• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Progenitors of Type Ia Supernovae with Asymptotic Giant Branch Donors

    2023-09-03 15:24:28LuHanLiDongDongLiuandBoWang

    Lu-Han Li,Dong-Dong Liu,and Bo Wang

    1 Yunnan Observatories,Chinese Academy of Sciences,Kunming 650216,China;liudongdong@ynao.ac.cn,wangbo@ynao.ac.cn

    2 Key Laboratory for the Structure and Evolution of Celestial Objects,Chinese Academy of Sciences,Kunming 650216,China

    3 International Centre of Supernovae,Yunnan Key Laboratory,Kunming 650216,China

    4 University of Chinese Academy of Sciences,Beijing 100049,China

    Abstract Type Ia supernovae(SNe Ia)are among the most energetic events in the universe.They are excellent cosmological distance indicators due to the remarkable homogeneity of their light curves.However,the nature of the progenitors of SNe Ia is still not well understood.In the single-degenerate model,a carbon–oxygen white dwarf (CO WD)could grow its mass by accreting material from an asymptotic giant branch(AGB)star,leading to the formation of SNe Ia when the mass of the WD approaches to the Chandrasekhar-mass limit,known as the AGB donor channel.In this channel,previous studies mainly concentrate on the wind-accretion pathway for the mass-increase of the WDs.In the present work,we employed an integrated mass-transfer prescription for the semidetached WD+AGB systems,and evolved a number of WD+AGB systems for the formation of SNe Ia through the Roche-lobe overflow process or the wind-accretion process.We provided the initial and final parameter spaces of WD+AGB systems for producing SNe Ia.We also obtained the density distribution of circumstellar matter at the moment when the WD mass reaches the Chandrasekhar-mass limit.Moreover,we found that the massive WD+AGB sample AT 2019qyl can be covered by the final parameter space for producing SNe Ia,indicating that AT 2019qyl is a strong progenitor candidate of SNe Ia with AGB donors.

    Key words: stars: evolution–(stars:) supernovae: general–(stars:) binaries (including multiple): close–(stars:)white dwarfs

    1.Introduction

    Type Ia supernovae (SNe Ia) have strong Si II absorption lines,but no H and He lines near the maximum luminosity in their spectrum (Filippenko 1997).Due to the homogeneity of the SN Ia light curves,they are good distance indicators and used for precise distance measurements in cosmology,revealing the current accelerating expansion of the universe most possibly driven by dark energy (e.g.,Riess et al.1998;Perlmutter et al.1999;Howell 2011).It has been suggested that the local Hubble constant could be accurately measured if the Hubble flow samples of SNe Ia and the calibrations of Cepheid variables could be well combined (Riess et al.2019,2022).

    SNe Ia are thought to be the thermonuclear explosion of carbon–oxygen white dwarfs (CO WDs) with masses close to the Chandrasekhar-mass limit (MCh) in close binaries (e.g.,Hoyle &Fowler 1960;Nomoto et al.1984).However,the nature of progenitor system of SNe Ia,especially the donor is still unclear.In the past decades,many progenitor models have been proposed,in which the most popular models are the single-degenerate (SD)model and the double-degenerate (DD)model.(1) In the SD model,a CO WD increases its mass by accreting H-/He-rich material from a non-degenerate donor,and explodes as an SN Ia when its mass approaches toMCh.Typically,the non-degenerate donor of the WD can be a mainsequence (MS) star,a sub-giant,a red giant (RG),an asymptotic giant branch(AGB)star,or a He star(e.g.,Whelan&Iben 1973;Nomoto 1982;Li &van den Heuvel 1997;Langer et al.2000;Han &Podsiadlowski 2004,2006;Wang et al.2009;Wang &Han 2010).(2) In the DD model,a CO WD merges with another CO WD driven by the gravitational wave radiation,which may lead to the formation of an SN Ia if their total mass is larger thanMCh(e.g.,Iben&Tutukov 1984;Webbink 1984;Han 1998;Liu et al.2016,2017,2018).In addition,there are some other progenitor models to explain the observed variety of SNe Ia,such as the core-degenerate (CD)model,the hybrid CONe model,the common-envelope wind model,the double WD collision model(for recent reviews,see Livio &Mazzali 2018;Soker 2018;Wang 2018).

    Observationally,there are some massive WD+AGB systems that are SN Ia progenitor candidates,such as V407 Cyg,AT 2019qyl and TUVO-22albb.(1)V407 Cyg is considered as a symbiotic star containing a mira donor and a massive WD(e.g.,Tatarnikova et al.2003a,2003b;Hachisu &Kato 2012),which have almost the widest orbit among symbiotic stars with an orbital period of 43 yr (Munari et al.1990).The WD in V407 Cyg is at least 1.2M⊙(Mikolajewska 2010),and may be as massive as 1.35–1.37M⊙(Hachisu &Kato 2012).(2)AT 2019qyl is a nova with an O-rich AGB donor in the nearby Sculptor Group galaxy NGC 300(Jencson et al.2021).Jencson et al.(2021) estimated that the allowed range of the AGB star mass in AT 2019qyl isM2=1.2–2.0M⊙,with the best-fitting value isM2=1.2M⊙and the orbital periodP?1800 days by assuming the mass ratio to be 1.In the present work,we found that the estimated parameters of AT 2019qyl can be covered based on the WD+AGB channel,also known as the AGB donor channel.(3) TUVO-22albb,located in the nearby spiral galaxy NGC 300,is a probable very fast nova discovered by Modiano &Wijnands (2022) in their Transient UV Object project,and its donor has been suggested to be an AGB star by further comparison with color-magnitude diagram.

    The WD+AGB systems will form dense circumstellar medium (CSM) via the mass-loss of the AGB wind or the Roche-lobe overflow(RLOF)process.The interaction between SN ejecta and pre-explosion CSM can generate electromagnetic radiation in X-ray and radio bands (Chevalier 1982).Detecting the signal from the interaction between explosive ejecta of the SN and CSM can help us distinguish different progenitor systems.In the observations,the supernova remnant(SNR) of SN 1604,also known as Kepler’s SNR,is located relatively high above the Galactic plane.SN 1604 is considered as an SN Ia because of its prominent Fe-L emission and relatively little oxygen emission (Kinugasa &Tsunemi 1999;Reynolds et al.2007).Chiotellis et al.(2012) suggested that a WD and a 4–5M⊙AGB donor provided a possible pathway to explain the characteristics of Kepler’s SNR through hydrodynamical simulations.

    Some previous studies suggested that the AGB donor channel can produce SNe Ia through the wind-accretion,but it is relatively difficult to produce SNe Ia from the stable RLOF process (e.g.,Li &van den Heuvel 1997;Yungelson &Livio 1998;Han &Podsiadlowski 2004).The main reason for this is that previous studies usually assumed that the exceeding mass of the donor should be immediately transferred to the accretor as soon as the donor exceeds its Roche-lobe,which may overestimate the mass-transfer rate when the mass donor is a giant star and thus prevent the WD from increasing its mass toMCh(for more discussions see Liu et al.2019).Recently,Liu et al.(2019) adopted an integrated RLOF mass-transfer prescription described in Ge et al.(2010) to investigate the mass-transfer process of semidetached WD+RG systems and provided a significantly enlarged parameter space for producing SNe Ia.

    In the present work,we adopted the integrated RLOF masstransfer prescription of Ge et al.(2010) for the mass-transfer process of the semidetached WD+AGB systems.We provided the parameter space of WD+AGB systems for the production of SNe Ia both through the mass-transfer of RLOF and windaccretion.In Section 2,we describe the numerical methods and basic assumptions employed in this work.The corresponding results are presented in Section 3.Finally,a discussion and summary are given in Section 4.

    2.Numerical Methods

    By using the Eggleton stellar evolution code (Eggleton 1973),we evolve a large number of WD+AGB star systems,in which the WDs are treated as point mass.We adopt the typical Population I composition (H fractionX=0.7,He fractionY=0.28,and metallicityZ=0.02) for the initial MS models.In this work,we consider the mass-transfer both through RLOF and wind-accretion.When the mass of WDs grows up to 1.378M⊙,we assume that WDs would explode as SNe Ia.We consider the angular momentum loss due to the mass-loss,including the stellar wind of the donors and the mass-loss around the WDs through optically thick wind or nova outburst.

    2.1.The Roche-lobe Overflow Process

    We investigated the mass-transfer rate in semidetached WD+AGB systems by the integrated RLOF mass-transfer prescription shown in Ge et al.(2010),written as

    in whichRLis the effective Roche-lobe radius of the donor,Gis the gravitational constant,M2is the donor mass,the mass ratioq=M2/MWD,Γ is the adiabatic index,ρ is the local gas density,andPis the local gas pressure.The upper and lower limits of integral are stellar surface potential energy (φS) and the Roche-lobe potential energy (φL),respectively.The integration over potential φ is approximately expressed as follows:

    whereRis the donor radius.The combined coefficientf(q)is a slowly varying function of the mass ratioq:

    wherea2is defined as

    in whichxLis accurately approximated as

    2.2.The Wind-accretion Process

    In the present work,we employ the Reimers wind before the donor evolves to the AGB phase,and adopt the Blocker wind after the donor evolves to the AGB phase (Reimers 1975;Bloecker 1995).For the mass-accretion efficiency of WDs,we consider both the Bondi–Hoyle mass-accretion efficiency and the wind Roche-lobe overflow (WRLOF) mass-accretion efficiency,and adopted the larger one in the calculations.

    (1) The Bondi–Hoyle accretion efficiency (Bondi &Hoyle 1944;Boffin &Jorissen 1988) is written as:

    whereeis the orbital eccentricity(we assumed that binary orbit is circular ande=0),αaccis the accretion efficiency parameter that is generally set as 1.5 in MESA,vorbis the orbital velocity,vwis the wind velocity,we setvwto 5 km s-1,which is similar to Chen et al.(2011).Abate et al.(2013)suggested that stellar wind velocity of AGB star is in the range of 5–30 km s-1when the binary period is around 104days.A more detailed relationship between the wind velocity and the escape velocity can be seen in Eldridge et al.(2006).

    (2) WRLOF occurs when the wind acceleration radius of AGB star is larger than the Roche-lobe radius,during which WD can accrete material in the wind-accretion zone through the inner Lagrangian point (Mohamed &Podsiadlowski 2012;Abate et al.2013).The WRLOF mass-accretion efficiency can be expressed as

    2.3.Mass-growth Rate of WDs

    Generally,the WD mass-growth rate remains controversial,especially for the recurrent nova outbursts during the masstransfer process (e.g.,Yaron et al.2005;Nomoto et al.2007;Miko?ajewska &Shara 2017).In this work,we use the prescription provided by Hachisu et al.(1999) to calculate the WD mass-growth rate,which can be written as

    in which ηHis the mass-accumulation efficiency for H-shell burning(e.g.,Wang et al.2010),ηHeis the mass-accumulation efficiency for He-shell flashes (Kato &Hachisu 2004).

    When the WD mass-accretion rate is larger than a critical mass-accretion ratewe assume that the WD accumulates H-rich matter at the rate ofthe rest of matter wound be blown away in the form of the optically thick wind (e.g.,Nomoto 1982;Kato&Hachisu 1994;Hachisu et al.1996).The critical mass-accretion rate is

    in whichXis the H mass fraction,andMWDis the mass of WDs in units ofM⊙.The mass-accumulation efficiency of hydrogen can be expressed as follows:

    3.Results

    In order to explore the parameter space for producing SNe Ia,we evolved about 600 WD+AGB systems,for which the initial masses of the WDs are in the range from 1.15 to 1.25M⊙,the initial masses of the donors are in the range of 1.8–3.0M⊙.The initial orbital periods are in the range of 25–25,000 days;the donor in a binary with a shorter period will fill its Roche-lobe in the RG phase,and the binary with longer period will experience mass-transfer with a high rate and lose so much mass via the optically thick wind that the WD cannot increase its mass toMCh.

    3.1.Examples of Binary Evolution Calculations

    Figure 3 shows the comparison of the Bondi–Hoyle accretion efficiency and the WRLOF accretion efficiency for the wind-accretion case shown in Figure 2.From this figure,we can see that the Bondi–Hoyle accretion efficiency works before the donor evolves to the AGB phase.Note that the curve of the WRLOF accretion efficiency has two peaks aroundt=6.5×108yr,which corresponds to the Hertzsprung-Gap phase and the RGB phase.The donor expands rapidly during these two phases,leading to the decrease of its effective temperature.In this case,the value of theRddecreases and βacc,WRLOFsignificantly increases(see Equation(7)).When the donor evolves to the AGB phase att=8.0×108yr,it expands quickly and βacc,WRLOFsignificantly increases over βacc,BH,during which the WRLOF accretion efficiency starts to work.

    3.2.Parameter Space for Producing SNe Ia

    Figure 4 shows the initial and final contours of WD+AGB systems for producing SNe Ia with the initial WD masses of 1.15,1.20 and 1.25M⊙.The initial donor masses for producing SNe Ia are larger than 2M⊙.The intermediate-mass stars will develop convective envelopes when their masses decrease to be less than 1.5M⊙,after which the magnetic braking should work(e.g.,Rappaport et al.1983;Paxton et al.2015;Chen et al.2020;Deng et al.2021;Guo et al.2022).In the present work,we ignore the magnetic braking,even when the donors evolve into low-mass stars with masses less than 1.5M⊙.From this figure,we can see that as the initial WD mass increases,the initial parameter spaces of the RLOF case expands to the upper left,and the wind-accretion case expands upper right.It is notable that the position of AT 2019qyl can be basically covered by the final contours of the wind-accretion case,which indicates that AT 2019qyl is a strong progenitor candidate of SNe Ia.

    The surrounding boundaries of initial parameter space are determined by different reasons.The binaries beyond the upper boundaries cannot produce SNe Ia because too much material is lost via optically thick wind during the mass-transfer phase due to the large mass ratios.The lower boundaries of the two contours are set by the less massive donors and the low masstransfer rate,in which the WDs cannot increase their masses toMCh.The donors in binaries beyond the left RLOF boundaries will fill their Roche–lobes at the RGB phase.The binaries beyond the right wind-accretion boundaries and between the two contours are caused by the fact that these binaries have experienced relatively fast mass-transfer processes with and thus lost too much mass through the optically thick wind.

    3.3.Density Distribution of CSM

    Similar to Moriya et al.(2019),the assumptions for the wind velocity of the lost material during the mass-transfer process are shown as follows: (1) in the stable H-shell burning phase,we assume that about 1%of transferred mass escaping from the outer Lagrangian point and the wind velocity is supposed to approximately equal to the orbital velocity (~100 km s-1)(Huang &Yu 1996;Deufel et al.1999).This assumption is only used to estimate the density distribution of CSM.In the binary evolution calculations,we do not consider this mass escape from the outer Lagrangian point.(2)In the weak H-shell flash phase,the wind velocity is assumed to be similar to that of novae,which is assumed to be about 1000 km s-1.(3) In the optically thick wind phase,the wind velocity is assumed as the escape velocity at the radius of H-envelope and approximated as a speed of approximately 1000 km s-1.After these simplifications,the density of CSM can be expressed aswhereis the mass-loss rate of the binary,ais the distance from the binary,andVlossis the wind velocity of the lost material.

    Figure 5 presents the density distribution of CSM for the evolutionary cases in Figure 1 (RLOF) and Figure 2 (wind accretion) when the WD masses increase toMCh.From this figure,we can see that the distribution basically meets ρ ∝a-2.Note that the CSM in the region ofloga?22is similar for these two cases,because neither of their donors fill their Roche–lobes and the mass-loss originates from the stellar wind of the donors.There is a small peak atloga≈23.8.At this time,the two donors evolve to their RGB phase and the stellar wind becomes stronger.They evolve to AGB phase when loga≈22.5.We can also see that there is a peak in the curve of RLOF case aroundloga≈21 .The donor fills its Rochelobe at this time and the mass-transfer rate increases rapidly.In this case,a large amount of matter lost from the binary in the form of the optically thick wind.

    Figure 1.A typical binary evolution for producing an SN Ia through RLOF.In the left figure,the black solid curve stands for the evolutionary track of the mass donor in the HR diagram,and the red dashed–dotted curve shows the evolution of the orbital periods.The black crosses stand for the start of mass-transfer.In the right figure,the evolution of WD mass-accretion rate(),WD mass-growth rate(),binary mass-loss rate()and WD mass(MWD)as a function of time are shown as black solid,blue dashed,green dashed–dotted and red dashed–dotted curves,respectively.The asterisks stand for the position where an SN Ia explosion occurs.

    Figure 2.Similar to Figure 1,but for a typical binary evolution for producing an SN Ia through stellar wind-accretion.The red crosses in the left figure stand for the beginning of WD mass growth.In the right figure,the evolution of WD mass-accretion rate WD mass-growth rate binary mass-loss rate and WD mass (MWD) as a function of time are shown as black solid,blue dashed,green dashed–dotted and red dashed–dotted curves,respectively.The WD massaccretion rate in this case is equal to the donor mass-loss rate multiplied by mass-accretion efficiency.The asterisks stand for the position where an SN Ia explosion occurs.

    Figure 3.The comparison of Bondi–Hoyle accretion efficiency and WRLOF accretion for the wind-accretion case shown in Figure 2.Red solid and green dashed curves stand for Bondi–Hoyle accretion efficiency and WRLOF accretion accretion,respectively.The red cross stands for the beginning of WD mass growth.

    Figure 4.Initial and final regions of WD+AGB systems in their orbital period-donor mass (P M log -2) plane for producing SNe Ia with different initial WD masses.The thick and thin lines represent initial and final parameter space,respectively.The left and right contours represent the RLOF cases and windaccretion cases,respectively.The data for AT 2019qyl are taken from Jencson et al.(2021).

    4.Discussion and Summary

    The CSM forms during the mass-transfer process will interact with SN ejecta,which would generate radio synchrotron emission and X-ray emission.The physical processes and characteristic features of the interactions have been well studied(e.g.,Chevalier 1998;Chevalier &Fransson 2006;Maeda 2012).Meng &Han (2016) found that the X-ray and radio flux may be high enough to be detected for a nearby SN Ia from a WD+AGB system.From Figure 4,we can infer that the masses of CSM at the moment of SNe Ia explosion in RLOF cases and wind-accretion cases are in the range of 0.85–1.69M⊙and 0.15–1.29M⊙,respectively.According to binary evolution calculations,we can summarize that the massloss rate at the moment of SNe Ia explosion is in the range of 8.38×10-9-3.61×10-6M⊙yr-1for the RLOF cases,and 2.64×10-8-5.05×10-5M⊙yr-1for the wind-accretion cases.

    Unlike previous studies,we found that the semidetached WD+AGB binaries can also produce SNe Ia in the present work.In the RLOF process,the integrated mass-transfer prescription is more physical and suitable for semidetached binaries with giant donors.This prescription is based on laminar mass overflow and the stellar state equation that obeys the adiabatic power law.When the donor fills its Roche-lobe,the mass-transfer rate is lower than that of previous models,resulting in that the WDs can accumulate more material through stable RLOF process(for more discussions see Liu et al.2019).

    It is worth noting that the CD model for producing SNe Ia also involves the WD+AGB systems.In the CD model,the merger of a WD with the hot CO-core of an AGB star during or after a common envelop phase would produce an SN Ia (e.g.,Kashi &Soker 2011;Ilkov &Soker 2012,2013;Soker et al.2014;Aznar-Siguán et al.2015).Tsebrenko &Soker (2015)estimated that at least 20% of all SNe Ia are produced by this channel.Recently,Soker &Bear (2022) suggested that the merger of a WD with the hot CO-core of an He subgiant can explain the He-rich CSM of SN 2020eyj under the CD model.In this model,the common envelope ejection will form one or multiple shells.Soker et al.(2013)argue that the multiple shells of CSM in SN Ia PTF 11kx can be explained by a merger of WD and the hot core of an AGB star.But in this work,the CSM has a continuous distribution that basically meets ρ ∝a-2,which is the basic difference for the CSM distribution between the SD model and the CD model.It has been suggested that the Kepler’s SNR may be the result of SN Ia explosion in the SD model with an AGB donor(Chiotellis et al.2012).

    It has been suggested that an accretion disk is possibly formed around the WD during the mass-transfer process,and the accretion disk may become thermally unstable when the effective temperature in the disk falls below the hydrogen ionization temperature (e.g.,van Paradijs 1996;King et al.1997;Lasota 2001).Some previous studies have investigated the influence of the thermally unstable accretion of WD binaries (e.g.,Xu &Li 2009;Wang &Han 2010;Wang et al.2010).After considering the disk instability,it has been found that the mass-accumulation efficiency of WD can be significantly improved and the systems with less-massive donors can also produce possible SNe Ia,which would be helpful to explain the SNe Ia with long delay times(Chen&Li 2007;Xu&Li 2009;Wang&Han 2010;Wang et al.2010).In this case,we can infer that the lower boundaries of initial parameter space for producing SNe Ia would expand downwards because of the larger mass-accumulation efficiency of WD if the accretion-disk instability is considered in WD+AGB binaries.Ablimit et al.(2022) compared the evolution of non-magnetic and magnetized WD+RG binaries,and found that the accretion would occur on the two small polar caps of the WDs,which may potentially suppress nova outbursts.They suggested that the WD+RG binaries with shorter orbital periods and lower donor masses in the initial parameter space could produce SNe Ia if the magnetic confinement is considered.Therefore,we can speculate that magnetic confinement would have a similar effect on the AGB donor channel for producing SNe Ia .

    In the present work,the accretor is treated as a mass point,and thus the provided parameter space is also useful if the accretor is an oxygen-neon (ONe) WD,which may evolve to the accretion-induced collapse (AIC) events.Unlike CO WDs,massive ONe WDs in close binaries may experience the AIC process when their masses approach toMCh,which would lead to the formation of neutron star systems(e.g.,Taam&van den Heuvel 1986;Michel 1987;Canal et al.1990).The neutron stars can be spun up after the donors refill their Roche-lobe,which is a possible path for the formation of millisecond pulsars (e.g.,Bhattacharya &van den Heuvel 1991;Shao &Li 2012;Tauris et al.2013).In this case,the symbiotic systems may also evolve to NS systems via the AIC process.Wang et al.(2022) investigated the formation of millisecond pulsars through the RG donor channel,and found that there exists an anticorrelation between the final neutron star mass and the final orbital period based on this channel.Ablimit (2023) investigated the evolution of non-magnetic or magnetized ONe WDs+RG binaries,and found the initial parameter space shifts to be lower and narrower after considering the influence of the magnetic field.

    In this work,we studied the formation of SNe Ia from the semidetached and detached WD+AGB systems.We found that the semidetached WD+AGB system is a possible path for the formation of SNe Ia after a more physical mass-transfer method is adopted.In addition,we provided the parameter space of the semidetached and detached WD+AGB systems for the formation of SNe Ia.We also compared the density distribution of CSM from these two cases.We suggest that AT 2019qyl is a strong candidate for the progenitors of SNe Ia with AGB donors.In order to understand the AGB donor channel for the formation of SNe Ia,further numerical research on the masstransfer prescription for semidetached binaries with giant donors are needed,and large samples of observed WD+AGB systems are expected.

    Acknowledgments

    We acknowledge the useful comments and suggestions from the referee.This study is supported by the National Natural Science Foundation of China (Nos.12225304,12273105 and 11903075),the National Key R&D Program of China (Nos.2021YFA1600404,2021YFA1600403 and 2021YFA1600400),the Western Light Project of CAS (No.XBZG-ZDSYS-202117),the science research grants from the China Manned Space Project(No.CMS-CSST-2021-A12),the Youth Innovation Promotion Association CAS(No.2021058),the Yunnan Fundamental Research Projects (Nos.202001AS070029,202001AU070054,202101AT070027,202101AW070047 and 202201BC070003),the Frontier Scientific Research Program of Deep Space Exploration Laboratory(No.2022-QYKYJH-ZYTS-016) and International Centre of Supernovae,Yunnan Key Laboratory (No.202 302AN360001).

    ORCID iDs

    国产男女内射视频| 一级片'在线观看视频| 人妻久久中文字幕网| 黄色丝袜av网址大全| 多毛熟女@视频| 男女高潮啪啪啪动态图| 高潮久久久久久久久久久不卡| xxxhd国产人妻xxx| 亚洲欧美精品综合一区二区三区| 久久狼人影院| a级毛片在线看网站| 18禁裸乳无遮挡动漫免费视频| 男男h啪啪无遮挡| 麻豆乱淫一区二区| 深夜精品福利| 别揉我奶头~嗯~啊~动态视频| 久久ye,这里只有精品| 亚洲色图av天堂| 国产日韩欧美在线精品| 俄罗斯特黄特色一大片| 成人国语在线视频| 在线 av 中文字幕| 精品一品国产午夜福利视频| 久久天躁狠狠躁夜夜2o2o| 大片电影免费在线观看免费| 下体分泌物呈黄色| 日韩欧美一区二区三区在线观看 | 91麻豆精品激情在线观看国产 | 99精国产麻豆久久婷婷| 国产区一区二久久| 老司机深夜福利视频在线观看| 欧美+亚洲+日韩+国产| 国产在线视频一区二区| 国产欧美日韩综合在线一区二区| 高潮久久久久久久久久久不卡| 激情视频va一区二区三区| 另类亚洲欧美激情| 一边摸一边抽搐一进一小说 | 国产精品国产高清国产av | 国产不卡av网站在线观看| 欧美激情高清一区二区三区| 国产av又大| 国产97色在线日韩免费| 欧美精品啪啪一区二区三区| 日韩 欧美 亚洲 中文字幕| 性色av乱码一区二区三区2| 99久久精品国产亚洲精品| 亚洲中文日韩欧美视频| 亚洲美女黄片视频| 亚洲av日韩在线播放| 国产97色在线日韩免费| 成人永久免费在线观看视频 | 亚洲欧洲精品一区二区精品久久久| 欧美日韩av久久| 久久狼人影院| 在线观看免费日韩欧美大片| 高清av免费在线| 女性被躁到高潮视频| 丁香欧美五月| 国产精品 国内视频| 欧美中文综合在线视频| 黄网站色视频无遮挡免费观看| a级片在线免费高清观看视频| 亚洲精品自拍成人| 最近最新中文字幕大全免费视频| 久久久久视频综合| 变态另类成人亚洲欧美熟女 | 欧美成人免费av一区二区三区 | 丰满饥渴人妻一区二区三| 黄片小视频在线播放| 在线观看免费日韩欧美大片| 一区二区三区国产精品乱码| 精品亚洲成a人片在线观看| 日韩三级视频一区二区三区| av福利片在线| 精品高清国产在线一区| 自线自在国产av| 国产精品自产拍在线观看55亚洲 | 午夜福利影视在线免费观看| tube8黄色片| 久久人妻熟女aⅴ| 老司机午夜福利在线观看视频 | 精品久久久久久久毛片微露脸| 亚洲人成伊人成综合网2020| 久久久久网色| 人妻一区二区av| 久久午夜亚洲精品久久| 国产成人精品久久二区二区免费| 免费看a级黄色片| 91av网站免费观看| 多毛熟女@视频| 欧美乱码精品一区二区三区| 日本黄色视频三级网站网址 | 日韩有码中文字幕| 欧美人与性动交α欧美软件| 国产不卡av网站在线观看| 国产色视频综合| 50天的宝宝边吃奶边哭怎么回事| 日本五十路高清| 久久中文字幕一级| 久久久国产一区二区| 手机成人av网站| 一区二区日韩欧美中文字幕| 免费人妻精品一区二区三区视频| 亚洲av成人一区二区三| 天天影视国产精品| av超薄肉色丝袜交足视频| 成人18禁在线播放| 18禁观看日本| 国产伦理片在线播放av一区| 男女无遮挡免费网站观看| 波多野结衣av一区二区av| 国产精品二区激情视频| 最黄视频免费看| 精品少妇内射三级| 成年动漫av网址| 久久天躁狠狠躁夜夜2o2o| 久久人人爽av亚洲精品天堂| 99国产极品粉嫩在线观看| 日韩欧美免费精品| 黄色丝袜av网址大全| 亚洲精品在线美女| 国产成人精品在线电影| 午夜激情久久久久久久| 国产精品亚洲一级av第二区| 国产三级黄色录像| 可以免费在线观看a视频的电影网站| 女性被躁到高潮视频| kizo精华| 99香蕉大伊视频| 亚洲中文日韩欧美视频| 考比视频在线观看| 国产麻豆69| 亚洲自偷自拍图片 自拍| h视频一区二区三区| 黄片大片在线免费观看| 王馨瑶露胸无遮挡在线观看| 另类亚洲欧美激情| 性少妇av在线| 侵犯人妻中文字幕一二三四区| 美女高潮喷水抽搐中文字幕| 国产区一区二久久| 九色亚洲精品在线播放| 美女高潮到喷水免费观看| 国产成人免费观看mmmm| 精品国产亚洲在线| 欧美激情高清一区二区三区| 久久久久精品国产欧美久久久| 精品国产亚洲在线| 91av网站免费观看| 一级毛片女人18水好多| 久久狼人影院| 欧美成狂野欧美在线观看| 精品卡一卡二卡四卡免费| 99re在线观看精品视频| 国产精品美女特级片免费视频播放器 | 99久久人妻综合| 久久精品国产亚洲av高清一级| 久久久精品94久久精品| 老熟妇仑乱视频hdxx| 极品教师在线免费播放| 成人18禁高潮啪啪吃奶动态图| 12—13女人毛片做爰片一| 久久中文字幕人妻熟女| 欧美久久黑人一区二区| 欧美av亚洲av综合av国产av| 欧美成狂野欧美在线观看| 亚洲欧美一区二区三区久久| 午夜福利一区二区在线看| 久久九九热精品免费| 中文字幕高清在线视频| 国产91精品成人一区二区三区 | 久久狼人影院| 久久久精品国产亚洲av高清涩受| 又紧又爽又黄一区二区| 免费女性裸体啪啪无遮挡网站| 男女高潮啪啪啪动态图| 纯流量卡能插随身wifi吗| 日韩欧美免费精品| 人人妻人人添人人爽欧美一区卜| 99久久人妻综合| 母亲3免费完整高清在线观看| 久久青草综合色| 午夜福利视频在线观看免费| 如日韩欧美国产精品一区二区三区| 亚洲国产欧美网| 午夜福利乱码中文字幕| 日本vs欧美在线观看视频| 亚洲色图av天堂| 99在线人妻在线中文字幕 | 手机成人av网站| 日本黄色日本黄色录像| www.精华液| 三上悠亚av全集在线观看| 18禁美女被吸乳视频| 人人澡人人妻人| 99国产极品粉嫩在线观看| 男女边摸边吃奶| 一区二区三区国产精品乱码| 交换朋友夫妻互换小说| 国产成人精品久久二区二区免费| 国产免费av片在线观看野外av| 在线看a的网站| 99久久精品国产亚洲精品| 啦啦啦在线免费观看视频4| 一二三四在线观看免费中文在| 欧美黑人欧美精品刺激| 男人操女人黄网站| 国产成人精品久久二区二区免费| 亚洲国产毛片av蜜桃av| 国产成人精品在线电影| 国产单亲对白刺激| a级毛片黄视频| 久久中文看片网| 久久精品亚洲av国产电影网| 国产在线精品亚洲第一网站| 热re99久久精品国产66热6| 国产欧美日韩精品亚洲av| 国产黄频视频在线观看| 怎么达到女性高潮| 午夜视频精品福利| 啦啦啦 在线观看视频| 欧美日韩一级在线毛片| 精品久久久精品久久久| av欧美777| 国产av又大| 在线观看舔阴道视频| 精品国产一区二区三区四区第35| 桃红色精品国产亚洲av| 国精品久久久久久国模美| 伊人久久大香线蕉亚洲五| 中文字幕人妻丝袜制服| 午夜激情久久久久久久| 999精品在线视频| 19禁男女啪啪无遮挡网站| 99精品久久久久人妻精品| 啦啦啦视频在线资源免费观看| 新久久久久国产一级毛片| 最近最新免费中文字幕在线| av网站在线播放免费| 少妇 在线观看| 啦啦啦 在线观看视频| 一区二区av电影网| 天天躁日日躁夜夜躁夜夜| 日韩视频在线欧美| 在线观看免费日韩欧美大片| 精品高清国产在线一区| 国产精品香港三级国产av潘金莲| 99riav亚洲国产免费| 我的亚洲天堂| 精品亚洲乱码少妇综合久久| 国产精品自产拍在线观看55亚洲 | 香蕉丝袜av| 亚洲精品乱久久久久久| 又黄又粗又硬又大视频| av视频免费观看在线观看| 汤姆久久久久久久影院中文字幕| 看免费av毛片| 日韩制服丝袜自拍偷拍| 日本a在线网址| 国产亚洲欧美精品永久| 丰满饥渴人妻一区二区三| 露出奶头的视频| 午夜成年电影在线免费观看| 一边摸一边抽搐一进一出视频| 欧美在线黄色| 午夜福利在线观看吧| 亚洲第一欧美日韩一区二区三区 | 国产精品98久久久久久宅男小说| 欧美老熟妇乱子伦牲交| 国产成人av教育| 色老头精品视频在线观看| 日韩欧美一区二区三区在线观看 | 国产一区二区激情短视频| 18禁黄网站禁片午夜丰满| 老司机亚洲免费影院| 人人妻人人爽人人添夜夜欢视频| 国产麻豆69| 一二三四在线观看免费中文在| 亚洲中文av在线| 午夜激情久久久久久久| 激情视频va一区二区三区| 大陆偷拍与自拍| 日本一区二区免费在线视频| 一区二区三区国产精品乱码| 国产精品久久久久久精品电影小说| 国产主播在线观看一区二区| 中亚洲国语对白在线视频| 亚洲欧美日韩高清在线视频 | 一区在线观看完整版| 最新美女视频免费是黄的| 丰满少妇做爰视频| 纯流量卡能插随身wifi吗| 18禁国产床啪视频网站| 久久久久国内视频| 精品午夜福利视频在线观看一区 | 少妇 在线观看| 国产又色又爽无遮挡免费看| 黄色视频不卡| 99精国产麻豆久久婷婷| 免费人妻精品一区二区三区视频| 法律面前人人平等表现在哪些方面| 美国免费a级毛片| 12—13女人毛片做爰片一| 宅男免费午夜| 国产免费福利视频在线观看| 久久久精品国产亚洲av高清涩受| 伦理电影免费视频| 不卡av一区二区三区| 成人国产一区最新在线观看| 啦啦啦 在线观看视频| 久久九九热精品免费| 91精品国产国语对白视频| 老司机靠b影院| 久久久久精品人妻al黑| 久久这里只有精品19| 热99国产精品久久久久久7| 成年动漫av网址| 男女边摸边吃奶| 久久久精品94久久精品| 国产高清视频在线播放一区| 人人妻人人爽人人添夜夜欢视频| 天天操日日干夜夜撸| 18禁黄网站禁片午夜丰满| 高清在线国产一区| 色婷婷久久久亚洲欧美| 久久人人97超碰香蕉20202| 宅男免费午夜| 最近最新免费中文字幕在线| 69av精品久久久久久 | 一本大道久久a久久精品| 久久久久久久国产电影| 久久久久精品人妻al黑| 国产成人影院久久av| 欧美中文综合在线视频| 老司机深夜福利视频在线观看| 国产精品影院久久| 国产精品.久久久| 桃花免费在线播放| 美女福利国产在线| 中文字幕制服av| 精品乱码久久久久久99久播| 一边摸一边抽搐一进一小说 | 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品久久午夜乱码| 一级黄色大片毛片| 久热这里只有精品99| 免费观看av网站的网址| av福利片在线| 成人国语在线视频| xxxhd国产人妻xxx| 高潮久久久久久久久久久不卡| 日韩一区二区三区影片| 丁香欧美五月| 叶爱在线成人免费视频播放| 菩萨蛮人人尽说江南好唐韦庄| 精品国内亚洲2022精品成人 | 欧美另类亚洲清纯唯美| 免费日韩欧美在线观看| videos熟女内射| 国产av精品麻豆| 日韩中文字幕视频在线看片| 老司机深夜福利视频在线观看| 成人av一区二区三区在线看| 国产av一区二区精品久久| 欧美精品一区二区大全| 一本—道久久a久久精品蜜桃钙片| 咕卡用的链子| 亚洲少妇的诱惑av| 露出奶头的视频| 免费不卡黄色视频| 国产成人av激情在线播放| 999精品在线视频| 19禁男女啪啪无遮挡网站| 波多野结衣一区麻豆| 两个人看的免费小视频| 国产老妇伦熟女老妇高清| 欧美精品高潮呻吟av久久| 少妇裸体淫交视频免费看高清 | 免费黄频网站在线观看国产| 精品久久久久久久毛片微露脸| 热99re8久久精品国产| 搡老熟女国产l中国老女人| 亚洲美女黄片视频| 亚洲七黄色美女视频| 欧美成人免费av一区二区三区 | 人人妻人人澡人人看| 久久国产亚洲av麻豆专区| 欧美亚洲日本最大视频资源| 99精品欧美一区二区三区四区| 男人操女人黄网站| 岛国在线观看网站| 男女床上黄色一级片免费看| 亚洲九九香蕉| 国产成人欧美在线观看 | 成人精品一区二区免费| 久久久久久人人人人人| 十八禁网站网址无遮挡| 欧美成狂野欧美在线观看| 日日摸夜夜添夜夜添小说| 人人妻,人人澡人人爽秒播| 日本a在线网址| 黑人猛操日本美女一级片| 一边摸一边做爽爽视频免费| 国产日韩欧美在线精品| 欧美精品一区二区大全| av一本久久久久| 在线观看66精品国产| 99re6热这里在线精品视频| 操出白浆在线播放| netflix在线观看网站| 丁香欧美五月| 欧美精品人与动牲交sv欧美| 久久热在线av| 亚洲精品中文字幕在线视频| 久久久精品免费免费高清| 久久人妻福利社区极品人妻图片| 十分钟在线观看高清视频www| 黄色成人免费大全| 国产免费av片在线观看野外av| 免费人妻精品一区二区三区视频| 日日摸夜夜添夜夜添小说| 亚洲 国产 在线| 人人妻人人澡人人爽人人夜夜| 国产一区二区在线观看av| 亚洲自偷自拍图片 自拍| 亚洲精品一二三| 18在线观看网站| 50天的宝宝边吃奶边哭怎么回事| 老司机靠b影院| 亚洲性夜色夜夜综合| 国产97色在线日韩免费| a级毛片黄视频| 国产一卡二卡三卡精品| 一边摸一边抽搐一进一小说 | 三级毛片av免费| 美国免费a级毛片| 在线观看一区二区三区激情| 欧美在线一区亚洲| av天堂久久9| 纯流量卡能插随身wifi吗| 亚洲九九香蕉| 亚洲欧洲精品一区二区精品久久久| 国产无遮挡羞羞视频在线观看| 精品人妻熟女毛片av久久网站| 国产精品亚洲av一区麻豆| a级毛片黄视频| 免费在线观看完整版高清| 国产国语露脸激情在线看| 激情在线观看视频在线高清 | 久久中文字幕人妻熟女| 大码成人一级视频| 久久人妻福利社区极品人妻图片| 视频区图区小说| 美女视频免费永久观看网站| 大香蕉久久成人网| 女性被躁到高潮视频| 99国产综合亚洲精品| 青青草视频在线视频观看| 国产主播在线观看一区二区| 成人国语在线视频| 国产av一区二区精品久久| 50天的宝宝边吃奶边哭怎么回事| 国产男女超爽视频在线观看| 午夜激情av网站| 两性夫妻黄色片| 亚洲全国av大片| 可以免费在线观看a视频的电影网站| 精品人妻在线不人妻| 高潮久久久久久久久久久不卡| 国产成人精品在线电影| 老司机在亚洲福利影院| 香蕉国产在线看| 精品亚洲乱码少妇综合久久| √禁漫天堂资源中文www| 欧美黄色片欧美黄色片| 久久精品国产综合久久久| 在线看a的网站| 丰满饥渴人妻一区二区三| 国产精品秋霞免费鲁丝片| 久久国产精品男人的天堂亚洲| 欧美大码av| 国产精品.久久久| 老司机亚洲免费影院| 嫁个100分男人电影在线观看| 久久人人97超碰香蕉20202| 777米奇影视久久| 国产91精品成人一区二区三区 | 叶爱在线成人免费视频播放| 久久国产精品影院| 人人妻人人澡人人看| 国产xxxxx性猛交| 亚洲情色 制服丝袜| 黑丝袜美女国产一区| 黄色视频在线播放观看不卡| 欧美日韩一级在线毛片| 日韩视频在线欧美| 黄色怎么调成土黄色| 欧美激情高清一区二区三区| 亚洲成人免费电影在线观看| 99久久精品国产亚洲精品| 两个人免费观看高清视频| 一级毛片精品| 大型av网站在线播放| 亚洲精品国产区一区二| 久久精品国产99精品国产亚洲性色 | 日本a在线网址| 丰满饥渴人妻一区二区三| 日本撒尿小便嘘嘘汇集6| 日韩精品免费视频一区二区三区| 亚洲精品久久午夜乱码| 男女免费视频国产| 动漫黄色视频在线观看| 首页视频小说图片口味搜索| 久久av网站| 美国免费a级毛片| 高清毛片免费观看视频网站 | 亚洲专区字幕在线| 欧美亚洲 丝袜 人妻 在线| 亚洲精品在线观看二区| 正在播放国产对白刺激| 日韩视频一区二区在线观看| 国产亚洲av高清不卡| 国产一区二区在线观看av| 国产av一区二区精品久久| 99国产精品99久久久久| 一级,二级,三级黄色视频| 韩国精品一区二区三区| av一本久久久久| 精品久久久久久久毛片微露脸| 一级a爱视频在线免费观看| 热99re8久久精品国产| 人妻 亚洲 视频| 中文字幕高清在线视频| 久久精品成人免费网站| 人人妻,人人澡人人爽秒播| 伦理电影免费视频| 大陆偷拍与自拍| 亚洲欧美激情在线| 亚洲免费av在线视频| 日韩欧美三级三区| 一本久久精品| 免费人妻精品一区二区三区视频| 久久久国产欧美日韩av| 午夜免费鲁丝| 久久久久久久精品吃奶| 91字幕亚洲| 高清在线国产一区| 国产av精品麻豆| 日本黄色视频三级网站网址 | 757午夜福利合集在线观看| 久9热在线精品视频| 国产淫语在线视频| 成人精品一区二区免费| 丝袜人妻中文字幕| 午夜福利视频在线观看免费| 怎么达到女性高潮| 精品福利永久在线观看| 黑人巨大精品欧美一区二区蜜桃| 成人影院久久| 久久人妻福利社区极品人妻图片| 国产一区二区三区视频了| 777米奇影视久久| 国产精品九九99| 黄色成人免费大全| 桃花免费在线播放| 91精品三级在线观看| 亚洲一区中文字幕在线| 国产国语露脸激情在线看| 热99久久久久精品小说推荐| 日韩免费高清中文字幕av| 国产av又大| 成年动漫av网址| 99久久99久久久精品蜜桃| 国产精品偷伦视频观看了| 巨乳人妻的诱惑在线观看| 国产免费视频播放在线视频| 丝袜人妻中文字幕| 亚洲欧美色中文字幕在线| 丁香六月欧美| 丝袜人妻中文字幕| 国产精品久久久av美女十八| 一级毛片精品| 亚洲av国产av综合av卡| 国产成人系列免费观看| 啦啦啦视频在线资源免费观看| 久久精品91无色码中文字幕| 色在线成人网| 国精品久久久久久国模美| 中国美女看黄片| 国产精品麻豆人妻色哟哟久久| 国产av国产精品国产| 亚洲精品自拍成人| 少妇精品久久久久久久| 日日摸夜夜添夜夜添小说| 国产黄色免费在线视频| 国产成人系列免费观看| 91精品国产国语对白视频| 十八禁人妻一区二区| 亚洲国产毛片av蜜桃av| 久久国产亚洲av麻豆专区| 嫁个100分男人电影在线观看| 欧美在线黄色| 王馨瑶露胸无遮挡在线观看| tocl精华| 两个人免费观看高清视频| 久久精品亚洲精品国产色婷小说| 99香蕉大伊视频| 亚洲精品一二三| 国产精品国产高清国产av | 午夜福利影视在线免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 他把我摸到了高潮在线观看 | 日本av免费视频播放| 久久精品aⅴ一区二区三区四区|