• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Study of Helium Variations in Star Clusters Using China Space Station Telescope

    2023-09-03 15:24:26XinJiLicaiDengYangChenChengyuanLiandChaoLiu

    Xin Ji ,Licai Deng,3,* ,Yang Chen ,Chengyuan Li ,and Chao Liu

    1 Key Laboratory for Optical Astronomy,National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China;licai@nao.cas.cn,cy@ahu.edu.cn,jixin@nao.cas.cn,liuchao@nao.cas.cn

    2 School of Astronomy and Space Science,University of Chinese Academy of Sciences,Beijing 100101,China

    3 Department of Astronomy,School of Physics and Astronomy,China-West Normal University,Nanchong 637009,China;lichengy5@mail.sysu.edu.cn

    4 Anhui University,Hefei 230601,China

    5 School of Physics and Astronomy,Sun Yat-sen University,Zhuhai 519082,China

    Abstract The China Space Station Telescope(CSST)is a 2 m space-based optical-UV telescope.Its primary goal is to carry out a high-resolution photometric imaging survey of a 17,500 square degree sky area using the on board Survey Camera.With its wide field of view (1.1 square degrees) and a mosaic imager containing 640 million pixels,studying the different populations of stars within star clusters is highly feasible.The aim of this study is to assess the CSST’s ability to distinguish between stellar populations with varying helium abundance levels,with the help of Modules for Experiments in Stellar Astrophysics.The results of the CSST’s photometry for these different populations are presented by transferring the models into the CSST Survey Camera photometric system.The findings confirm that helium-enriched stellar populations will have unique patterns in the color–magnitude diagrams under the CSST photometric system,compared to normal stellar populations.The CSST,with its filters and wide field of view of the Survey Camera,provides a new avenue for the study of multiple populations in star clusters.

    Key words: (Galaxy:) globular clusters: general–stars: abundances–(stars:) Hertzsprung-Russell and C-M diagrams

    1.Introduction

    A star cluster is a stellar system composed of a large number of gravitationally bound stars that are formed from a single progenitor giant molecular cloud at approximately the same time through a single burst.Star clusters are thus considered as the basic units of star formation (Lada &Lada 2003).This fact therefore suggests a “simple stellar population”(SSP) scenario.The scenario indicates that stars in a cluster should share the same age and chemical composition,especially the major elements hydrogen and helium.However,in recent decades multiple populations (MPs) have been detected in various types of star clusters,including most of the old globular clusters (GCs) (e.g.,Carretta et al.2009;Niederhofer et al.2017;Milone et al.2020)and some of the intermediate-age clusters in the Magellanic Clouds (MC) (e.g.,Martocchia et al.2018;Li &de Grijs 2019;Saracino et al.2019),which have been intensively observed by Hubble Space Telescope(HST)and large ground-based facilities.

    One of the main characteristics of MPs is the star-to-star chemical variations of light elements,including He,C,N,O,Na,Mg and Al.These elements are affected by several nuclear reactions during hydrogen-burning,such as the proton-capture process that leads to the well-known Na-O and Mg-Al anticorrelations (Shetrone 1996;Gratton et al.2004;Carretta et al.2009) and CNO cycle that causes the enhancement of N and depletion of C and O.Thanks to the high resolution HST ultraviolet (UV)-optical observations,these MPs can be observed through imaging using pseudo-color–magnitude diagrams(CMDs)and chromosome maps defined in Milone et al.(2015),and which were also used in Piotto et al.(2015)and Milone et al.(2017).The direct product of hydrogen-burning,helium,should be enhanced and can be modeled for clusters showing MP signatures (Bastian&Lardo 2018).However,the direct measurement of helium abundance is a challenge due to helium’s ionization energy.For old GCs in the Galaxy,only a limited number of horizontal branch(HB) stars can have effective temperatures (Teff) around~8000–11,500 K,that are high enough to show helium lines in near-ultraviolet (NUV) (e.g.,Villanova et al.2009;Marino et al.2014).An alternative method is indirect exploration via deep photometry.He-enrichment will increase the mean molecular weight and decrease the opacity,and thus increase the nuclear reaction rates.As a result,the stars with higher helium abundance will evolve faster and be brighter and hotter than their heliumnormal counterparts at each stage,which can be detected by photometric observations.Fast evolution of He-enriched stars will let them reach an advanced evolutionary stage earlier,making later branches of star clusters containing stars with different masses for different He abundances.However,He determination via stars with later evolution phases,such as HB stars (e.g.,Dalessandro et al.2011;Gratton et al.2013;Chantereau et al.2019),is often overestimated,as later generations of stars may undergo more mass loss than earlier generations(Tailo et al.2020).Therefore the photometric measurement of helium should use stars which have experienced less mass loss,especially the dwarf stars on the main sequence (MS),which require deeper photometry (Li 2021).

    The China Space Station Telescope (CSST) is a 2 m space telescope which is scheduled to be launched in 2024.There are two imaging instruments on board,namely the Survey Camera(SC) and the Multi-Channel Imager (MCI).The MCI is designed to have more filters with narrow bandwidth and is scheduled for deeper exposures than those for the SC.On the other hand,the SC has a much larger field of view (FOV,~1.1 deg2) than the MCIWith both imaging instruments,CSST will provide high spatial resolutionandat 633 nm for SC and MCI,respectively) images in multi-band filters covering a wide wavelength range from NUV to near-infrared (NIR).The SC will perform a photometric survey of a sky area of~17,500 deg2in a 10 yr mission(Zhan 2011;Cao et al.2018;Gong et al.2019).In this article,we focus on the role of the SC for detecting MPs of star clusters.For the MCI’s function in this context,we recommend the comprehensive discussions in Li et al.(2022).

    Given the advantages of the SC/CSST instrument in both wavelength coverage and FOV,it is expected that the CSST will have a great impact on the physics of star clusters.In this work,we are going to tackle the challenging issues of MPs resulting from variations of stellar chemical compositions in star clusters.We take the GC NGC 2808 as a prototype in this work,which is known for its triple MSs with dramatic helium differences (Piotto et al.2007).We will build isochrones with different helium contents from MS to advanced evolutionary stages until HB,and then test the capability of CSST instruments in terms of helium abundance variations.

    This article is organized as follows: In Section 2 we introduce the main parameters of the SC/CSST instrument and the details of our methods for building the cluster model and converting it to the CSST photometry system.The stellar models with different helium content and their observational properties are presented in Section 3.Discussions of the results and conclusions will be presented in Section 4.

    2.Modeling Stellar Populations Under the CSST Photometric System

    The grand science plan of CSST covers most of the cutting edge studies in all branches of astrophysics,including a high spatial resolution large sky survey using the SC,which is optimized toward NUV.The SC has seven broad-band photometric filters,namelyNUV,u,g,r,i,z,y(filter parameters are listed in Table 1).Figure 1 demonstrates the photometry system of SC,overplotted with a typical MS dwarf star and its helium-enriched counterpart.It is clear to see from Figure 1 that the main features of helium enhancements are well sampled by filters in shorter wavelengths,including helium lines and enhanced continuum.The goal of this article is to study if the CSST can reveal stellar populations with different helium abundances,as mentioned above.The scientific merit in the context of MPs in star clusters is just like the MCI as thoroughly described in Li et al.(2022).

    Figure 1.The transmission curves for SC/CSST filters with the vertical axis on the left,and the filter IDs in the insets.Two example spectra of typical dwarf MS stars(Teff~6300 and lgg~4.4) for helium normal (thin black line) and enriched dwarfs (thick black line) are plotted with the flux scale on the right.

    Table 1Key Parameters of the SC/CSST Filters

    As the primary survey instrument on board CSST,SC has fewer filters than MCI,but it has a significantly larger FOV.Figure 2 illustrates the FOV of SC,MCI and Wide Field and Planetary Camera 2 (WFPC2)/HST,by the blue,red and gray squares or a polygon respectively.As we will introduce below,in this work we take NGC 2808 as an example target,we therefore use the sky image with NGC 2808 in the center.The tidal radius of the cluster NGC(Moreno et al.2014)is also indicated by the circle.Given the ultra-deep photometry of SC/CSST,faint objects beyond the dynamical radius of star clusters can be captured with single exposures.Compared with MCI/CSST (Li et al.2022) in the context of FOV and survey efficiency,SC will provide a unique capability to sample all star members from different structures of star clusters,such as those in the outskirts that are undergoing dynamical evaporation,or stars in tidal tails of clusters.

    Figure 2.Comparison of FOV of CSST instrument and NGC 2808's tidal radius.The blue square signifies the FOV of SC/CSST on the sky,red square displays that of MCI/CSST and white circle indicates the tidal radius of NGC 2808.FOV of HST/WFPC2 is also plotted as reference in the center with a black border.

    NGC 2808 has been confirmed to have significant helium abundance variations(Piotto et al.2007).To mimic MPs for an NGC 2808-like cluster,we need to derive its basic parameters.High spatial resolution images were collected through WFPC2 on board the HST(GO-6804 program,PI:F,Fusi Pecci),which are available from the HST archive.We derived photometry results of NGC 2808 using the DOLPHOT6DOLPHOT is a stellar photometry package adapted from HSTphot for general use.See http://americano.dolphinsim.com/dolphot for more information.stellar photometry package with its WFPC2 module.We ran the wfpc2mask,splitgroups,calcsky and dolphot tasks in series,following the preprocessing steps recommended in the DOLPHOT/WFPC2 Users Guide (Dolphin 2016) to yield the best photometric results.The output files of DOLPHOT include several parameters to estimate the quality of our photometry,including signal-to-noise ratio (SNR),Object sharpness,Object roundness,Crowding,Object type and Magnitude uncertainty.For this research,we select stars with |Object sharpness|<0.1,Crowding <0.5 mag and Magnitude uncertainty <0.2 mag to ensure that our photometric data have high enough quality(Monelli et al.2010).

    After generating photometry results of NGC 2808,we derived the basic cluster parameters by fitting the PARSEC isochrones (Bressan et al.2012) to the observational data.The results are demonstrated in the left panel of Figure 3.The best fit parameters are: lgAge=10.02,Z=0.0019,distance modulus(m-M)0=15.0 mag and extinctionAV=0.60 mag.They are all in good agreement with previous studies (Massari et al.2016).

    Figure 3.Left panel: isochrone fitting of NGC 2808,with parameters shown in the label,which are similar to those in Massari et al.(2016).Right panel: The two isochrones converted into HST/WFPC2 filters by PARSEC bolometric corrections,the blue curve is for Y=0.25 and the orange one for Y=0.40,overplotted on the observations of NGC 2808.

    Figure 4.Model isochrones of NGC 2808 with Y=0.25 (blue) and Y=0.40(orange) in log_L and log_Teff.

    In order to understand the properties of star clusters that are linked to possible helium variations,and to check the feasibility of CSST photometry for such a study,we built models with the observed properties of the cluster with the Modules for Experiments in Stellar Astrophysics (MESA),choosing two sets of helium abundancesY=0.25 andY=0.40 as inferred by previous studies (Piotto et al.2007).The initial mass of the isochrones varies from 0.500 to 0.873M⊙a(bǔ)nd 0.400–0.657M⊙for eachYof the helium abundance.Other input physics were mainly taken from Choi et al.(2016),which describes the MESA Isochrones and Stellar Tracks (MIST) project as applicable here.7http://waps.cfa.harvard.edu/MIST/As shown in Table 2,some minor adjustments were made to fit our specific science goals.We ran each model with their initial mass,initial helium contentYand initial metallicityZ(0.0019 from the isochrone fitting)from protostar to the cluster age(roughly 10.5 Gyr from the isochrone fitting).While running directly with the MIST parameters,we found that some branches of the resulting isochrones,especially the red giant branch (RGB),are significantly redder than observations,which indicate that some parameters from Choi et al.(2016) (especially the convection parameter αMLT) do not really fit NGC 2808.So,we modify the αMLTto get better fitting of the isochrones.Finally,we choose αMLT=2.30,as shown in Table 2,which best reproduces the observed RGB colors.The right panel of Figure 3 features a comparison of our model isochrones,converted into HST/WFPC2 filters by PARSEC bolometric corrections,8http://stev.oapd.inaf.it/YBCwith the observation of NGC 2808.The final results of the isochrones built using the grid of stellar tracks are depicted in the right panel of Figure 3.

    Table 2The Parameters of Input Physics For Modeling,Mainly from Choi et al.(2016),which Describes the MIST Project

    The two isochrones with the two initial helium abundancesYwere then transformed from the theoretical frame into the CSST photometric system.We computed the stellar atmosphere models and spectra for these models with ATLAS12 code and SYNTHE (Kurucz 2005).Based on this spectral library,we convert the log_L and log_Teff into the observational frame of CSST photometry system by following the process described in Chen &Girardi (2019).

    For stars that evolved off the RGB-tip,the dredge-up and mass loss make the surface abundance pattern more complicated.We tried using MESA to build a series of models with all parameters describing such factors with a fixed metallicity,changing only helium content (and hydrogen content accordingly,to mimic gas recycling due to massive star evolution at the early stages of the population).The results show that stars after helium flash,including those at the core helium burning stage on the HB,do not really behave monotonically with the helium abundance.As a matter of fact,the evolutionary stages of stars beyond the RGB-tip depend critically on several other factors,such as rotation,mass loss rates (which can also resemble the mass exchange in contact binary systems)and the treatment of overshoot parameters during the previous stages,which give rise to more uncertainties and make the initial He abundance a less important factor.Therefore we limited our discussions from MS phase until the tip of RGB.

    3.Main Results

    The feasibility of SC photometry for the study of MPs in star clusters is tested by a comparison of the two sets of models withY=0.25 and 0.40.First,we generated the two isochrones based on the stellar models,then we chose three absolute magnitudes (or critical points)g=3.0 mag,g=5.0 mag andg=6.0 mag from the isochrones,which are roughly located near the bottom of the RGB,the MS turnoff (MSTO) and the upper MS branches on the CMD respectively,as shown in Figure 5 for the case of NGC 2808.Stars in these phases have not experienced significant mass loss by stellar winds,therefore such stars can work as good indicators of the initial abundances that lead to MP features on the CMD in photometric observations.Moreover,stars at these locations on the CMD are not too faint to give good photometry for NGC 2808(with corresponding visualg-band magnitudes of 18.0,20.0 and 21.0),thus the photometric uncertainty is not an issue for the detection of predicted MP features.

    Figure 5.Top left:isochrones with Y=0.25(blue)and Y=0.40(orange)in g mag vs.NUV-i color;top right:isochrones with two Y in g mag vs.u-i color;bottom:color difference Δ(X-i)of two isochrones in X(filter)-i at the chosen MS,MSTO and RGB mags.Error bars show the errors of color differences calculated by ETC.See text for details.

    We calculated the color difference at the three critical points between the two isochrones of differentYvalues at two passbands chosen from the CSST filters: Δ(X-i),whereiis the magnitude of CSSTifilter andXis the magnitude of the other.To ensure a long baseline in wavelengths to emphasize the color involvingUV-bands,we usedias the subtrahend.Δ means the difference between the color indicesX-icalculated for the two isochrones.The results are shown in Figure 5 and Table 3.We can see that the combinations of filters with shorter wavelengths show larger deviations between the two sets of models.At all the selectedg-band luminosity points on the isochrones,the color difference is significant,which decreases when the minuend filter goes fromNUVtoward theifilter.

    Table 3Color Difference at the Three Chosen Stages Between Normal Stars and He Enriched Stars by SC/CSST Filters

    In observations,the simulated color difference has to be significantly larger than the overall error budget,which has to be modeled using the instrument parameters.In general,we need to set a minimum SNR for images at all pass-bands to ensure a positive detection.A handy toolbox for the CSST mission has been made available,including the exposure time calculator(ETC)of the corresponding instrument.9https://nadc.china-vo.org/csst-bp/etc-ms/etc.jspTo check if we can practically resolve those color differences caused by helium variations in NGC 2808,we need to take into account the cluster’s distance modulus ((m-M)0~15.0 mag).The three luminosities in Figure 5 correspond to 18,20 and 21 visual magnitudes ing-band in observations.For the input of ETC calculations,we adopt forNUVandy-bands four exposures and two for other bands,with exposure time of 150 s each,just like the key parameters shown in Table 1,which are also described in Zhan(2021).By using the ETC,we calculate the SNR of each selected filter following the standard observation mode of SC,then we can further calculate the corresponding errors of color indices.For a given filterXwith calculated SNRX,the error of its color indexX-iis then(which is also plotted as error bars in Figure 5).Afterwards,if the color difference Δ(X-i) is significantly larger thanEX-i,we takeXas a suitable filter for detecting helium enrichment at the chosen magnitude.In this work,we adopt five times the error as the significance threshold.As is apparent in Table 3,each error is listed in the parentheses beside the corresponding color difference,with a strikethrough if the color difference is below the threshold.It is also clear that the brighter the star we observe,the easier it is to detect the He-variation.As affirmed in Figure 6,the color differences over the corresponding errors of all the filters decrease as theg-mag we choose gets fainter.

    Figure 6.calculated via each filter vs.the g-mag we choose to detect the color difference.

    4.Discussions and Conclusions

    As intensively studied by previous work,an enrichment of helium abundance will raise the mean molecular weight and decrease the opacity,and thus increase the nuclear fusion rate(Li 2021;Li et al.2023).Stars with higher He abundance will evolve faster and be brighter and hotter in most branches(e.g.,as shown in Figure 4,the helium-enriched population has a significantly hotter MS).Moreover,helium-enriched stars will populate a brighter RGB bump,as helium abundance will affect the depth of the convective envelope and change the position of chemical discontinuity (Cassisi et al.2016).In addition,as He-enriched stars evolve faster than normal stars,they will have significantly shorter lifetimes,leading them to leave the MS and reach later phases more quickly than normal stars,therefore the helium-enriched population is always more massive at each evolutionary stage (or observed branches on the CMD).As demonstrated in Figure 7,stars with the same initial mass but different helium contents will appear in different positions on the CMD of a certain age,especially for later evolutionary stages.In other words,at a given phase in an old star cluster,helium-enriched stars will be significantly more massive than normal stars.

    Figure 7.Examples of stars with the same initial masses on two different isochrones (both are the age of NGC 2808) with different helium contents.Stellar mass varies from 0.500 to 0.657 M⊙.Markers with the same initial masses are colored the same and connected with dashed lines.The mass values are marked for a few points along the isochrone.

    A typical advantage of the CSST in studying helium spread among a GC’s dwarfs is its ability to reach deeper than groundbased instruments.As affirmed in Figure 5,to derive a larger color difference,it would be better to resolve the MS down to ag-band absolute magnitude of~21 mag,which corresponds to an apparent magnitude ofg=21.0 mag.This is close to the background limitation (~21.6 mag arcsec-2) for ground-based telescopes,but it is brighter than the CSST’s detection limit by more than 4 mag.Furthermore,because stellar surface temperature is the most sensitive parameter for helium abundance,the CSST’s unique function ofUV-band imaging allows it to study star clusters in the CMD with a maximized color baseline,which is important for resolving helium differences between stellar populations.

    Comparing our results with those of Li et al.(2022),we find out that the color differences as simulated from MCI observations are in fact more significant and can provide more details than from SC.The reason is that the MCI has narrower but more filters,which enables MCI to better select spectral features of a chemical anomaly than those from SC.Meanwhile,the MCI has a few additional filters with even shorter wavelengths than theNUVfilter of SC (e.g.,F275W),which offer even longer baselines.For instance,the color difference Δ(MF275W-MF814W)is~0.4 mag atMF555W=2.0 magnitude near the bottom of the RGB for NGC 2808.Nevertheless,SC also has advantages over MCI.The FOV of SC is about 8 times larger than that of MCI,which therefore possesses an absolute power over the latter,not mentioning that both have nearly the same spatial resolutions.For the case of NGC 2808,MCI cannot fully cover the tidal radius of the cluster even though it is already much larger than that of the HST cameras.When running an observing task with a focus on completeness of member stars,multiple observations to make a mosaic are still acceptable,but with a high price of observing time.While for the case of SC,one single image can cover a range much larger than the dynamical radius (see Figure 2).For many astrophysical research goals on targets of a size similar to that of NGC 2808,especially when the surrounding environment is important to the science of the researches,SC is an ideal instrument with a trade-off in terms of spectral coverage.

    The main survey instrument,the SC on board CSST,has a great potential covering most of the cutting edge frontier topics in astrophysics.For the specific scientific goal of stellar populations and star-forming history of star clusters,its promising characteristics can be summarized into the following three aspects:

    1.Compared to ground-based instruments,the forthcoming CSST can provide much deeper images (down to~25 mag inNUVandupassbands),which are important for studying stellar helium distributions in star clusters as these patterns commonly occur at the lower part of their MSs.

    2.The unique CSST passbands ofNUVanduare important for maximizing the color difference between helium normal and enriched populations.

    3.The large FOV of the SC/CSST would allow studies of MPs covering different cluster structures,from the cluster core region out to the tidal tails.

    Acknowledgments

    This work is supported in part by China Manned Space Project with NO.CMS-CSST-2021-A08.The authors acknowledge the National Natural Science Foundation of China(NSFC,Grants Nos.12233009,12233013,12073090 and 12003001).

    ORCID iDs

    天堂动漫精品| 亚洲国产日韩欧美精品在线观看| 12—13女人毛片做爰片一| 日日撸夜夜添| 性插视频无遮挡在线免费观看| 国产69精品久久久久777片| 中文字幕久久专区| 国产高清视频在线播放一区| 九九热线精品视视频播放| 91久久精品国产一区二区成人| 精品无人区乱码1区二区| 一本精品99久久精品77| 精品一区二区三区视频在线观看免费| 97超视频在线观看视频| 国产高清有码在线观看视频| 成年av动漫网址| 亚洲欧美成人精品一区二区| 无遮挡黄片免费观看| 露出奶头的视频| 麻豆国产av国片精品| 中文在线观看免费www的网站| 色综合色国产| 免费av毛片视频| 少妇猛男粗大的猛烈进出视频 | 中出人妻视频一区二区| 欧美日韩国产亚洲二区| 搡老岳熟女国产| 少妇裸体淫交视频免费看高清| 99热全是精品| 一个人看视频在线观看www免费| 男人舔奶头视频| 国产精品三级大全| 欧美色欧美亚洲另类二区| 赤兔流量卡办理| 国产高清视频在线播放一区| 激情 狠狠 欧美| 狂野欧美白嫩少妇大欣赏| 成人一区二区视频在线观看| 99久久久亚洲精品蜜臀av| 亚洲国产欧洲综合997久久,| 欧美xxxx性猛交bbbb| 可以在线观看毛片的网站| 亚洲一区二区三区色噜噜| 亚洲av美国av| 最近2019中文字幕mv第一页| 成人精品一区二区免费| 亚洲精品亚洲一区二区| a级毛片a级免费在线| 国产成人aa在线观看| 精品国内亚洲2022精品成人| 国产精品久久久久久亚洲av鲁大| 亚洲av一区综合| 麻豆国产av国片精品| 午夜免费激情av| 深夜a级毛片| 国产蜜桃级精品一区二区三区| 麻豆国产97在线/欧美| 日本a在线网址| 我要看日韩黄色一级片| 亚洲精品色激情综合| 国产精品爽爽va在线观看网站| 18禁在线无遮挡免费观看视频 | 一级毛片aaaaaa免费看小| 国产 一区 欧美 日韩| 欧美+日韩+精品| 亚洲激情五月婷婷啪啪| 91麻豆精品激情在线观看国产| 国产成人福利小说| 男女视频在线观看网站免费| 秋霞在线观看毛片| 成人美女网站在线观看视频| 亚洲国产日韩欧美精品在线观看| av福利片在线观看| 久久久成人免费电影| 欧美成人一区二区免费高清观看| 中文字幕久久专区| 午夜福利高清视频| or卡值多少钱| 蜜桃久久精品国产亚洲av| 波野结衣二区三区在线| 亚洲熟妇熟女久久| 免费看av在线观看网站| 亚洲专区国产一区二区| 亚洲av.av天堂| 亚洲精品国产av成人精品 | 国产精品人妻久久久影院| 一本一本综合久久| 尾随美女入室| 色综合亚洲欧美另类图片| 日韩高清综合在线| 精品久久久久久久人妻蜜臀av| 国产三级中文精品| av视频在线观看入口| 亚洲人成网站在线播| 亚洲av二区三区四区| 日日撸夜夜添| 非洲黑人性xxxx精品又粗又长| 91在线观看av| 国产真实伦视频高清在线观看| а√天堂www在线а√下载| 亚洲人成网站在线播| 免费av不卡在线播放| 我的女老师完整版在线观看| 亚洲国产精品成人久久小说 | 日韩av不卡免费在线播放| 国产一区二区三区在线臀色熟女| 人妻久久中文字幕网| 国语自产精品视频在线第100页| 久久99热这里只有精品18| 亚洲va在线va天堂va国产| av在线老鸭窝| 日日啪夜夜撸| 精品久久久久久久末码| 看片在线看免费视频| 午夜福利在线在线| av视频在线观看入口| 又爽又黄a免费视频| 寂寞人妻少妇视频99o| 国产亚洲91精品色在线| 色视频www国产| 精品少妇黑人巨大在线播放 | 男人舔奶头视频| av在线天堂中文字幕| 国产单亲对白刺激| 国产视频一区二区在线看| 五月玫瑰六月丁香| 少妇熟女欧美另类| av福利片在线观看| 日韩强制内射视频| 国产精品永久免费网站| 97碰自拍视频| 毛片一级片免费看久久久久| 联通29元200g的流量卡| 精品不卡国产一区二区三区| 亚洲av美国av| 亚洲精品456在线播放app| 变态另类成人亚洲欧美熟女| 淫秽高清视频在线观看| 成人亚洲精品av一区二区| 国产精品1区2区在线观看.| 国产精品国产三级国产av玫瑰| 欧美色视频一区免费| 天堂av国产一区二区熟女人妻| 插逼视频在线观看| 亚洲国产欧洲综合997久久,| 国产v大片淫在线免费观看| 三级男女做爰猛烈吃奶摸视频| 日本精品一区二区三区蜜桃| 非洲黑人性xxxx精品又粗又长| 人妻制服诱惑在线中文字幕| 长腿黑丝高跟| 精品日产1卡2卡| 九九在线视频观看精品| 最近视频中文字幕2019在线8| 午夜福利成人在线免费观看| 女同久久另类99精品国产91| 露出奶头的视频| 男人狂女人下面高潮的视频| 国产老妇女一区| 久久精品影院6| 一级黄片播放器| 日本熟妇午夜| 哪里可以看免费的av片| 欧美中文日本在线观看视频| 成年女人看的毛片在线观看| 国产精品女同一区二区软件| 国产在视频线在精品| 国产精品综合久久久久久久免费| 夜夜爽天天搞| 中国美白少妇内射xxxbb| 在线观看一区二区三区| 国产精品嫩草影院av在线观看| 国产亚洲精品综合一区在线观看| 男女做爰动态图高潮gif福利片| 久久久国产成人免费| 色5月婷婷丁香| 日韩制服骚丝袜av| 在线看三级毛片| 一个人看的www免费观看视频| 五月玫瑰六月丁香| 免费黄网站久久成人精品| 精品一区二区三区人妻视频| 搡老妇女老女人老熟妇| 大又大粗又爽又黄少妇毛片口| 国产精品福利在线免费观看| 久久午夜亚洲精品久久| 国产伦一二天堂av在线观看| 亚洲熟妇熟女久久| 尤物成人国产欧美一区二区三区| 日本五十路高清| 97热精品久久久久久| 天堂av国产一区二区熟女人妻| 国产一区二区在线观看日韩| 非洲黑人性xxxx精品又粗又长| 国产白丝娇喘喷水9色精品| 国产欧美日韩精品亚洲av| 欧美中文日本在线观看视频| 22中文网久久字幕| 夜夜爽天天搞| 国产精品亚洲美女久久久| 高清日韩中文字幕在线| 欧美3d第一页| 国产极品精品免费视频能看的| 听说在线观看完整版免费高清| 精品日产1卡2卡| 白带黄色成豆腐渣| 黄色配什么色好看| 精品福利观看| 国产高潮美女av| 一区福利在线观看| 美女xxoo啪啪120秒动态图| 一级黄片播放器| 久久久欧美国产精品| 日本免费一区二区三区高清不卡| 长腿黑丝高跟| 亚洲四区av| 中文在线观看免费www的网站| 国产高清不卡午夜福利| 一a级毛片在线观看| 99久久无色码亚洲精品果冻| 午夜精品国产一区二区电影 | 一个人观看的视频www高清免费观看| 欧美成人精品欧美一级黄| 看免费成人av毛片| 欧美日韩精品成人综合77777| 日韩av在线大香蕉| 亚洲国产精品久久男人天堂| 国产精品久久久久久亚洲av鲁大| 1024手机看黄色片| 国产黄片美女视频| 观看美女的网站| 久久久久久久亚洲中文字幕| 热99在线观看视频| 久久久国产成人精品二区| 国产亚洲精品久久久久久毛片| 听说在线观看完整版免费高清| 丝袜喷水一区| 男人舔女人下体高潮全视频| 99热全是精品| 亚洲一区二区三区色噜噜| 丝袜美腿在线中文| 91狼人影院| 国产精品人妻久久久影院| 极品教师在线视频| 久久久久久九九精品二区国产| 亚洲精品影视一区二区三区av| 日韩欧美在线乱码| 国产成人91sexporn| a级毛色黄片| 亚洲电影在线观看av| 男女之事视频高清在线观看| 成人精品一区二区免费| 长腿黑丝高跟| 又爽又黄a免费视频| 色在线成人网| 最近2019中文字幕mv第一页| 成人亚洲欧美一区二区av| av在线天堂中文字幕| 日韩大尺度精品在线看网址| 婷婷六月久久综合丁香| 亚洲av电影不卡..在线观看| 日本与韩国留学比较| 日韩亚洲欧美综合| h日本视频在线播放| 嫩草影院精品99| 欧美一级a爱片免费观看看| 一a级毛片在线观看| 99热6这里只有精品| 夜夜看夜夜爽夜夜摸| 成人午夜高清在线视频| 久久精品国产亚洲av涩爱 | 国产麻豆成人av免费视频| 国产老妇女一区| 日本爱情动作片www.在线观看 | 最近中文字幕高清免费大全6| 日日摸夜夜添夜夜添小说| 久久亚洲精品不卡| 中出人妻视频一区二区| 男人舔奶头视频| 久久午夜亚洲精品久久| 亚洲电影在线观看av| 91久久精品国产一区二区成人| 中文资源天堂在线| 我要看日韩黄色一级片| 午夜久久久久精精品| 婷婷色综合大香蕉| 女人被狂操c到高潮| 中文字幕av成人在线电影| 亚洲va在线va天堂va国产| 亚洲国产精品合色在线| 最近中文字幕高清免费大全6| 久久久久久久久中文| 亚洲熟妇中文字幕五十中出| 久久人妻av系列| 欧美bdsm另类| 最近的中文字幕免费完整| 亚洲色图av天堂| 久久精品国产亚洲av香蕉五月| 日日摸夜夜添夜夜爱| 天堂影院成人在线观看| 神马国产精品三级电影在线观看| 性插视频无遮挡在线免费观看| 大又大粗又爽又黄少妇毛片口| 亚洲国产精品sss在线观看| 亚洲精品国产成人久久av| 国产精品一二三区在线看| 内射极品少妇av片p| 日韩欧美精品v在线| 六月丁香七月| 亚洲欧美日韩高清在线视频| 久久欧美精品欧美久久欧美| 国产高清有码在线观看视频| 国产aⅴ精品一区二区三区波| 久久热精品热| 日本爱情动作片www.在线观看 | 婷婷六月久久综合丁香| 久久久色成人| 尾随美女入室| 丰满的人妻完整版| 简卡轻食公司| 老熟妇乱子伦视频在线观看| 十八禁网站免费在线| 性欧美人与动物交配| 欧美日韩一区二区视频在线观看视频在线 | 国产伦精品一区二区三区视频9| 欧美3d第一页| 寂寞人妻少妇视频99o| 岛国在线免费视频观看| 美女被艹到高潮喷水动态| 亚洲国产精品sss在线观看| 深爱激情五月婷婷| 日本在线视频免费播放| 成人毛片a级毛片在线播放| 狂野欧美激情性xxxx在线观看| 成人亚洲精品av一区二区| 午夜福利在线观看免费完整高清在 | 日韩精品青青久久久久久| 亚洲国产精品成人综合色| 精品久久久久久久久久免费视频| 此物有八面人人有两片| 日韩av在线大香蕉| 国产精品电影一区二区三区| 亚洲自拍偷在线| 男插女下体视频免费在线播放| 亚洲欧美成人精品一区二区| 国产精品,欧美在线| 在线免费观看不下载黄p国产| 看十八女毛片水多多多| 18禁在线播放成人免费| 国产午夜精品论理片| 嫩草影院精品99| 国产精品人妻久久久久久| 欧美一区二区国产精品久久精品| 午夜日韩欧美国产| 黄色视频,在线免费观看| 国产亚洲精品综合一区在线观看| 美女xxoo啪啪120秒动态图| 亚洲精华国产精华液的使用体验 | 少妇熟女欧美另类| 免费看a级黄色片| 97超级碰碰碰精品色视频在线观看| 亚洲激情五月婷婷啪啪| 国产日本99.免费观看| 日日啪夜夜撸| 女人被狂操c到高潮| 国产精品无大码| 免费看av在线观看网站| 精品久久久久久久久亚洲| 蜜桃亚洲精品一区二区三区| eeuss影院久久| 人妻久久中文字幕网| 黄片wwwwww| 精品午夜福利视频在线观看一区| 一a级毛片在线观看| 亚洲人成网站在线播| 一区福利在线观看| 亚洲天堂国产精品一区在线| 国产一区亚洲一区在线观看| 又黄又爽又刺激的免费视频.| 99久久中文字幕三级久久日本| 国产又黄又爽又无遮挡在线| 国产精品一区二区三区四区久久| 99精品在免费线老司机午夜| 日韩制服骚丝袜av| 国产精品伦人一区二区| 久久久久久久久久成人| 亚洲,欧美,日韩| 91麻豆精品激情在线观看国产| 国产欧美日韩一区二区精品| 国产亚洲精品av在线| 日韩精品有码人妻一区| 热99re8久久精品国产| 午夜福利在线观看免费完整高清在 | 成人av一区二区三区在线看| 成人午夜高清在线视频| 亚洲av中文字字幕乱码综合| 久久久久久伊人网av| 成人二区视频| 国产高潮美女av| 亚洲精品久久国产高清桃花| 久久久久免费精品人妻一区二区| 国产亚洲91精品色在线| 色尼玛亚洲综合影院| 自拍偷自拍亚洲精品老妇| 国产精品嫩草影院av在线观看| 伦理电影大哥的女人| 中文字幕熟女人妻在线| 国产av一区在线观看免费| 少妇人妻一区二区三区视频| 能在线免费观看的黄片| 国产亚洲精品久久久久久毛片| 两个人视频免费观看高清| 亚洲欧美成人精品一区二区| 亚洲av成人av| 精品午夜福利视频在线观看一区| 亚洲av中文av极速乱| 成人无遮挡网站| 精品久久久噜噜| 久久婷婷人人爽人人干人人爱| 插阴视频在线观看视频| 少妇猛男粗大的猛烈进出视频 | 亚洲国产精品成人综合色| 日日摸夜夜添夜夜添小说| 久久久久久伊人网av| 国产麻豆成人av免费视频| 亚洲性久久影院| 久久婷婷人人爽人人干人人爱| 日韩亚洲欧美综合| 亚洲成av人片在线播放无| 美女免费视频网站| 性色avwww在线观看| 可以在线观看毛片的网站| 无遮挡黄片免费观看| 亚洲婷婷狠狠爱综合网| 国内精品久久久久精免费| 久久欧美精品欧美久久欧美| 亚洲av熟女| 久久久色成人| 日韩国内少妇激情av| 99久久中文字幕三级久久日本| 超碰av人人做人人爽久久| 麻豆精品久久久久久蜜桃| 成年版毛片免费区| 99热只有精品国产| 99热6这里只有精品| 白带黄色成豆腐渣| 哪里可以看免费的av片| 成人二区视频| 欧美三级亚洲精品| 久久久久久国产a免费观看| 色av中文字幕| 国内精品美女久久久久久| 美女xxoo啪啪120秒动态图| 精品人妻一区二区三区麻豆 | 免费不卡的大黄色大毛片视频在线观看 | 长腿黑丝高跟| 老司机午夜福利在线观看视频| 中文亚洲av片在线观看爽| 最近视频中文字幕2019在线8| 久久精品国产鲁丝片午夜精品| 午夜福利高清视频| 99国产精品一区二区蜜桃av| 久久久精品大字幕| 久久人人精品亚洲av| 久久久久九九精品影院| 国产在线男女| 日韩欧美一区二区三区在线观看| 久久精品夜色国产| 一个人看的www免费观看视频| 久久久久久国产a免费观看| 免费黄网站久久成人精品| 国产乱人视频| 天天躁日日操中文字幕| 小蜜桃在线观看免费完整版高清| 搡女人真爽免费视频火全软件 | 国产成人a区在线观看| 亚洲自拍偷在线| 精品欧美国产一区二区三| 日韩国内少妇激情av| 国产国拍精品亚洲av在线观看| 特大巨黑吊av在线直播| 一区二区三区高清视频在线| 99国产精品一区二区蜜桃av| 国产激情偷乱视频一区二区| 久久这里只有精品中国| 美女 人体艺术 gogo| 精品不卡国产一区二区三区| 99九九线精品视频在线观看视频| 中文在线观看免费www的网站| 国产精品福利在线免费观看| 日韩高清综合在线| 国产免费男女视频| 亚洲内射少妇av| 国产av一区在线观看免费| 日本与韩国留学比较| 一本一本综合久久| 亚洲中文字幕一区二区三区有码在线看| 丝袜美腿在线中文| 国产精品人妻久久久久久| 亚洲熟妇熟女久久| 国产av麻豆久久久久久久| 色吧在线观看| 国产综合懂色| 免费av毛片视频| 又爽又黄a免费视频| 丰满的人妻完整版| 国内久久婷婷六月综合欲色啪| 亚洲欧美成人综合另类久久久 | 亚洲精品色激情综合| 男女那种视频在线观看| 国产精品国产三级国产av玫瑰| 亚洲av成人精品一区久久| 波多野结衣高清作品| 国产精品一区二区免费欧美| 亚洲国产欧洲综合997久久,| 国产欧美日韩精品一区二区| 变态另类丝袜制服| 真人做人爱边吃奶动态| 日韩强制内射视频| 国产精品99久久久久久久久| 男女之事视频高清在线观看| 亚洲经典国产精华液单| 毛片女人毛片| 91久久精品电影网| 99热6这里只有精品| 精品人妻视频免费看| 人妻久久中文字幕网| 国内揄拍国产精品人妻在线| 级片在线观看| 亚洲熟妇熟女久久| 亚洲国产日韩欧美精品在线观看| 亚洲av第一区精品v没综合| 看十八女毛片水多多多| 性色avwww在线观看| 国产免费一级a男人的天堂| 少妇人妻精品综合一区二区 | 免费在线观看影片大全网站| 少妇人妻精品综合一区二区 | 国产乱人视频| 啦啦啦啦在线视频资源| 欧美又色又爽又黄视频| 非洲黑人性xxxx精品又粗又长| 日本色播在线视频| 又爽又黄a免费视频| 国产高清视频在线观看网站| 小蜜桃在线观看免费完整版高清| 中文字幕熟女人妻在线| 久久久久国产精品人妻aⅴ院| 99riav亚洲国产免费| 国产老妇女一区| 精品欧美国产一区二区三| 日韩人妻高清精品专区| 成年免费大片在线观看| 一级a爱片免费观看的视频| 蜜桃久久精品国产亚洲av| 日韩欧美三级三区| 日韩大尺度精品在线看网址| 久久精品影院6| 真人做人爱边吃奶动态| 日韩欧美免费精品| 亚洲,欧美,日韩| 欧美日韩乱码在线| 99久久九九国产精品国产免费| 最近手机中文字幕大全| 亚洲欧美精品自产自拍| 午夜激情欧美在线| 国产一区二区三区av在线 | av黄色大香蕉| 九色成人免费人妻av| av在线亚洲专区| 美女内射精品一级片tv| 插逼视频在线观看| 国产精品嫩草影院av在线观看| 国产三级中文精品| 99久国产av精品| 高清日韩中文字幕在线| 可以在线观看毛片的网站| 久久久精品94久久精品| 国产精品亚洲美女久久久| av视频在线观看入口| 国产老妇女一区| 老司机影院成人| 亚洲乱码一区二区免费版| 欧洲精品卡2卡3卡4卡5卡区| 国产成年人精品一区二区| 国产亚洲精品av在线| 色播亚洲综合网| 身体一侧抽搐| 日本黄色片子视频| 亚洲国产欧洲综合997久久,| 如何舔出高潮| 在线观看一区二区三区| 国产av一区在线观看免费| 久久久久久久久大av| 欧美最黄视频在线播放免费| 欧美一区二区国产精品久久精品| 91狼人影院| 少妇猛男粗大的猛烈进出视频 | 国产色爽女视频免费观看| 激情 狠狠 欧美| 少妇高潮的动态图| 禁无遮挡网站| 久久欧美精品欧美久久欧美| 国产精品久久久久久久久免| 国产精品一及| 午夜视频国产福利| 日本a在线网址| 在线天堂最新版资源| 欧美xxxx性猛交bbbb| eeuss影院久久| 成人美女网站在线观看视频| 嫩草影院精品99| h日本视频在线播放| 国产淫片久久久久久久久| 亚洲乱码一区二区免费版|