• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NuSTAR View of the R-Γ Correlation in the Hard State of Black Hole Lowmass X-Ray Binaries

    2023-09-03 15:24:14YantingDongZhuLiuandXinwuCao

    Yanting Dong ,Zhu Liu ,and Xinwu Cao

    1 Institute for astronomy,Zhejiang Institute of Modern Physics,Department of Physics,Zhejiang University,Hangzhou 310027,China;ytd@zju.edu.cn,xwcao@zju.edu.cn

    2 Max Planck Institute for Extraterrestrial Physics,Giessenbachstrasse 1,D-85748,Garching,Germany

    Abstract The power law and reflection emission have been observed in the X-ray spectra of both black hole X-ray binaries(BHXRBs) and active galactic nuclei (AGNs),indicating a common physical origin of the X-ray emission from these two types of sources.The relevant parameters describing the shape of both components and the potential correlation between these parameters can provide important clues on the geometric and physical properties of the disk and the corona in these sources.In this work,we present a positive correlation between the photon index Γ and the reflection strength R for the low-mass BHXRBs in the hard state by modeling NuSTAR data,which is qualitatively consistent with the previous studies.We compare our results with the predictions from different theoretical disk-corona models.We show that the R-Γ correlation found in this work seems to favor the moving corona model proposed by Beloborodov.Our results indicate that the coronal geometry varies significantly among BHXRBs.We further compare our results with that of AGNs.We find that the reflection strength R is smaller than unity in the hard state of BHXRBs,while it can be as large as~5 in AGNs,which implies that the variations of the disk-coronal geometry of AGNs are more vigorous than that of the BHXRBs in the hard state.

    Key words: accretion–accretion disks–black hole physics–X-rays: binaries

    1.Introduction

    Black hole X-ray binaries (BHXRBs) and active galactic nuclei(AGNs)are powered by the accretion of matter onto the central stellar-mass black holes and supermassive black holes,respectively.The accretion matter forms a disk around the black hole and liberates the gravitational energy,which is radiated in the form of electromagnetic waves (mostly thermal emission if the mass accretion rate is not very low,Shakura &Sunyaev 1973).The thermal emission from the disk is mainly in the optical and UV bands for AGNs and in the X-ray band for BHXRBs.In addition,a non-thermal component,which cannot be produced in thermal accretion disk accreting at?0.01 Eddington scaled rate (Meyer et al.2000b;Maccarone 2003;Dexter et al.2021),is also observed in both AGNs and BHXRBs.It is widely believed that the soft photons can be inverse Compton scattered in a region of hot electrons around the compact object,namely the corona,in BHXRBs and AGNs,which produces the non-thermal primary hard X-ray emission(e.g.,Galeev et al.1979;Haardt &Maraschi 1991,1993;Cao 2009;You et al.2012).However,the geometry of the corona is still under debate both observationally and theoretically(e.g.,Dauser et al.2013;Liu&Qiao 2022;Yang et al.2022).It has been proposed that the corona could be a radiatively inefficient hot accretion flow at the innermost region of the disk(Esin et al.1997;Poutanen et al.2018),a slab of hot plasma over the disk (Petrucci et al.2001;Wilkins &Fabian 2012),a compact hot plasma above the black hole (Miller et al.2013;Ghosh &Laha 2021),or even the base of jet (Markoff et al.2003;Shidatsu et al.2011;Wang et al.2021).The geometry of the corona could also change (e.g.,Kara et al.2019;Méndez et al.2022) during outburst.

    Except for the thermal emission and primary X-ray emission,a reflection component has also been observed in both stellar and supermassive black hole accretion systems,which is produced by the illumination of the cold material by the primary X-ray emission,including the fluorescent emission lines and a hump in~20–40 keV energy range (Fabian et al.1989;Young et al.1999;Ross &Fabian 2005;García et al.2020).The reflected emission produced at a region close to the black hole may also be affected by relativistic effects(Laor 1991;Fabian et al.2000;Reynolds &Nowak 2003;Dauser et al.2012).

    Generally speaking,the primary X-ray emission can be well described by a power law with a photon index Γ.A cutoff at the high energy band has also been reported in some sources with high-quality broad-band X-ray data(Fabian et al.2015;Molina et al.2019;Dong et al.2022).The reflection strengthR(R=Ω/2π,Ω is the solid angle covered by the reflector viewed from the corona) represents the fraction of the primary X-ray photons intercepted by the disk.Despite the great achievements in understanding the accretion processes from the study of BHXRBs,some fundamental questions have still remained unanswered.For instance,the evolution of the inner region of the accretion disk(e.g.,Plant et al.2014;Stiele &Kong 2017;Connors et al.2022),the geometric and physical properties of the corona (e.g.,Malzac et al.2001;Wilkins et al.2014;You et al.2021;Barua et al.2022;Méndez et al.2022),or the physical process triggering the accretion state transition (e.g.,Meyer et al.2000a;Dong et al.2022;Liu et al.2022).These questions can be investigated by the study of the evolution of specific parameters,e.g.,the inner radius of the accretion disk,electron temperature,and optical depth of the corona,or the correlations between these parameters,e.g.,Γ andR(Zdziarski et al.1999;Malzac et al.2001;Molina et al.2009;Zappacosta et al.2018;Ezhikode et al.2020),Γ and Eddington scaled luminosity (Shemmer et al.2006;Wu &Gu 2008;Gu &Cao 2009;Brightman et al.2013;Yan et al.2020),inner radius and Eddington scaled luminosity (Allured et al.2013;García et al.2015;Chainakun et al.2021).

    In this work,we investigate the correlation between the photon index Γ and reflection strengthRin the hard state of a sample of stellar-mass black hole systems by modeling their Nuclear Spectroscopic Telescope Array (NuSTAR,Harrison et al.2013) energy spectra and compare the correlation in BHXRBs with that in AGNs(Panagiotou&Walter 2019;Kang et al.2020;Hinkle &Mushotzky 2021).The correlation between Γ andRwas first found to be positive for the BHXRB GX 339-4 by fitting spectra using Ginga observations (Ueda et al.1994).Zdziarski et al.(1999) presented a similar correlation using a larger Ginga sample,including Seyfert AGNs,BHXRBs,and weakly magnetized neutron stars.TheR-Γ correlation was also investigated using RXTE/PCA for the BHXRBs GX 339-4 and Cyg X-1 (Revnivtsev et al.2001;Gilfanov et al.1999).A positiveR-Γ correlation has only been reported for X-ray binaries in the hard state,for instance,in Cyg X-1,GX 339-4,GS1354-64,Nova Muscae and GRS 1915+105 (Gilfanov et al.2000;Rau &Greiner 2003;Zdziarski et al.2003).

    NuSTAR covers the broad bandpass of 3-79 keV and has unprecedented sensitivity above 10 keV,making NuSTAR ideal for studies of the disk reflection and the primary emission(Diaz et al.2020;Draghis et al.2020;Connors et al.2021).Therefore,the launch of NuSTAR provided a new opportunity to studyR-Γ correlation.Using NuSTAR data,theR-Γ correlation has been recently confirmed for Seyfert galaxies(Ezhikode et al.2020;Panagiotou &Walter 2020) and radio galaxies (Kang et al.2020).Based on the disk-corona model,in which the hot electrons in the corona are cooled by the soft photons from the cold disk (Haardt &Maraschi 1993),this correlation might be caused by the perpendicular movement of the corona with respect to the black hole (Beloborodov 1999).If the corona is assumed to be moving away from the disk,both reflection and irradiation toward the disk are reduced while the reduction of the soft photons into the corona leads to the harder primary emission (a smaller photon index),and vice versa.In Qiao &Liu (2017),they proposed that this observed correlation found in Seyfert galaxies can be roughly explained within the framework of the condensation of the hot corona onto the cold accretion disk with the movement of the inner radius of the disk.

    In this paper,we present the sample of BHXRBs and AGNs in Section 2.Section 3 gives the spectral analysis.We present the best-fitting results and discussions in Section 4.Summaries are shown in Section 5.

    2.Sample

    We studied the NuSTAR energy spectra of the BHXRBs presented in Yan et al.(2020).Their sample includes 17 LMXRBs with 165 NuSTAR observations.The data were downloaded from HEASARC.3https://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/w3browse.plThey performed data reduction using NUPIPELINE,a task of the NUSTARDAS included in the HEAsoft 6.25,with calibration files of version 20181030.Further,the source and background spectra were generated using NUPRODUCTS.The spectra were extracted from a circular region within 90″ at the source position.The background spectra were extracted from an annulus region with inner and outer radii of 180″ and 200″,respectively.

    In order to achieve the goals of this work,we selected data as follows.(1)We excluded observations in which the spectra are dominated by the backgrounds (background subtracted photon counts below zero).(2)Here,we define the hardness ratio(HR)as the 10–78 keV count rate divided by the 3–10 keV count rate.To select observations that are in the hard state,we also excluded observations with HR<0.3.4See in Table 2,there may be some observations(the photon index is~2.22 in obs_id 80401312002 and~2.1 in obs_id 90202045002 for GRS 1915+105)are not in the hard state,but most of the observations (more than 97% with photon index <2.1) are most likely in the hard state (Remillard &McClintock 2006).(3) The observations in which a reflection component is not required in the X-ray spectral fitting are also excluded.(4) We further excluded observations that cannot be well fittedwith our model (constant×TBabs(diskbb+Gauss+pexrav) or constant×TBabs(Gauss+pexrav),see the detail in Section 3).The final sample consists of 69 observations in total.We present the details of the observations in Table 2.

    In order to investigate the possible specific features appropriate for black holes of different scales,we will compare BHXRBs’ results with different types of AGNs’ in Section 4.AGN is classified as Seyfert1s (Seyfert 1–1.9) and Seyfert2s(Seyfert 2)based on the emergence of the broad emission lines in the optical spectrum,or the radio-quiet and radio-loud AGNs based on the ratio of the radio to optical luminosity.The Seyfert sample is from Hinkle&Mushotzky (2021),including 26 Seyfert1s and seven Seyfert2s,respectively.The radio-quiet AGN sample including 28 sources and the radio-loud AGN sample including 45 sources are from Kang et al.(2020) and Panagiotou &Walter (2019),respectively.We refer to these papers for detailed information on the observations of these AGNs.

    3.Data Analysis

    Spectral fitting is performed using XSPEC 12.11.1(Arnaud 1996) with χ2statistics.The errors are given with 90% confidence level.For each observation,the spectra of NuSTAR/FPMA and NuSTAR/FPMB in 3–78 keV are jointly fitted,accounting for a cross-normalization with a multiplicative constant.We use model TBabs to calculate the Galactic absorption.The Verner et al.(1996) photoelectric cross sections along with the Wilms et al.(2000) set of solar abundances are adopted.Because only fitting the energy band above 3 keV is not effective to well constrain the column densityNH,we fix theNHto the values in Table 1.

    To model the primary X-ray emission and the reflection component,we use the model pexrav,which consists of a power-law with ane-folded and a reflection component(Magdziarz &Zdziarski 1995).In this model,we assume that the abundance of heavy elements,including Fe,of the reflecting medium is unity.For the inclination angleiof the disk,there are only five sources with constraints oni(60°±5°in GRS 1915+105 (Reid et al.2014),≤79° in GS 1354-64(Casares et al.2009),37°–78°in GX 339-4(Heida et al.2017),63°±3° in MAXI J1820+070 (Atri et al.2020),and ≥40° in Swift J1753.5-0127 (Neustroev et al.2014)) in the sample of BHXRBs studied in this work.Theicannot either be well constrained for the majority of sources.Therefore,for simplicity,the inclination angleiis fixed at the model’s default value,i.e.,cosi=0.45 (i≈63°).The photon index Γ,reflection parameterR,high energy cutEcut,and normalization are free parameters.We also include a Gaussian line with centroid energy fixed at 6.4 keV to model the Fe kα line.Even if the centroid energy is allowed to vary between 6.4 and 6.7 keV,the best-fitting results are not further improved.The width and the normalization of the line are free.However,the width of the line could not be constrained by the data when it is not significant enough to be detected,and then,it is fixed at 0.05 keV.A possible disk component (diskbb) will be included if it can significantly improve the fitting.We note that the popular reflection model,e.g.,relxill (Dauser et al.2014;García et al.2014),can self-consistently model the continuum reflection component and the Fe line (Dong et al.2020a,2020b;García et al.2022b).However,the pexrav model is used in this work so that we can directly compare our results with previous studies of NuSTAR AGN samples,in which the pexrav model is widely adopted (Panagiotou &Walter 2019;Kang et al.2020;Hinkle &Mushotzky 2021).

    Deviations between FPMA and FPMB of NuSTAR data at the lowest energies in the observations for MAXI J1348-630(MJD 58515-58516,and MJD 58655-58672)and MAXI J1820+070 (MJD 58192-58397) are found.We let the temperaturekTand the normalization parameter of the diskbb untie between the two detectors for these observations.Note that the deviation at the low energy (E<~6.0 keV) between FPMA and FPMB in the observations of GX 339-4 on MJD 58060 is even worse.Therefore,for this observation,we fit the spectrum within 6.0–78.0 keV.The adopted model provides statistically accepted fits to our observationsWe list the temperature of the disk (kT),the photon index (Γ),the reflection parameter (R),and the width of the Gaussian line(Fe kα σ) of the best-fitting in Table 2.The spectra fits are insensitive to the Fe abundance,except for GX 339-4 and MAXI J1820+070.In order to check the effect of Fe abundance on GX 339-4 and MAXI J1820+070,we refit spectra of the two sources with Fe abundance allowed to be free.For GX 339-4,the value of the Fe abundance has a minor effect on the parametersRand Γ.Therefore,we only report the results with Fe abundance fixed at unity for GX 339-4.For MAXI J1820-070,a stronger negative correlation betweenRand Γ is shown when the Fe abundance is free,which is beyond the scope of this paper and will not be further discussed.

    4.Results and Discussions

    This work presents the first systematic study on NuSTAR X-ray spectra of BHXRBs to investigate theR-Γ correlation.In this sample,we only study the spectra obtained when the sources are in the hard state.The finally selected spectra consist of 69 observations in total.We modeled the continuum reflection component and the Fe line with pexrav and Gauss.The photon index Γ and reflection strengthRare well constrained.The values of Γ in most observations (more than 97%) are smaller than 2.1,which is consistent with the properties of hard state observation (Remillard &McClintock 2006).The Γ approximately equal to 2.2 and 2.1 in observations of GRS 1915+105 (Obs_id is 80401312002 and Obs_id is 90202045002,respectively),which may be associated with the model,will not affect the conclusion in this paper.For MAXI J1820+070,the Γ is in the narrow range of~1.6–1.8,while theRspans a wide range of~0.1–1.4.These two parameters in MAXI J1820+070 do not follow the positiveR-Γ correlation reported in previous works.We also note that the best-fitting parameter Γ is 0.9±0.03,andRisin the spectrum of GRS 1915+105 on MJD 58623 withWe consider these results as outliers of the regularR-Γ panel,which will not be further discussed in our work.For the remained observations,the values ofRobtained are roughly in the range of 0.1–1.0,and Γ ranges from~1.4 to~2.2.We present the points ofRand Γ in Figure 1.We test the correlation betweenRand Γ using the Spearman method.The Spearman’s coefficient is equal to 0.58 with apvalue of 1.13×10-5,which indicates a significant positiveR-Γ correlation.

    Figure 1.The best-fitting parameters Γ and R.The gray lines are calculated based on the model of moving corona(Beloborodov 1999).μs represents the geometry of the corona,which corresponds to μs=0,0.1,0.2,0.3,0.4,and 0.5.

    TheR-Γ correlation can provide important clues on the geometric and physical properties of the disk and the corona.Zdziarski et al.(1999) reported an extremely strong positive correlation betweenRand Γ in the sample of Seyfert galaxies,and the observations of their four X-ray binaries also satisfied this correlation.Zdziarski et al.(2003) further evaluated the reality of this correlation.In the work of Zdziarski et al.(1999),the obtained values ofRare smaller than 2 and the values of Γ are 1.4–2.2.The correlation is considered to provide evidence that the seed photons for the primary source come from the same medium that is responsible for the reflected emission.They found that the model with the inner radius movement failed to reproduce the data in the observed range of Γ andR,but only the data in the mid-range.On the other hand,the model proposed by Beloborodov (1999),in which the corona above the accretion disk moves toward or away from the black hole with relativistic bulk velocity,appears quantitatively to reproduce the correlation.This scenario is indeed consistent with the X-ray observations of an AGN sample,which provides evidence of the outflowing corona in AGNs (Liu et al.2014).Below,we calculate the correlation for a moving primary source using the equations of Beloborodov (1999).In their model,the reflection strengthRis computed as follows,

    where β=ν/cis the velocity of the primary source,andμ=cosi(iis the inclination of disk).We assumed cosi=0.45 as fitting the data using pexrav.The spectral index Γ is calculated as follows,

    where δ=1/6 and δ=1/10 are for BHXRBs and AGNs,respectively.Ais the amplification factor which can be estimated as follows,

    whereγ=(1 -β2)-12.a(a≈0.1–0.2) is the reflection albedo,and μsis the coronal geometry.The parameterawill be assumed to be 0.15 when we calculate.The case μs=0 represents a slab geometry of the corona,while μs=0.5 means the corona roughly to be a blob with a radius of order its height.

    We note that the geometry of the corona is still under debate.Here,we plot the expected curve for μs=0,0.1,0.2,0.3,0.4,and 0.5 as gray lines in Figure 1.It can be seen that all lines fail to reproduce the observed range of Γ andR.Most of our data points fall into the area between the two lines with μs=0 and μs=0.5 which may indicate that the geometry of the corona changes.The case that the coronal geometry evolves has been reported in previous studies.The work of Kara et al.(2019)found that the reverberation lags between the corona and the accretion disk in the BHXRB MAXI J1820+070 shorten while the profile of the broad Fe line remained remarkably constant and explained this case with a reduction in the spatial extent of the corona.In the microquasar GRS 1915–105,it is also found that the initially extended X-ray corona can become more compact and turned into the jet (Karpouzas et al.2021;García et al.2022a;Méndez et al.2022)with the evidence that(1)the phase lags of the type-C QPO made a transition from hard to soft,(2)the two separate correlations are presented between the iron-line flux and the total flux,(3)and the QPO frequency and the ratio flares evolved in a systematic way.Note that in the model proposed by Beloborodov (1999),R=1 is given for a static corona and independent of the coronal geometry.The ranges of β used to estimate the theoretical lines are larger than 0 for all assuming values of μs,indicating that the corona is moving away from the black hole.When the corona moves away from the black hole,the beaming effect reduces the photons irradiating the disk and subsequently the reflection emission.Moreover,the cooling effect on the corona temperature by seed photons reduces,and then a harder spectrum is presented.

    In order to investigate the possible specific features appropriate for black holes of different scales,we compare BHXRBs’results with different types of AGNs’.In the work of Hinkle &Mushotzky (2021),they used XMM-Newton and NuSTAR data to analyze 33 AGNs,including 26 Seyfert1s and seven Seyfert2s.The authors presented the main fundamental parameters,such as the Γ,R,folding energy,black hole mass,and Eddington ratio for Seyfert AGNs,and looked for correlations between them.Seyfert2s tend to have lower Γ(harder spectra) than Seyfert1s,and the distributions ofRfor Seyfert1s and 2 s are consistent with each other.They recovered the positiveR-Γ correlation withp-value=2.6×10-3combining Seyfert1s and Seyfert2s.The work of Kang et al.(2020) measured Γ,R,folding energy,and Fe Kα EW for 28 radio-loud AGNs,and compared their results with 45 radio-quiet AGNs’ (Panagiotou &Walter 2019),in both of which NuSTAR observations were analyzed.They found that the radio-loud AGNs have harder spectra and weaker reflection emission compared with radio-quiet ones.Kang et al.(2020)reported a positiveR-Γ correlation with a very lowp-value(<10-4) combining radio-quiet and radio-loud,which contributed to the moving corona model.

    We compare the best-fittingRand Γ for the hard state of BHXRBs and the sample of Seyferts,and for the hard state of BHXRBs and the sample of radio-loud and radio-quiet in Figures 2 and 3,respectively.In both figures,the distributions ofRand Γ are given in the lower right and upper left panels.The significant feature is that the reflection strength of BHXRBs’ hard state is smaller than 1,but it can increase largely to 5 in the AGN sample.When we see the distributions ofRand Γ in Figure 2,there are no significant differences for the three populations,while in Figure 3,the hard state of BHXRBs tends to have flatter spectra than radio-quiet and radio-loud AGNs,weaker reflection than radio-quiet AGNs,but the distribution ofRis consistent with radio-loud AGNs.To check for the robustness of the differences in the hard state of BHXRBs and radio-quiet/loud AGNs,we perform two nonparametric statistical tests,i.e.,Mann-Whitney U test(hereafter referred to as the U-test).The U-test for two independent samples can be calculated without the requirement of normal distribution.The null hypothesis is that there is no difference between any two compared data sets,and it is rejected when thep-value is below 0.05.We find that the distributions of Γ andRin BHXRBs are clearly different from that in radio-quiet AGNs,wherep-value is 3.1×10-7and 2.1×10-4,respectively.But BHXRBs and radio-loud AGNs have similar Γ andRdistributions withp-value being larger than 0.05 and 0.86,respectively.The relationships betweenRand Γ are shown in the lower left panels in Figures 2 and 3.Except for the theoretical lines predicted by Beloborodov (1999) model for BHXRBs,we also calculate the expected lines with μs=0 and μs=0.9 for AGNs.It can be seen that the areas between these two predicted lines mostly cover the observational points of AGN ignoring its classification.It is likely that the BHXRBs need a narrower area than AGNs to reproduce the data ofRand Γ,which may imply that the corona in BHXRBs changes less vigorously than that in the AGNs.

    Figure 2.Distributions of photon index Γ and reflection strength R in the upper left and lower right panels,and R vs.Γ in the lower left panel.The results of Seyferts are from Hinkle &Mushotzky (2021).The orange,magenta,and black are for Seyfert1s,Seyfert2s,and BHXRBs,respectively.The gray solid and dotted lines correspond to μs=0 and μs=0.5 for BHXRBs,and the blue solid and dotted lines correspond to μs=0 and μs=0.9 for AGNs.

    Figure 3.Distributions of photon index Γ and reflection strength R in the upper left and lower right panels,and R vs.Γ in the lower left panel.The results of radio-loud are from Kang et al.(2020),and radio-quiet are from Panagiotou &Walter (2019).The orange,magenta,and black are for radio-loud,radio-quiet,and BHXRBs,respectively.The gray solid and dotted lines correspond to μs=0 and μs=0.5 for BHXRBs,and the blue solid and dotted lines correspond to μs=0 and μs=0.9 for AGNs.

    In the low/hard state of the BHXRBs,an advectiondominated accretion flow (ADAF) is present in the inner region near the BH (Narayan &Yi 1994),extending out to connect a thin disk at a truncated radius(Esin et al.1997).The truncated radiusRtrof the thin disk(i.e.,the ADAF radial size)increases with the decrease in the mass accretion rate (e.g.,Yuan &Narayan 2014).Thus,the reflection strengthRmay decrease with increasing truncated radiusRtr.As only the observations in the hard state of the BHXRBs have been included in our present investigation,while the AGN samples employed in this work include some luminous AGNs,which roughly correspond to the BHXRBs in the high/soft state.The inner edge of the thin disk in those luminous AGNs may extend to the inner stable circulating orbit (ISCO),and therefore their reflection strengthRis higher than that of the BHXRBs.It is also worth noting that the outer radius of a thin disk may vary from several thousand to ?105Schwarzschild radii (You et al.2012;Cao 2016;Cao &Lai 2019;Cao &Zdziarski 2020),however,the affection of the outer disk radius to the reflection strengthRshould be much less important compared with that of the truncated radius of the thin disk.Thus,we think that it contributes little to the difference ofRbetween BHXRBs and AGNs.

    5.Summary

    We investigate the spectra of the hard state in black hole low-mass X-ray binaries using NuSTAR data.A positive correlation betweenRand Γ is tested by the Spearman method,with the Spearman’s coefficient equal to 0.54 and ap-value equal to 4.27×10-5,except for the source MAXI J1820+070.Rand Γ in MAXI J1820+070 seem to be the outlier in the regularR-Γ panel,which will be further explored in a future paper.TheR-Γ correlation presented here has been reported in GX339-4 and Cyg X-1,which is consistent with the previous report for AGNs.Our results support the moving corona model(Beloborodov 1999),in which the corona moves perpendicularly with respect to the black hole.To mostly cover the whole observational points,the geometry of the corona needs to be changed.When we compare the best-fittingRand Γ for the BHXRBs and the AGNs,we find that theRis smaller than 1 in BHXRBs while it can be as large as~5 in AGNs,which implies that the variations of the corona in AGNs are more vigorous than that of the BHXRBs in the hard state.We conjecture that the luminous AGNs with thin discs extending to the ISCOs may also be responsible for the systematically higherRin AGN samples.

    Acknowledgments

    We thank the referee for his/her helpful comments.We thank Dr.Bei You and Dr.Zhen Yan for very useful discussions.This work used data from the NuSTAR mission,a project led by the California Institute of Technology,managed by the Jet Propulsion Laboratory,and funded by the National Aeronautics and Space Administration.This work is supported by the National Natural Science Foundation of China (11833007,12073023,12233007,and 12147103),the science research grants from the China Manned Space Project with No.CMS-CSST-2021-A06,and the fundamental research fund for Chinese central universities (Zhejiang University).

    天天操日日干夜夜撸| 国产日韩欧美视频二区| 一级毛片我不卡| 久久韩国三级中文字幕| 午夜老司机福利剧场| 日韩免费高清中文字幕av| 免费日韩欧美在线观看| 97精品久久久久久久久久精品| 一级黄片播放器| 嘟嘟电影网在线观看| 欧美一级a爱片免费观看看| .国产精品久久| 美女主播在线视频| 国产成人a∨麻豆精品| 亚洲精品成人av观看孕妇| av黄色大香蕉| 免费观看av网站的网址| 各种免费的搞黄视频| 丝袜美足系列| 国产乱人偷精品视频| 欧美激情极品国产一区二区三区 | freevideosex欧美| 国产成人av激情在线播放 | 一级毛片黄色毛片免费观看视频| 日日撸夜夜添| 美女cb高潮喷水在线观看| 亚洲国产成人一精品久久久| av有码第一页| 欧美日韩视频精品一区| 极品人妻少妇av视频| 成人漫画全彩无遮挡| 最近的中文字幕免费完整| 天天影视国产精品| 中文字幕人妻丝袜制服| 爱豆传媒免费全集在线观看| 2021少妇久久久久久久久久久| 黑人巨大精品欧美一区二区蜜桃 | 欧美日韩视频精品一区| 男女高潮啪啪啪动态图| 久久久久久久精品精品| 国国产精品蜜臀av免费| 亚洲欧美一区二区三区黑人 | 一区二区三区免费毛片| 简卡轻食公司| 亚洲精品乱码久久久v下载方式| 久久亚洲国产成人精品v| 99视频精品全部免费 在线| 久久免费观看电影| 日本wwww免费看| 欧美精品国产亚洲| 精品卡一卡二卡四卡免费| 国产黄色视频一区二区在线观看| 国产精品蜜桃在线观看| 一区二区日韩欧美中文字幕 | 精品人妻一区二区三区麻豆| 久久亚洲国产成人精品v| 男的添女的下面高潮视频| 日韩伦理黄色片| 精品久久久久久久久亚洲| 亚洲美女视频黄频| 免费久久久久久久精品成人欧美视频 | 99热这里只有精品一区| h视频一区二区三区| 伊人久久精品亚洲午夜| 色网站视频免费| 亚洲国产精品一区二区三区在线| 久久热精品热| 26uuu在线亚洲综合色| 久久久久视频综合| 天美传媒精品一区二区| 国产老妇伦熟女老妇高清| 国产精品麻豆人妻色哟哟久久| 久久女婷五月综合色啪小说| xxx大片免费视频| 最近手机中文字幕大全| 免费黄网站久久成人精品| 在线精品无人区一区二区三| 又大又黄又爽视频免费| 丰满少妇做爰视频| 国产亚洲av片在线观看秒播厂| 夫妻性生交免费视频一级片| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品日本国产第一区| 亚洲丝袜综合中文字幕| 男女边摸边吃奶| 伦理电影免费视频| 如何舔出高潮| 99视频精品全部免费 在线| 亚州av有码| av女优亚洲男人天堂| 久久这里有精品视频免费| 日韩一本色道免费dvd| 国产亚洲午夜精品一区二区久久| 99九九在线精品视频| 精品久久久久久久久av| 日韩一本色道免费dvd| 3wmmmm亚洲av在线观看| 大片电影免费在线观看免费| 久久人人爽人人片av| 人妻一区二区av| 最黄视频免费看| 国产av国产精品国产| 欧美成人午夜免费资源| 91久久精品电影网| 啦啦啦中文免费视频观看日本| 三上悠亚av全集在线观看| 波野结衣二区三区在线| 午夜久久久在线观看| 亚洲欧美日韩另类电影网站| 国产在线视频一区二区| 国产伦精品一区二区三区视频9| av电影中文网址| 大又大粗又爽又黄少妇毛片口| 日韩一本色道免费dvd| 久久影院123| 91精品国产九色| 国产成人精品在线电影| 国产精品三级大全| 中文字幕制服av| 黑丝袜美女国产一区| 亚洲一级一片aⅴ在线观看| 国产精品熟女久久久久浪| av专区在线播放| 一区二区三区精品91| 91在线精品国自产拍蜜月| 亚洲不卡免费看| 你懂的网址亚洲精品在线观看| 国产成人精品婷婷| 国产精品蜜桃在线观看| 人妻夜夜爽99麻豆av| 精品一区在线观看国产| 中文字幕亚洲精品专区| 欧美三级亚洲精品| 视频中文字幕在线观看| 国产精品麻豆人妻色哟哟久久| 日韩人妻高清精品专区| 免费大片18禁| 国产精品麻豆人妻色哟哟久久| 国产永久视频网站| 最近中文字幕高清免费大全6| 国产乱人偷精品视频| 午夜福利网站1000一区二区三区| 亚洲,一卡二卡三卡| 亚洲少妇的诱惑av| 免费高清在线观看视频在线观看| 丰满少妇做爰视频| 中国美白少妇内射xxxbb| 中文欧美无线码| 制服人妻中文乱码| 免费黄色在线免费观看| 亚洲无线观看免费| 欧美人与性动交α欧美精品济南到 | 午夜福利,免费看| 亚洲熟女精品中文字幕| 观看美女的网站| 免费看av在线观看网站| 亚洲精品美女久久av网站| 最新中文字幕久久久久| 久久国产亚洲av麻豆专区| 亚洲国产精品国产精品| 在线天堂最新版资源| 最新中文字幕久久久久| 多毛熟女@视频| 啦啦啦视频在线资源免费观看| 国产老妇伦熟女老妇高清| 久久久精品区二区三区| 国产成人freesex在线| 69精品国产乱码久久久| 91久久精品国产一区二区成人| 热re99久久精品国产66热6| 人人妻人人爽人人添夜夜欢视频| 国产精品偷伦视频观看了| 国产综合精华液| 欧美丝袜亚洲另类| 欧美97在线视频| 在线天堂最新版资源| 亚洲怡红院男人天堂| 91在线精品国自产拍蜜月| a级毛色黄片| 一区二区日韩欧美中文字幕 | 人人妻人人爽人人添夜夜欢视频| 精品人妻偷拍中文字幕| 亚洲av福利一区| 精品久久久精品久久久| 亚洲美女搞黄在线观看| 免费大片黄手机在线观看| 成人国语在线视频| 欧美亚洲日本最大视频资源| 精品熟女少妇av免费看| 啦啦啦中文免费视频观看日本| 少妇精品久久久久久久| 美女主播在线视频| 国产精品99久久99久久久不卡 | 大香蕉97超碰在线| 伊人久久精品亚洲午夜| 欧美少妇被猛烈插入视频| 在现免费观看毛片| 人人妻人人澡人人爽人人夜夜| 日韩av免费高清视频| 亚洲人与动物交配视频| 色94色欧美一区二区| 少妇人妻 视频| 亚洲av免费高清在线观看| 国产午夜精品一二区理论片| 桃花免费在线播放| 午夜精品国产一区二区电影| 亚洲av国产av综合av卡| 久久精品久久精品一区二区三区| 日日啪夜夜爽| 69精品国产乱码久久久| 国产日韩欧美视频二区| 精品熟女少妇av免费看| 热re99久久国产66热| 精品人妻在线不人妻| 亚洲美女视频黄频| 亚洲精品456在线播放app| 天堂中文最新版在线下载| 黑人欧美特级aaaaaa片| 在线观看人妻少妇| 成人国产麻豆网| 最近的中文字幕免费完整| 国产男女超爽视频在线观看| 天美传媒精品一区二区| 国产精品人妻久久久久久| 亚洲国产精品专区欧美| 晚上一个人看的免费电影| 午夜福利网站1000一区二区三区| 高清不卡的av网站| 欧美激情 高清一区二区三区| 99热国产这里只有精品6| 久久青草综合色| 成人二区视频| 欧美日本中文国产一区发布| 街头女战士在线观看网站| 久久ye,这里只有精品| 亚洲欧美日韩另类电影网站| 国产精品不卡视频一区二区| 亚洲精品,欧美精品| 黄片播放在线免费| 欧美亚洲日本最大视频资源| 国产在线免费精品| 色婷婷av一区二区三区视频| 亚洲精品国产av成人精品| 亚洲欧美色中文字幕在线| 交换朋友夫妻互换小说| 欧美国产精品一级二级三级| 亚洲人与动物交配视频| 人人妻人人爽人人添夜夜欢视频| 少妇人妻久久综合中文| 亚洲人与动物交配视频| 99国产精品免费福利视频| 极品人妻少妇av视频| 亚洲人与动物交配视频| 国产免费福利视频在线观看| 亚洲,一卡二卡三卡| 91成人精品电影| 伊人亚洲综合成人网| 美女福利国产在线| kizo精华| 18禁裸乳无遮挡动漫免费视频| 麻豆精品久久久久久蜜桃| 久久人妻熟女aⅴ| 日日摸夜夜添夜夜爱| 日韩在线高清观看一区二区三区| 国产精品欧美亚洲77777| av黄色大香蕉| 亚洲国产av新网站| 热re99久久精品国产66热6| 亚洲国产精品一区二区三区在线| av卡一久久| 亚洲精品一二三| 国产精品国产三级国产av玫瑰| 超碰97精品在线观看| 午夜福利在线观看免费完整高清在| 国产高清有码在线观看视频| 亚洲性久久影院| 亚洲内射少妇av| 国产深夜福利视频在线观看| 美女主播在线视频| 韩国高清视频一区二区三区| 母亲3免费完整高清在线观看 | 最新中文字幕久久久久| 999精品在线视频| 三级国产精品欧美在线观看| 99久国产av精品国产电影| 性高湖久久久久久久久免费观看| 久久久久久久精品精品| 少妇被粗大的猛进出69影院 | av天堂久久9| 亚洲第一av免费看| 日韩三级伦理在线观看| av线在线观看网站| 草草在线视频免费看| 亚洲成人一二三区av| 亚洲伊人久久精品综合| 在线亚洲精品国产二区图片欧美 | 国产深夜福利视频在线观看| 日韩精品有码人妻一区| 亚洲av不卡在线观看| 免费高清在线观看视频在线观看| 99热6这里只有精品| 成人毛片60女人毛片免费| 精品少妇久久久久久888优播| 国产又色又爽无遮挡免| 伦理电影免费视频| 国产精品人妻久久久久久| 高清av免费在线| 国产日韩欧美亚洲二区| 最黄视频免费看| 欧美丝袜亚洲另类| 91aial.com中文字幕在线观看| 亚洲人与动物交配视频| 一级,二级,三级黄色视频| 老司机亚洲免费影院| 岛国毛片在线播放| 天美传媒精品一区二区| a级片在线免费高清观看视频| 亚洲内射少妇av| 国产一区有黄有色的免费视频| 精品国产一区二区久久| 欧美成人精品欧美一级黄| av在线观看视频网站免费| 日韩 亚洲 欧美在线| 男女免费视频国产| 久久久久网色| 永久免费av网站大全| 大香蕉97超碰在线| 三级国产精品欧美在线观看| 高清欧美精品videossex| 老司机影院毛片| 在线观看免费高清a一片| 99re6热这里在线精品视频| 国产高清国产精品国产三级| 80岁老熟妇乱子伦牲交| 国产片内射在线| 99久久精品一区二区三区| 亚洲国产欧美在线一区| 成人综合一区亚洲| 精品久久国产蜜桃| 80岁老熟妇乱子伦牲交| 男女边吃奶边做爰视频| 久久毛片免费看一区二区三区| 亚洲内射少妇av| 欧美97在线视频| 777米奇影视久久| 国产成人精品一,二区| 色吧在线观看| 免费少妇av软件| 亚洲精品色激情综合| 久久久国产欧美日韩av| 日韩中文字幕视频在线看片| 国产色婷婷99| 一级a做视频免费观看| 男人添女人高潮全过程视频| 有码 亚洲区| 亚洲三级黄色毛片| 九色成人免费人妻av| 国产色婷婷99| 多毛熟女@视频| 久久久精品免费免费高清| 国产成人精品婷婷| 考比视频在线观看| 青春草亚洲视频在线观看| 国产精品不卡视频一区二区| 国产成人av激情在线播放 | 男女国产视频网站| 亚洲欧美成人精品一区二区| 黑人欧美特级aaaaaa片| 99re6热这里在线精品视频| 精品久久国产蜜桃| 国产av一区二区精品久久| 国产熟女午夜一区二区三区 | 亚洲av欧美aⅴ国产| 久久韩国三级中文字幕| 一级毛片aaaaaa免费看小| 人人妻人人澡人人看| 国产精品99久久99久久久不卡| 精品久久久久久久毛片微露脸| www.熟女人妻精品国产| 99国产极品粉嫩在线观看| 成年人黄色毛片网站| 国产精品久久久久久精品电影小说| 国产三级黄色录像| 亚洲欧洲精品一区二区精品久久久| 日韩欧美国产一区二区入口| 18在线观看网站| 久久精品亚洲熟妇少妇任你| 日韩三级视频一区二区三区| 久久久久精品国产欧美久久久| 色在线成人网| 麻豆国产av国片精品| 国产精品99久久99久久久不卡| 大陆偷拍与自拍| 黄色怎么调成土黄色| 男女床上黄色一级片免费看| 少妇猛男粗大的猛烈进出视频| 欧美黑人欧美精品刺激| 欧美一级毛片孕妇| 每晚都被弄得嗷嗷叫到高潮| 一个人免费在线观看的高清视频| 国产精品久久电影中文字幕 | 中文字幕精品免费在线观看视频| 中文字幕人妻丝袜一区二区| 国产亚洲欧美精品永久| 好男人电影高清在线观看| 汤姆久久久久久久影院中文字幕| 免费在线观看视频国产中文字幕亚洲| 99国产精品免费福利视频| 国产男女内射视频| 亚洲伊人色综图| 国产色视频综合| 欧美日韩精品网址| 中文字幕另类日韩欧美亚洲嫩草| 精品国产乱子伦一区二区三区| 久热这里只有精品99| 狂野欧美激情性xxxx| 伊人久久大香线蕉亚洲五| 中文欧美无线码| 亚洲国产中文字幕在线视频| 黄色a级毛片大全视频| 免费在线观看完整版高清| √禁漫天堂资源中文www| 一区二区三区乱码不卡18| 欧美黄色片欧美黄色片| 久久久久精品国产欧美久久久| 欧美精品高潮呻吟av久久| 热99re8久久精品国产| 欧美日韩黄片免| 高清黄色对白视频在线免费看| 免费在线观看日本一区| 免费黄频网站在线观看国产| aaaaa片日本免费| 日韩欧美国产一区二区入口| 波多野结衣一区麻豆| 又紧又爽又黄一区二区| 午夜福利免费观看在线| 多毛熟女@视频| 国产野战对白在线观看| 精品熟女少妇八av免费久了| 国产精品1区2区在线观看. | 亚洲欧美激情在线| cao死你这个sao货| 老司机深夜福利视频在线观看| 精品久久久久久久毛片微露脸| 精品国内亚洲2022精品成人 | 一个人免费看片子| 国产成人av教育| 欧美日韩成人在线一区二区| 久久久久久久久久久久大奶| 中文亚洲av片在线观看爽 | 亚洲欧美一区二区三区黑人| 777久久人妻少妇嫩草av网站| 母亲3免费完整高清在线观看| 丰满饥渴人妻一区二区三| 亚洲人成电影免费在线| 国产精品久久久av美女十八| 午夜激情久久久久久久| 日本精品一区二区三区蜜桃| 丝袜美足系列| 亚洲av欧美aⅴ国产| 亚洲三区欧美一区| 99热国产这里只有精品6| 丝袜喷水一区| 久久久久精品国产欧美久久久| 十八禁网站免费在线| 午夜91福利影院| 亚洲国产精品一区二区三区在线| 天堂俺去俺来也www色官网| 18禁黄网站禁片午夜丰满| 欧美av亚洲av综合av国产av| 国产aⅴ精品一区二区三区波| 十八禁网站网址无遮挡| 亚洲欧美一区二区三区久久| av超薄肉色丝袜交足视频| 日韩中文字幕欧美一区二区| 99热国产这里只有精品6| 亚洲国产毛片av蜜桃av| 黑人猛操日本美女一级片| 99精品欧美一区二区三区四区| 精品高清国产在线一区| 国产精品久久久久久人妻精品电影 | 欧美老熟妇乱子伦牲交| 少妇猛男粗大的猛烈进出视频| 肉色欧美久久久久久久蜜桃| 亚洲三区欧美一区| 美女主播在线视频| 少妇精品久久久久久久| 精品第一国产精品| 精品国产一区二区三区久久久樱花| 欧美日韩精品网址| 成人黄色视频免费在线看| 新久久久久国产一级毛片| 法律面前人人平等表现在哪些方面| 一二三四社区在线视频社区8| 欧美日韩国产mv在线观看视频| 99国产精品一区二区蜜桃av | 中文字幕人妻丝袜一区二区| 午夜福利影视在线免费观看| 久久天躁狠狠躁夜夜2o2o| 成人av一区二区三区在线看| 亚洲成国产人片在线观看| 91麻豆精品激情在线观看国产 | 中文字幕最新亚洲高清| 国产午夜精品久久久久久| 国产精品熟女久久久久浪| 91国产中文字幕| 国产精品影院久久| 亚洲欧洲日产国产| 成人免费观看视频高清| 777久久人妻少妇嫩草av网站| 国产av又大| 在线观看人妻少妇| 欧美久久黑人一区二区| 精品国产乱码久久久久久男人| 变态另类成人亚洲欧美熟女 | 午夜福利一区二区在线看| 人人妻人人添人人爽欧美一区卜| 中文字幕另类日韩欧美亚洲嫩草| 丰满饥渴人妻一区二区三| 夜夜夜夜夜久久久久| 国产不卡av网站在线观看| 王馨瑶露胸无遮挡在线观看| av网站免费在线观看视频| 热re99久久精品国产66热6| 十分钟在线观看高清视频www| 宅男免费午夜| 成人永久免费在线观看视频 | 老熟女久久久| 亚洲精品国产色婷婷电影| 午夜福利免费观看在线| 侵犯人妻中文字幕一二三四区| 女警被强在线播放| 国产免费av片在线观看野外av| 中文字幕高清在线视频| 亚洲精品自拍成人| 女人高潮潮喷娇喘18禁视频| 成人18禁高潮啪啪吃奶动态图| 久久中文字幕人妻熟女| 天堂俺去俺来也www色官网| 成人国产av品久久久| 久久久精品94久久精品| 午夜福利在线免费观看网站| 国产日韩欧美视频二区| 久久久久久亚洲精品国产蜜桃av| 99精品欧美一区二区三区四区| 欧美人与性动交α欧美软件| 青草久久国产| 国产高清视频在线播放一区| 国产成人av教育| 精品亚洲成a人片在线观看| 搡老岳熟女国产| 欧美日韩福利视频一区二区| 自线自在国产av| 亚洲成a人片在线一区二区| 午夜免费成人在线视频| e午夜精品久久久久久久| 动漫黄色视频在线观看| 午夜精品久久久久久毛片777| 欧美 日韩 精品 国产| 国产极品粉嫩免费观看在线| 老熟女久久久| 欧美黄色淫秽网站| 无遮挡黄片免费观看| 国产精品久久电影中文字幕 | 曰老女人黄片| 亚洲精品自拍成人| 亚洲欧美激情在线| 国产精品成人在线| 999久久久精品免费观看国产| 美女主播在线视频| 久久精品国产a三级三级三级| 欧美黄色淫秽网站| 欧美在线黄色| 国产激情久久老熟女| 久久精品aⅴ一区二区三区四区| 最新美女视频免费是黄的| 日韩三级视频一区二区三区| 99久久99久久久精品蜜桃| 满18在线观看网站| 欧美成人午夜精品| 在线观看免费午夜福利视频| 国产深夜福利视频在线观看| 亚洲欧洲精品一区二区精品久久久| 精品国产一区二区三区久久久樱花| 国产无遮挡羞羞视频在线观看| 高清av免费在线| 色94色欧美一区二区| 日本黄色视频三级网站网址 | 曰老女人黄片| 菩萨蛮人人尽说江南好唐韦庄| 美女高潮喷水抽搐中文字幕| 一边摸一边抽搐一进一出视频| 精品一区二区三区四区五区乱码| 久久精品国产亚洲av香蕉五月 | 日韩成人在线观看一区二区三区| 亚洲 欧美一区二区三区| 亚洲精品自拍成人| 国产成人系列免费观看| 亚洲 欧美一区二区三区| av超薄肉色丝袜交足视频| 在线观看人妻少妇| 日日爽夜夜爽网站| 18在线观看网站| 欧美在线黄色| 9191精品国产免费久久| 后天国语完整版免费观看| 日韩欧美一区视频在线观看| 丰满少妇做爰视频| 久久香蕉激情| 国产91精品成人一区二区三区 | 成人黄色视频免费在线看| 久久精品国产亚洲av香蕉五月 | 日韩 欧美 亚洲 中文字幕| netflix在线观看网站| 亚洲天堂av无毛|