免费视频| 日本三级黄在线观看| 欧洲精品卡2卡3卡4卡5卡区| 精品日产1卡2卡| 欧美日韩亚洲国产一区二区在线观看| 18禁裸乳无遮挡免费网站照片| 日韩欧美精品v在线| 久久精品国产亚洲av香蕉五月| 1024香蕉在线观看| 精品久久久久久久毛片微露脸| 亚洲国产欧美人成| 欧美日韩中文字幕国产精品一区二区三区| 亚洲七黄色美女视频| 免费搜索国产男女视频| 亚洲一码二码三码区别大吗| 90打野战视频偷拍视频| 啪啪无遮挡十八禁网站| a在线观看视频网站| 国产精品美女特级片免费视频播放器 | 免费看美女性在线毛片视频| 欧美日韩乱码在线| 精品国产美女av久久久久小说| 亚洲精品色激情综合| 听说在线观看完整版免费高清| 国产亚洲精品久久久久5区| а√天堂www在线а√下载| 18禁裸乳无遮挡免费网站照片| 免费搜索国产男女视频| 午夜福利在线观看吧| 欧美人与性动交α欧美精品济南到| e午夜精品久久久久久久| 国产精品 欧美亚洲| 99精品在免费线老司机午夜| 又黄又粗又硬又大视频| 18美女黄网站色大片免费观看| 又粗又爽又猛毛片免费看| ponron亚洲| 亚洲美女黄片视频| 五月伊人婷婷丁香| 99久久精品热视频| 国产蜜桃级精品一区二区三区| 精品久久久久久久毛片微露脸| 久久性视频一级片| 精品熟女少妇八av免费久了| 亚洲人与动物交配视频| 制服人妻中文乱码| 精品久久久久久久人妻蜜臀av| 国产亚洲精品一区二区www| 正在播放国产对白刺激| 高潮久久久久久久久久久不卡| 亚洲精品美女久久久久99蜜臀| 免费在线观看日本一区| 久久久国产成人免费| 国产亚洲欧美98| 观看免费一级毛片| 9191精品国产免费久久| 国内精品一区二区在线观看| 又粗又爽又猛毛片免费看| 久久久久久久久久黄片| 欧美黑人巨大hd| 欧美丝袜亚洲另类 | 国产成人欧美在线观看| 又大又爽又粗| av有码第一页| 午夜影院日韩av| 久久人人精品亚洲av| 国产视频一区二区在线看| 免费在线观看影片大全网站| 日本五十路高清| 巨乳人妻的诱惑在线观看| 国产高清激情床上av| 五月玫瑰六月丁香| 国产精品精品国产色婷婷| a在线观看视频网站| 国产97色在线日韩免费| 91大片在线观看| 亚洲午夜精品一区,二区,三区| 两个人的视频大全免费| 成人三级黄色视频| www.999成人在线观看| а√天堂www在线а√下载| 午夜福利成人在线免费观看| 日本成人三级电影网站| 日韩欧美三级三区| 香蕉国产在线看| 两个人看的免费小视频| ponron亚洲| 国产精品爽爽va在线观看网站| 国产成人一区二区三区免费视频网站| 免费在线观看视频国产中文字幕亚洲| 久久这里只有精品中国| 最近最新免费中文字幕在线| 成人18禁在线播放| 两个人的视频大全免费| 午夜亚洲福利在线播放| 最近最新中文字幕大全电影3| 亚洲专区国产一区二区| 亚洲熟妇熟女久久| 一本一本综合久久| 久久精品国产综合久久久| 男人舔女人的私密视频| 成在线人永久免费视频| 午夜福利成人在线免费观看| 日本黄大片高清| 国产精品日韩av在线免费观看| 亚洲人成电影免费在线| 欧美绝顶高潮抽搐喷水| 国产高清激情床上av| 男插女下体视频免费在线播放| 国内久久婷婷六月综合欲色啪| 精品福利观看| 亚洲精品色激情综合| 欧美日韩一级在线毛片| 国产熟女xx| 亚洲国产看品久久| 欧美日韩亚洲国产一区二区在线观看| 亚洲欧美激情综合另类| 亚洲一区二区三区不卡视频| 宅男免费午夜| 久久香蕉激情| 亚洲国产欧美网| 色哟哟哟哟哟哟| 露出奶头的视频| 国产亚洲欧美98| 成年版毛片免费区| 老汉色av国产亚洲站长工具| 午夜激情福利司机影院| 成年版毛片免费区| 亚洲中文av在线| 99久久精品国产亚洲精品| 国产免费男女视频| 日韩欧美三级三区| 国产成人欧美在线观看| 亚洲精品中文字幕在线视频| 日本免费a在线| 欧美中文综合在线视频| 国产高清视频在线播放一区| 亚洲无线在线观看| 精品久久久久久久久久久久久| 日本黄色视频三级网站网址| 亚洲国产欧美人成| 日本在线视频免费播放| 亚洲一区二区三区色噜噜| 国产三级黄色录像| 精品午夜福利视频在线观看一区| 一本大道久久a久久精品| 啦啦啦免费观看视频1| 午夜福利在线观看吧| 看免费av毛片| 亚洲精品久久成人aⅴ小说| 日韩高清综合在线| 国产亚洲精品一区二区www| 两个人免费观看高清视频| 久久久久九九精品影院| 久久精品国产综合久久久| 亚洲精品久久成人aⅴ小说| 精品欧美国产一区二区三| 在线国产一区二区在线| 国产精品久久久人人做人人爽| 欧美成狂野欧美在线观看| 脱女人内裤的视频| 一区福利在线观看| 日本一区二区免费在线视频| 欧美一区二区精品小视频在线| 中文字幕人成人乱码亚洲影| 哪里可以看免费的av片| 日韩高清综合在线| 91麻豆av在线| 免费一级毛片在线播放高清视频| 亚洲一区二区三区色噜噜| 99精品欧美一区二区三区四区| 免费搜索国产男女视频| 亚洲国产精品久久男人天堂| 又紧又爽又黄一区二区| 精品电影一区二区在线| 一a级毛片在线观看| 精品欧美国产一区二区三| 好看av亚洲va欧美ⅴa在| 成人三级黄色视频| 日本a在线网址| 国内精品久久久久久久电影| 成人18禁在线播放| 777久久人妻少妇嫩草av网站| 国产成人系列免费观看| 欧美日韩中文字幕国产精品一区二区三区| 成人av在线播放网站| 久久午夜综合久久蜜桃| 亚洲一区二区三区不卡视频| 成人国产一区最新在线观看| 男女床上黄色一级片免费看| 午夜亚洲福利在线播放| 可以免费在线观看a视频的电影网站| 国产精品亚洲美女久久久| 动漫黄色视频在线观看| 黄色视频,在线免费观看| 正在播放国产对白刺激| 欧美在线黄色| 免费在线观看黄色视频的| 欧美日韩国产亚洲二区| 亚洲18禁久久av| 可以免费在线观看a视频的电影网站| 一边摸一边做爽爽视频免费| 国产一区二区三区在线臀色熟女| 黄色丝袜av网址大全| ponron亚洲| 免费搜索国产男女视频| 精品高清国产在线一区| 国产精品久久久久久精品电影| 一本久久中文字幕| 久久精品亚洲精品国产色婷小说| 久久久久久国产a免费观看| 法律面前人人平等表现在哪些方面| 久久久久久九九精品二区国产 | 欧美日本视频| avwww免费| 亚洲人成电影免费在线| 在线观看www视频免费| 免费电影在线观看免费观看| 国产成人av教育| 国产精品一区二区精品视频观看| 日本免费a在线| 人妻丰满熟妇av一区二区三区| 久久人人精品亚洲av| 给我免费播放毛片高清在线观看| 国产精品免费视频内射| 国产亚洲精品久久久久5区| 午夜精品一区二区三区免费看| 国产一区在线观看成人免费| 久久久国产成人免费| 亚洲色图av天堂| 久久精品影院6| www.精华液| 99国产极品粉嫩在线观看| 俺也久久电影网| 不卡av一区二区三区| 中文字幕人妻丝袜一区二区| www.精华液| 午夜免费成人在线视频| 国产精品久久视频播放| 激情在线观看视频在线高清| 99国产综合亚洲精品| 精品第一国产精品| 他把我摸到了高潮在线观看| 亚洲精品国产一区二区精华液| 亚洲av成人不卡在线观看播放网| 久久天躁狠狠躁夜夜2o2o| 亚洲一区二区三区不卡视频| 哪里可以看免费的av片| 男女那种视频在线观看| 巨乳人妻的诱惑在线观看| 可以在线观看的亚洲视频| 777久久人妻少妇嫩草av网站| 久久久精品欧美日韩精品| 国产成人啪精品午夜网站| 精品人妻1区二区| 欧美色视频一区免费| 欧美日韩瑟瑟在线播放| 亚洲av电影在线进入| 亚洲天堂国产精品一区在线| 日韩精品免费视频一区二区三区| 欧美色欧美亚洲另类二区| 午夜两性在线视频| 色播亚洲综合网| 丰满人妻熟妇乱又伦精品不卡| 欧美日本亚洲视频在线播放| 国产精品美女特级片免费视频播放器 | 欧美成人午夜精品| 国产高清有码在线观看视频 | 国产精品一区二区三区四区久久| 91大片在线观看| 午夜福利欧美成人| 中出人妻视频一区二区| 亚洲成人久久性| 亚洲精华国产精华精| 欧美日本视频| 最近视频中文字幕2019在线8| 亚洲av成人精品一区久久| 巨乳人妻的诱惑在线观看| 精品无人区乱码1区二区| 全区人妻精品视频| 亚洲精华国产精华精| 两性午夜刺激爽爽歪歪视频在线观看 | 国产久久久一区二区三区| 老熟妇仑乱视频hdxx| 99久久无色码亚洲精品果冻| 91九色精品人成在线观看| 男女床上黄色一级片免费看| 精品第一国产精品| 国产精品,欧美在线| 99热这里只有精品一区 | 国产精品久久久久久精品电影| 精品久久蜜臀av无| 女人高潮潮喷娇喘18禁视频| 国产日本99.免费观看| 一进一出抽搐gif免费好疼| 母亲3免费完整高清在线观看| 91九色精品人成在线观看| 国产午夜精品久久久久久| 国产久久久一区二区三区| 97人妻精品一区二区三区麻豆| 青草久久国产| 亚洲成人免费电影在线观看| 午夜免费激情av| 婷婷亚洲欧美| 啪啪无遮挡十八禁网站| 国语自产精品视频在线第100页| 久久中文字幕人妻熟女| 91大片在线观看| 久久这里只有精品中国| 久久伊人香网站| 成人三级黄色视频| 婷婷丁香在线五月| 在线视频色国产色| 久久久久国产一级毛片高清牌| 国产av在哪里看| 久久香蕉激情| 国内少妇人妻偷人精品xxx网站 | 男女之事视频高清在线观看| 最近最新中文字幕大全电影3| 日本 av在线| 女人被狂操c到高潮| 日韩精品青青久久久久久| 久久香蕉激情| 亚洲全国av大片| 夜夜爽天天搞| 超碰成人久久| 国产成人精品无人区| 久久精品国产综合久久久| 色综合站精品国产| 国产亚洲精品综合一区在线观看 | 天天一区二区日本电影三级| 国产黄色小视频在线观看| 香蕉久久夜色| 搡老妇女老女人老熟妇| 日韩精品中文字幕看吧| 一级片免费观看大全| 波多野结衣巨乳人妻| 亚洲精品色激情综合| 国产精品永久免费网站| 中文字幕人成人乱码亚洲影| 欧美中文综合在线视频| 丰满的人妻完整版| 法律面前人人平等表现在哪些方面| 色噜噜av男人的天堂激情| 99久久综合精品五月天人人| 国产一区在线观看成人免费| 一级作爱视频免费观看| 久久精品国产综合久久久| 国产av一区二区精品久久| av视频在线观看入口| 色尼玛亚洲综合影院| 精品国产超薄肉色丝袜足j| 淫秽高清视频在线观看| 午夜福利成人在线免费观看| 免费在线观看影片大全网站| 久99久视频精品免费| 亚洲一区二区三区色噜噜| 欧美乱妇无乱码| 曰老女人黄片| 又大又爽又粗| 国产一区二区三区视频了| 亚洲成av人片免费观看| 一区二区三区激情视频| 成人手机av| 亚洲中文字幕一区二区三区有码在线看 | 桃红色精品国产亚洲av| 夜夜看夜夜爽夜夜摸| 久久久久国内视频| 亚洲专区国产一区二区| 久久性视频一级片| 久久久久久人人人人人| 日韩有码中文字幕| 99国产极品粉嫩在线观看| 日本撒尿小便嘘嘘汇集6| 2021天堂中文幕一二区在线观| 老司机午夜十八禁免费视频| 少妇人妻一区二区三区视频| 成人三级做爰电影| 欧美黑人精品巨大| 亚洲天堂国产精品一区在线| 亚洲熟妇中文字幕五十中出| 成人欧美大片| 露出奶头的视频| 91在线观看av| а√天堂www在线а√下载| 日韩精品中文字幕看吧| 国模一区二区三区四区视频 | 五月玫瑰六月丁香| 精品久久久久久久人妻蜜臀av| 淫秽高清视频在线观看| 欧美 亚洲 国产 日韩一| 国产精品精品国产色婷婷| 国产成+人综合+亚洲专区| 俄罗斯特黄特色一大片| 特级一级黄色大片| 亚洲精品中文字幕一二三四区| 无限看片的www在线观看| 亚洲七黄色美女视频| 国产精品一区二区三区四区免费观看 | 欧美在线黄色| 精品久久久久久久久久久久久| 丰满人妻一区二区三区视频av | 给我免费播放毛片高清在线观看| 国产爱豆传媒在线观看 | 一a级毛片在线观看| 日本三级黄在线观看| 国产私拍福利视频在线观看| 精品久久久久久久久久免费视频| 哪里可以看免费的av片| 欧美乱码精品一区二区三区| av视频在线观看入口| 亚洲欧美精品综合一区二区三区| 亚洲五月婷婷丁香| 日韩免费av在线播放| 国产成人一区二区三区免费视频网站| 国产成人系列免费观看| 国产片内射在线| 日本精品一区二区三区蜜桃| 看片在线看免费视频| 免费高清视频大片| 中文资源天堂在线| 一个人观看的视频www高清免费观看 | 久久久精品欧美日韩精品| 国产伦在线观看视频一区| 日韩欧美免费精品| 日韩精品中文字幕看吧| 在线观看免费日韩欧美大片| 男人舔女人的私密视频| 老司机午夜福利在线观看视频| 欧美在线黄色| 男女那种视频在线观看| 久久久久久大精品| 一本大道久久a久久精品| 免费人成视频x8x8入口观看| 黑人巨大精品欧美一区二区mp4| 日韩高清综合在线| 大型黄色视频在线免费观看| 老司机午夜十八禁免费视频| 亚洲成人中文字幕在线播放| 最近最新中文字幕大全电影3| 国产av不卡久久| 精品高清国产在线一区| 成人午夜高清在线视频| 欧美日韩精品网址| 久久精品成人免费网站| 精品电影一区二区在线| 精品欧美一区二区三区在线| 国产精品久久久人人做人人爽| 午夜精品一区二区三区免费看| 久久久久久大精品| 曰老女人黄片| 国产欧美日韩一区二区精品| 国产av在哪里看| 校园春色视频在线观看| 国产精品免费一区二区三区在线| 国产99久久九九免费精品| av在线天堂中文字幕| 白带黄色成豆腐渣| 1024视频免费在线观看| 亚洲成人久久性| 亚洲免费av在线视频| 成人三级黄色视频| 九色国产91popny在线| 色综合站精品国产| 亚洲午夜精品一区,二区,三区| 在线观看免费日韩欧美大片| 精品人妻1区二区| 欧美另类亚洲清纯唯美| 免费高清视频大片| 欧美 亚洲 国产 日韩一| 麻豆av在线久日| 欧美一区二区精品小视频在线| 性欧美人与动物交配| 精品国产美女av久久久久小说| 成人欧美大片| av视频在线观看入口| 亚洲 欧美 日韩 在线 免费| xxxwww97欧美| 一进一出好大好爽视频| 中文字幕av在线有码专区| 极品教师在线免费播放| 欧美精品亚洲一区二区| 亚洲欧美日韩高清专用| 国产精品久久久av美女十八| 国产成人啪精品午夜网站| 十八禁网站免费在线| 在线国产一区二区在线| 国产精品精品国产色婷婷| 久久精品国产综合久久久| 一夜夜www| 成人高潮视频无遮挡免费网站| 老熟妇乱子伦视频在线观看| 午夜精品久久久久久毛片777| 在线视频色国产色| 黑人欧美特级aaaaaa片| 国产精品自产拍在线观看55亚洲| 国语自产精品视频在线第100页| 黄片大片在线免费观看| 男人舔奶头视频| 国产成人啪精品午夜网站| 长腿黑丝高跟| 欧美日韩瑟瑟在线播放| 麻豆成人午夜福利视频| 国产精品久久久av美女十八| 黄色a级毛片大全视频| 免费看美女性在线毛片视频| 日韩中文字幕欧美一区二区| 亚洲免费av在线视频| 91麻豆精品激情在线观看国产| 久久 成人 亚洲| 51午夜福利影视在线观看| 一边摸一边做爽爽视频免费| 97超级碰碰碰精品色视频在线观看| 日本 av在线| 国产精品野战在线观看| 免费搜索国产男女视频| 18禁观看日本| 亚洲avbb在线观看| 久久精品综合一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| bbb黄色大片| 亚洲美女视频黄频| 久久久久久久久中文| 午夜福利在线观看吧| 久久欧美精品欧美久久欧美| 精品日产1卡2卡| 99精品欧美一区二区三区四区| 无限看片的www在线观看| 日本一二三区视频观看| 欧美日本亚洲视频在线播放| 黑人欧美特级aaaaaa片| 搡老妇女老女人老熟妇| 老司机靠b影院| 桃色一区二区三区在线观看| 精品乱码久久久久久99久播| 又黄又粗又硬又大视频| 久久午夜亚洲精品久久| 亚洲美女黄片视频| 亚洲欧美日韩高清在线视频| 国产伦人伦偷精品视频| 老司机靠b影院| 一卡2卡三卡四卡精品乱码亚洲| 麻豆国产97在线/欧美 | 亚洲九九香蕉| 妹子高潮喷水视频| 97超级碰碰碰精品色视频在线观看| 国产91精品成人一区二区三区| 国产亚洲精品一区二区www| 男插女下体视频免费在线播放| 亚洲自拍偷在线| 高潮久久久久久久久久久不卡| 最近最新中文字幕大全免费视频| 黑人巨大精品欧美一区二区mp4| 国产视频内射| 国产精品免费一区二区三区在线| 搞女人的毛片| 制服诱惑二区| 亚洲成人中文字幕在线播放| 国产精品野战在线观看| 国模一区二区三区四区视频 | 亚洲精品中文字幕一二三四区| 亚洲成人久久性| 日韩欧美在线二视频| 国产精品爽爽va在线观看网站| 熟女电影av网| 最新在线观看一区二区三区| 亚洲精品美女久久久久99蜜臀| 亚洲午夜精品一区,二区,三区| 99久久国产精品久久久| 国产91精品成人一区二区三区| 亚洲自偷自拍图片 自拍| 在线观看午夜福利视频| 最好的美女福利视频网| 怎么达到女性高潮| 母亲3免费完整高清在线观看| av天堂在线播放| 亚洲在线自拍视频| 人成视频在线观看免费观看| 午夜福利高清视频| √禁漫天堂资源中文www| 91成年电影在线观看| 女同久久另类99精品国产91| 国产视频内射| 亚洲av成人av| 一二三四在线观看免费中文在| 免费在线观看亚洲国产| 国产高清视频在线观看网站| 欧美日韩精品网址| 国产区一区二久久| 中文字幕人妻丝袜一区二区| 国产黄片美女视频| 久久久久性生活片| 岛国视频午夜一区免费看| 激情在线观看视频在线高清| 亚洲欧美激情综合另类| 十八禁网站免费在线| 国产精品1区2区在线观看.| 在线看三级毛片| 一二三四社区在线视频社区8| 婷婷精品国产亚洲av| 成人国语在线视频| 国产一区二区在线av高清观看| 女同久久另类99精品国产91| 欧美一级毛片孕妇| a级毛片a级免费在线| 一区二区三区激情视频| 熟女少妇亚洲综合色aaa.| 淫秽高清视频在线观看| 不卡一级毛片| 国产精品永久免费网站| 男女之事视频高清在线观看| 97碰自拍视频| 国内精品久久久久精免费| 午夜福利在线观看吧| 18禁黄网站禁片免费观看直播|