• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Premature thermal decomposition behavior of 3,4-dinitrofurazanfuroxan with certain types of nitrogen-rich compounds

    2023-09-02 08:50:24JiaoHuangRufangPengBoJin
    Defence Technology 2023年8期

    Jiao Huang,Ru-fang Peng ,Bo Jin

    State Key Laboratory of Environment-friendly Energy Materials,Southwest University of Science and Technology,Mianyang,621010,Sichuan,PR China

    Keywords:DNTF N-H rich Nitrogen compounds Advanced thermal decomposition peak

    ABSTRACT 3,4-Dinitrofurazanfuroxan(DNTF),as a high-energy-density material,features good thermal stability and wide applications.This study aimed to elucidate the thermal decomposition mechanism of DNTF combined with nitrogen-rich compounds containing N-H.The thermal stabilities of DNTF and its hybrid systems were investigated using differential thermal analysis/thermogravimetry (TG),vacuum stability test,and accelerating rate calorimetry under isothermal,non-isothermal,and adiabatic conditions,respectively.Results showed that the thermal stability and thermal safety of DNTF significantly decreased after combining with nitrogen-rich compounds containing N-H.Calculation results showed that the activation energy of the DNTF hybrid systems was significantly lower than that of DNTF.The TGIR was used to monitor the generation of fugitive gases during the thermal decomposition of the DNTF/5-aminotetrazole (5-ATZ) hybrid.Moreover,the nitrogen-rich molecules containing N-H interacted extensively with DNTF,and this interaction accelerated the thermal degradation of DNTF.

    1.Introduction

    High-energy-density materials[1-3]are widely used in defense science and technology for energy storage,weapons security,and high power.In 1987,the high-energy-density material CL-20 [4,5]was introduced to current all-nitrogen/nitrogen-rich compounds.The current research on high-energy-density materials is focused on nitrogen-rich compounds [6-9],which are widely studied because of their high nitrogen content,density,positive heat generation,burst performance,and thermal stability.

    Introducing N-O coordination bonds in nitrogen-rich compounds can increase their density,oxygen balance,burst performance,sensitivity,and stability [10].3,4-Dinitrofurazanfuroxan(DNTF) is a typical coordination oxygen compound whose molecular structure contains furazan ring and oxidized furazan rings,which can form reactive oxygen atoms and thus increase its density[11-13].The low melting point and high density and energy of DNTF make it a key raw material for the study of high-performance explosives[14-17].Over the years,many scholars have studied the synthesis [18],physical properties [10,19-21],solubility [11,22],and applications[23,24]of DNTF.In 2010,Ren et al.[19]studied the fast thermal cracking of DNTF via T-Jump/Fourier-transform infrared spectroscopy and found that the fast-cracking products of DNTF are CO,CO2,NO,and NO2.Sinditskii et al.[25]studied the thermal decomposition of molten DNTF under isothermal conditions and found that it is close to that of HMX.The thermal decomposition of DNTF at different pressures and its interaction with a catalyst were investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TG).Zhang [26]et al.studied the thermal stability of DNTF using accelerating rate calorimetry (ARC) and found that the initial exothermic decomposition temperature of DNTF under adiabatic conditions is 180.7°C,which indicates good thermal stability.Despite numerous studies on DNTF and some reports on the thermal decomposition and thermal stability of DNTF,there are few reports on the effects of nitrogen-rich compounds on the thermal decomposition behavior of DNTF.As a promising high-energy-density material,the compatibility of DNTF with other components in mixed explosives is crucial.Li et al.[27]investigated the compatibility of DNTF with TNT,TATB,NTO,LLM-105,ANPYO,DNT,and waxes through DSC and showed that DNTF is incompatible with LLM-105,ANPYO,DNT and waxes.In 2013,Li et al.[28]found that DNTF and DAAzF showed poor compatibility through DSC research.Poor compatibility will affect the safety and service life of mixed explosives,resulting in dangerous accidents.Therefore,it is of great significance to study the compatibility between DNTF and nitrogen rich compounds with specific structures.

    In this work,we explored the thermal decomposition of the hybrid systems of DNTF and nitrogen-rich compounds containing active-H.The thermal decomposition behavior of the DNTF hybrid systems was evaluated using isothermal (vacuum stability test,VST),non-isothermal (differential thermal analysis (DTA)/TG),and adiabatic (ARC) analyses.Results showed that the decomposition peaks of DNTF advanced after combining with nitrogen-rich compounds containing active-H.The thermogravimetric-infrared (TGIR)technique was used to verify the presence of N-O compounds in the DNTF/5-aminotetrazole (5-ATZ) hybrid system at approximately 190°C.

    2.Experimental section

    2.1.Materials

    DNTF with a purity of 99.4% was obtained from the Chinese Academy of Engineering Physics.5-ATZ and tetrazole (TZ) were purchased from Macklin.1,2’-diamino-5,5’-bistetrazole (DABTZ)[29],5,5’-bistetrazole (BTZ) [30],and diamino-furazan (DAF) [31]were synthesized independently as previously described.The molecular structures of the related compounds are shown in Fig.1.

    Fig.1.Molecular structure of DNTF and six nitrogen-rich compounds.

    2.2.Experimental equipment and conditions

    All DTA curves were obtained on a WCR 1/2D instrument (Beiguang Hongyuan Instrument Co.,Ltd.,Beijing) under an air atmosphere using a ceramic crucible presentation sample with a 1:1 mass ratio of DNTF and nitrogen-rich compounds.TG was executed on an SDT Q160 (TA Instrument Co.,USA) with a heating rate of 10°C/min.An ARC 245 instrument (NETZSCN,Germany) was utilized to examine the self-exothermic phenomena of the samples under adiabatic conditions after a heating-wait-search mode [32].The operating temperature was 60-350°C,and the test sample volume was approximately 30 mg.The test sample ball was composed of titanium with a mass of 3.0543 g,a heating rate of 5°C/min,and an exothermic threshold of 0.02°C/min.The differential scanning calorimetry (DSC) was operated on a Q200 (TA Instrument Co.,USA) under a nitrogen (N2) atmosphere.TG-IR was recorded on an STA449F5-INVENIO R (NETZSCN,Germany) instrument with a heating rate of 10°C/min and under a N2atmosphere.A laboratory-made vacuum stability device was employed to examine the variation in pressure of the samples with time under isothermal conditions at a test temperature of 100°C and a test volume of 20 mg.

    3.Results and discussion

    DTA and TG results showed that the decomposition peaks of DNTF combined with nitrogen-rich compounds containing N-H were 40°C-120°C earlier than those of DNTF.VST results indicated that the thermal stability of the DNTF hybrid systems was significantly inferior to that of DNTF,and ARC results demonstrated that the exothermic peak of the DNTF hybrid systems was significantly lower than that of DNTF under adiabatic conditions.TG-IR data revealed a distinctive interaction between DNTF and nitrogen-rich compounds containing N-H.

    3.1.DTA measurements

    Fig.2 shows the DTA plots of six nitrogen-rich compounds containing N-H bonds in an air atmosphere at 20°C.The thermal decomposition temperatures of the DNTF hybrid systems were significantly advanced compared with those of the single systems.Fig.3 displays the temperature difference between the DNTF hybrid systems and the DNTF single system under identical condition.The decomposition temperatures of the DNTF hybrid systems were all immensely advanced,ranging from 40 to 110°C.

    Fig.2.(a)-(f) DTA curves of six nitrogen-rich compounds at 20 °C/min heating rate.

    Fig.3.Decomposition temperature and temperature difference of DNTF and its hybrid systems under the same conditions.

    Fig.4 shows the DTA test curves for DNTF and its hybrid systems at different heating rates under air atmosphere.As shown in Fig.4(a),the melting point of DNTF at atmospheric pressure ranged from 107.9°C to 113.5°C,and its thermal decomposition peak maximum was 260.9-282.4°C,which is consistent with the results reported in the literature[33,34].Fig.4(b)-Fig.4(g)show the DTA curves of DNTF combined with six nitrogen-rich compounds containing N-H at different heating rates.The melting point peak of DNTF appeared in the DTA curve of the DNTF hybrid system.An obvious decomposition peak that is smaller than the decomposition peak of the single nitrogen-rich compound was also found,but the decomposition peak of the single nitrogen-rich compound was not observed.Among these samples,DNTF/AMTZ and DNTF/DAF have two distinct decomposition peaks compared with other samples.

    Fig.4.Non-isothermal DTA curves of DNTF and its hybrid systems at different heating rates (air atmosphere).

    Subsequently,several important kinetic parameters of DNTF and its hybrid systems were calculated using the Kissinger and Ozawa iterative methods on the basis of the relationship between the exothermic peak temperature and the heating rate to analyze the difference in energy required for the molecules to reach activation.This type of method considers the slow variation ofH(μ) andQ(μ)with μ,without the limitation of μ range [35].By iterating several times to a reasonableEvalue satisfyingEi-Ei-1<100 J/mol,the relevant equations are expressed as follows:

    (Kiterative method)

    (Oiterative method).where β denotes the heating rate in°C/min,Ais the pre-exponential factor,Eis the activation energy,Tis the peak temperature,andRis the ideal gas constant.The DTA data at different heating rates are substituted into Eq.(1) and Eq.(2),respectively,and the fitting curves obtained are shown in Fig.S1.The correlation coefficients (R2) between the fitted curves and the experimental points were greater than 0.98,and the linear relationships were good.The apparent activation energies of DNTF and its hybrid systems were calculated after 2-4 iterations of the above method,and the results are exhibited in Table 1,which directly shows that the advanced (E) of DNTF (149.6 kJ/mol) is significantly larger than that of its hybrid systems under the same test conditions.In addition,the smaller activation energy of the DNTF hybrid systems compared with DNTF indicated that the energy required to reach thermal decomposition was lower in the hybrid systems than in the single system.

    Table 1Kinetic parameters of DNTF and its hybrid systems calculated using the iterative method of equal conversion rates.

    The DSC curves of DNTF and its hybrid systems at different heating rates (5°C/min,10°C/min,15°C/min,20°C/min) are represented in Fig.5.The obtained kinetic parameters by the equal conversion Kissinger-Akahira-Sunose (KAS) method [36-39]to understand the changes in their decomposition process.The relevant equations are as follows:

    Fig.5.Non-isothermal DSC curves of (a) DNTF;(b) DNTF/DAF and (c) DNTF/AMTZ systems at different heating rates (N2 atmosphere).

    (KAS method)

    where βiis heating rate,Eα is activation energy,Tα is the temperature at arbitrary conversion values,Ris ideal gas constant.The activation energy is shown in Table 2 when the temperature of different conversion is substituted into the equation and the linear fittings (Fig.S2) are performed.The activation energy of DNTF did not change obviously at the conversion rate of 0.1-0.5,but increased obviously at the quasi-conversion rate of 0.6-0.8,and then decreased.In contrast to DNTF,the activation energy of DNTF/DAF and DNTF/AMTZ system decreased at first and then increased,and the thermal degradation rate decreased at first and then increased,which indicated that the reaction process changed greatly with temperature and the decomposition process is complex.

    Table 2Kinetic parameters of DNTF and its hybrid systems calculated using the KAS method.

    3.2.Vacuum stability tests under isothermal conditions

    The amount of gas produced under the same conditions is usually a criterion for stability evaluation[40].The vacuum stability(VST) [41]of DNTF and its hybrid systems under isothermal conditions was investigated using the method based on gas production.As shown in Fig.6(a),the decomposition pressure and gas production rate of the DNTF hybrid systems under the isothermal condition of 100°C were significantly higher and faster,respectively,than those of DNTF with the extension of time.In specific,the gas production per unit mass of DNTF,DNTF/5-ATZ,and DNTF/TZ were 3.21 mL,17.98 mL,and 152.05 mL after 1440 min,respectively.The smaller the gas yield,the better the stability [42].In the present study,the nitrogen-rich compounds containing N-H significantly increased the gas production rate and gas yield of DNTF through thermal decomposition.Thus,the stability of the DNTF hybrid systems was considerably lower than that of DNTF.

    Fig.6.(a)Isothermal VST of DNTF and its hybrid systems at a constant temperature of 100 °C(mass: 30 mg);(b) Deflation volume per unit mass of the sample at a constant temperature of 100 °C for 24 h.

    3.3.TG measurements

    A non-isothermal TG test under nitrogen atmosphere was performed on the DNTF hybrid systems,and the results are shown in Fig.7(a)-Fig.7(f).As shown in Fig.7(a),the temperature test range of 65-500°C(test range)had only one step of weight loss,and the maximum weight loss temperature was 190.89°C,indicating that the DNTF/5-ATZ hybrid system underwent one-step thermal decomposition.This finding agrees with the DTA test results.The other DNTF blends also started to lose weight after 100°C,and the maximum weight loss also occurred before 200°C.For the TG-DTG plot of the DNTF/BTZ samples (Fig.7(e)),a significant secondary weight loss occurred at 264.4°C,which belongs to the thermal decomposition peak of BTZ.This phenomenon may be attributed to the small amount of sample and the lumpy form of BTZ samples in the test.

    Fig.7.(a)-(f) Non-isothermal TG-DTG curves of DNTF hybrid systems in a N2 atmosphere (HR: 10 °C/min).

    3.4.Thermal analysis results of adiabatic conditions by ARC

    The thermal decomposition of DNTF and its hybrid systems under adiabatic conditions was investigated to assess the safety of the samples during storage[43-45](Fig.8).As shown in Fig.8(a),the initial setting temperature of DNTF was 60°C,and DNTF decomposition did not occur at this temperature.After several heating-waiting-searching operation cycles,the exothermic effect of DNTF was detected at 206.1°C,and the temperature rise rate was 0.024°C/min at this time.The DNTF hybrid systems showed an identical trend to DNTF,but the initial self-exothermic temperature of the DNTF hybrid systems was significantly lower than that of DNTF,and the duration of the exothermic reaction was greatly shortened,as shown in Table 3.These results indicated that the initial decomposition temperature of DNTF at the maximum temperature rise rate is 212.8°C,which indicated high thermal stability.By contrast,the decomposition temperatures of the DNTF hybrid systems at the maximum temperature rise rate were between 110°C and 170°C,which suggested their poor thermal stability under adiabatic conditions.

    Table 3Decomposition characteristics parameters of DNTF and its hybrid systems in the self-acceleration phase(adiabatic).

    Fig.8.ARC temperature and pressure versus time of (a) DNTF;(c) DNTF/5-ATZ;(e) DNTF/DAF;(g) DNTF/AMTZ;(i) DNTF/BTZ and (k) DNTF/TZ;ARC temperature and self-heating rate versus time of (b)DNTF;(d) DNTF/5-ATZ;(f) DNTF/DAF;(h) DNTF/AMTZ;(j) DNTF/BTZ and (l) DNTF/TZ.

    3.5.TG-IR characterizations

    TG-IR can be used to rapidly and intuitively analyze the structure and decomposition mechanism of the thermal decomposition product,thereby allowing to elucidate the mechanism of action of effective escape gas [46,47].In the present study,the TG-IR technique was employed to investigate the thermal decomposition behavior of DNTF/5-ATZ in a N2atmosphere at a heating rate of 10°C/min,and the experimental results are represented in Fig.9.Fig.9(a) depicts the TG curves of the samples in the weight loss phase at temperatures ranging from 60 to 500°C.The sample remained in a thermally stable state after melting,and no weight loss was observed.The weight loss started at 176.1°C and reached a maximum temperature of 185.1°C,which differed from our pretest TG experiments.This difference can be attributed to the different test sample amounts and instruments used.The 3D TG/IR spectra of DNTF/5-ATZ during thermal degradation are shown in Fig.9(b),and the results indicate that the sample decomposition began before 200°C.The IR spectra at 150.1°C,188.6°C,195.4°C,280.3°C,and 353.9°C were obtained and are presented in Fig.9(c).The main gas products of DNTF/5-ATZ at 195.35°C are affiliated with N2O (2248 cm-1),and NO (1801,1945 cm-1),HCN (712,333 cm-1),and NH3(966 cm-1)[48-51]gases were also produced at the same time,which is consistent with the previous thermal analysis and test results,further proving that the thermal decomposition temperature of DNTF/5-ATZ mixed system is ahead,which directly indicates that DNTF interacts with 5-ATZ,possibly because H protons produced during the decomposition of small-molecule compounds accelerate the decomposition of DNTF,and H free radicals also promote the decomposition of small molecular compounds themselves,resulting in mutual promotion after mixing,showing inferior thermal stability.

    Fig.9.(a)TG-DTG curves of DNTF/5-ATZ in a N2 atmosphere(HR:10 °C/min);(b)3D TG/IR spectra of DNTF during thermal decomposition;(c)FT-IR spectra of DNTF/5-ATZ during thermal decomposition at different temperatures;(d) IR absorbance profiles of off-gases.

    4.Conclusions

    The main decomposition temperature of DNTF ranges from 260 to 280°C.The thermal decomposition temperature of DNTF combined with nitrogen-rich compounds containing N-H bonds is significantly lower than that of DNTF alone.Calculation results show that the activation energy of the DNTF hybrid system is lower than that of DNTF,and the non-isothermal TG-DTG curves divulge that the weight loss of the DNTF hybrid system is a one-step process.The results of the adiabatic self-acceleration study indicate the poor safety of DNTF and its hybrid systems.The thermal decomposition of DNTF/5-ATZ is further corroborated by TG-IR,indicating that an interaction occurs between DNTF and nitrogen-rich compounds containing N-H,and this interaction accelerates the thermal decomposition of DNTF.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    The authors appreciate the financially sponsor of the Natural Science Foundation of China(Grant No.51972278),the Outstanding Youth Science and Technology Talents Program of Sichuan (Grant No.19JCQN0085),and the Open Project of State Key Laboratory of Environment-friendly Energy Materials (Southwest University of Science and Technology,Grant No.21fksy19).

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.dt.2022.07.002.

    亚洲美女视频黄频| 嫩草影院新地址| 亚洲国产高清在线一区二区三| 搞女人的毛片| 成人高潮视频无遮挡免费网站| 精品99又大又爽又粗少妇毛片| 一级黄片播放器| 亚洲精品第二区| 毛片一级片免费看久久久久| 日韩av免费高清视频| 丰满乱子伦码专区| 校园人妻丝袜中文字幕| 好男人视频免费观看在线| 最近的中文字幕免费完整| 极品教师在线视频| 真实男女啪啪啪动态图| 成人综合一区亚洲| 看免费成人av毛片| 你懂的网址亚洲精品在线观看| 日韩欧美 国产精品| 中文欧美无线码| 最近最新中文字幕免费大全7| 噜噜噜噜噜久久久久久91| 最后的刺客免费高清国语| 韩国av在线不卡| 色视频www国产| 简卡轻食公司| 黄片wwwwww| 日本wwww免费看| 国产成人91sexporn| 国产精品一及| 97在线视频观看| 91久久精品国产一区二区成人| 午夜老司机福利剧场| 日本一二三区视频观看| 午夜激情福利司机影院| 亚洲图色成人| 91精品一卡2卡3卡4卡| av福利片在线观看| 日本黄大片高清| 日本色播在线视频| 精品午夜福利在线看| 中文精品一卡2卡3卡4更新| 汤姆久久久久久久影院中文字幕| 搡女人真爽免费视频火全软件| 国产国拍精品亚洲av在线观看| 99九九线精品视频在线观看视频| 丰满少妇做爰视频| 三级国产精品片| 男女那种视频在线观看| 一个人看视频在线观看www免费| 在线天堂最新版资源| 国内少妇人妻偷人精品xxx网站| 日日啪夜夜撸| 亚洲av成人精品一二三区| 国产黄a三级三级三级人| 欧美zozozo另类| 国产 精品1| 直男gayav资源| 青春草视频在线免费观看| 久热这里只有精品99| 免费看不卡的av| 国产熟女欧美一区二区| 国产一区二区三区av在线| 成人国产av品久久久| 偷拍熟女少妇极品色| 国产老妇伦熟女老妇高清| 国产爽快片一区二区三区| 人妻一区二区av| 纵有疾风起免费观看全集完整版| 国产精品av视频在线免费观看| 久久久久久国产a免费观看| 亚洲国产最新在线播放| 成年免费大片在线观看| 热99国产精品久久久久久7| 国产一区二区亚洲精品在线观看| 好男人视频免费观看在线| 亚洲精品第二区| 热re99久久精品国产66热6| 国产大屁股一区二区在线视频| 国产成人精品福利久久| 国产 一区精品| 日韩强制内射视频| 丝袜脚勾引网站| 最近最新中文字幕大全电影3| 国产欧美亚洲国产| 亚洲天堂av无毛| 国产精品女同一区二区软件| 国产精品一区www在线观看| 亚洲国产精品国产精品| 免费大片黄手机在线观看| 国产精品福利在线免费观看| 嫩草影院精品99| 国产淫片久久久久久久久| 丝瓜视频免费看黄片| 国产色婷婷99| 国产成人精品福利久久| 寂寞人妻少妇视频99o| 欧美 日韩 精品 国产| 超碰av人人做人人爽久久| 六月丁香七月| 99热6这里只有精品| 久久精品国产a三级三级三级| 秋霞伦理黄片| h日本视频在线播放| 亚洲精品自拍成人| av国产免费在线观看| 亚洲精品久久久久久婷婷小说| 建设人人有责人人尽责人人享有的 | 新久久久久国产一级毛片| 亚洲va在线va天堂va国产| 美女高潮的动态| 97超碰精品成人国产| 大话2 男鬼变身卡| 777米奇影视久久| 最后的刺客免费高清国语| 亚洲精品中文字幕在线视频 | 国产午夜精品一二区理论片| 人人妻人人澡人人爽人人夜夜| av播播在线观看一区| 久久久精品94久久精品| 97热精品久久久久久| 成人二区视频| 国产探花在线观看一区二区| 人人妻人人澡人人爽人人夜夜| 久久精品人妻少妇| 九九久久精品国产亚洲av麻豆| 色视频在线一区二区三区| 亚洲人成网站在线播| 最近中文字幕2019免费版| 一本色道久久久久久精品综合| 亚洲国产精品成人久久小说| 中文资源天堂在线| 久久久久久久久大av| 久久久久网色| 成人高潮视频无遮挡免费网站| 免费av毛片视频| av女优亚洲男人天堂| kizo精华| 国产成人免费观看mmmm| 国产中年淑女户外野战色| 欧美+日韩+精品| 亚洲欧美成人综合另类久久久| 国语对白做爰xxxⅹ性视频网站| 大又大粗又爽又黄少妇毛片口| 汤姆久久久久久久影院中文字幕| 少妇裸体淫交视频免费看高清| 亚洲va在线va天堂va国产| 国内揄拍国产精品人妻在线| 欧美日韩视频精品一区| 极品少妇高潮喷水抽搐| 午夜免费男女啪啪视频观看| 边亲边吃奶的免费视频| 国产男人的电影天堂91| 少妇猛男粗大的猛烈进出视频 | 搞女人的毛片| 少妇人妻一区二区三区视频| 亚洲内射少妇av| 久久国内精品自在自线图片| 亚洲欧美日韩另类电影网站 | 欧美一区二区亚洲| 毛片女人毛片| 超碰97精品在线观看| kizo精华| 亚洲av中文av极速乱| 欧美另类一区| 少妇熟女欧美另类| 国产成人精品一,二区| 亚洲av二区三区四区| 欧美区成人在线视频| 国产精品久久久久久久久免| 男人添女人高潮全过程视频| 波野结衣二区三区在线| 国产精品无大码| 精品一区在线观看国产| 免费观看的影片在线观看| 日本三级黄在线观看| 日本三级黄在线观看| 国产av国产精品国产| 禁无遮挡网站| 国产乱人偷精品视频| 大香蕉久久网| 黄片wwwwww| 嫩草影院新地址| 日韩一区二区三区影片| 成年女人在线观看亚洲视频 | 丰满人妻一区二区三区视频av| 在线观看美女被高潮喷水网站| 国产中年淑女户外野战色| 精品视频人人做人人爽| 我的老师免费观看完整版| 亚洲精品,欧美精品| www.av在线官网国产| 亚洲成人av在线免费| 99热网站在线观看| 精品久久久久久久末码| tube8黄色片| 三级国产精品欧美在线观看| 欧美少妇被猛烈插入视频| 国产精品嫩草影院av在线观看| 久久精品国产亚洲av天美| 亚洲,欧美,日韩| av网站免费在线观看视频| 久久久久久伊人网av| 91在线精品国自产拍蜜月| 亚洲最大成人手机在线| 熟妇人妻不卡中文字幕| 黄色一级大片看看| 国产黄频视频在线观看| 国产一区亚洲一区在线观看| 99久久中文字幕三级久久日本| av国产精品久久久久影院| 亚洲欧美一区二区三区国产| 国产一区有黄有色的免费视频| 欧美人与善性xxx| 日韩av不卡免费在线播放| 草草在线视频免费看| 色视频在线一区二区三区| 亚洲成人久久爱视频| 亚洲久久久久久中文字幕| 汤姆久久久久久久影院中文字幕| 在线观看三级黄色| 亚洲国产精品成人综合色| 最近的中文字幕免费完整| 黄色欧美视频在线观看| 国产黄片美女视频| 婷婷色综合大香蕉| 久久久久久国产a免费观看| 色婷婷久久久亚洲欧美| 国产在线一区二区三区精| 九草在线视频观看| av播播在线观看一区| 色哟哟·www| 婷婷色综合www| 久久久久久久大尺度免费视频| 欧美日本视频| 男的添女的下面高潮视频| 五月玫瑰六月丁香| 毛片一级片免费看久久久久| 国产69精品久久久久777片| 欧美潮喷喷水| 亚洲精品aⅴ在线观看| 日韩伦理黄色片| 综合色丁香网| 国产69精品久久久久777片| 亚洲无线观看免费| 亚洲av欧美aⅴ国产| 亚洲内射少妇av| 国产精品熟女久久久久浪| av在线app专区| 99久久九九国产精品国产免费| 精品久久久久久久久亚洲| 在线观看美女被高潮喷水网站| 亚洲成人久久爱视频| 夜夜爽夜夜爽视频| 日本-黄色视频高清免费观看| 又大又黄又爽视频免费| 色婷婷久久久亚洲欧美| 免费看光身美女| 国产成年人精品一区二区| 久久精品国产亚洲网站| 女人久久www免费人成看片| 大码成人一级视频| 如何舔出高潮| 免费av不卡在线播放| 精品午夜福利在线看| 亚洲人与动物交配视频| 成人免费观看视频高清| xxx大片免费视频| 亚洲精品中文字幕在线视频 | 日韩强制内射视频| 高清在线视频一区二区三区| 在线观看av片永久免费下载| av在线播放精品| 尤物成人国产欧美一区二区三区| 大话2 男鬼变身卡| 少妇的逼好多水| 色视频www国产| 女人久久www免费人成看片| 成人国产av品久久久| 亚洲欧美日韩无卡精品| 精品久久久精品久久久| 日韩电影二区| 午夜福利在线在线| 在线观看免费高清a一片| 亚洲国产成人一精品久久久| 日本免费在线观看一区| 精品久久国产蜜桃| 国产精品蜜桃在线观看| 日本黄大片高清| 黄色怎么调成土黄色| 国产亚洲av片在线观看秒播厂| 国产爱豆传媒在线观看| 亚洲av免费在线观看| a级毛色黄片| 女人久久www免费人成看片| 久久久久久久久大av| 成人无遮挡网站| 天堂网av新在线| 日本-黄色视频高清免费观看| 欧美性猛交╳xxx乱大交人| 精品一区二区三区视频在线| 伊人久久国产一区二区| 亚洲成人av在线免费| 高清av免费在线| 女人被狂操c到高潮| 欧美日韩综合久久久久久| 亚洲精品色激情综合| 午夜爱爱视频在线播放| 欧美日本视频| 午夜福利在线在线| 久久精品综合一区二区三区| 国产精品99久久99久久久不卡 | 日日撸夜夜添| 国产老妇伦熟女老妇高清| 色5月婷婷丁香| 国产精品av视频在线免费观看| 男插女下体视频免费在线播放| a级一级毛片免费在线观看| 亚洲精品,欧美精品| 免费观看无遮挡的男女| 伊人久久国产一区二区| 亚洲av日韩在线播放| 久久ye,这里只有精品| 成人鲁丝片一二三区免费| 人人妻人人澡人人爽人人夜夜| 爱豆传媒免费全集在线观看| 水蜜桃什么品种好| 人人妻人人爽人人添夜夜欢视频 | 禁无遮挡网站| 99热全是精品| 亚洲成色77777| 日韩三级伦理在线观看| 男人爽女人下面视频在线观看| 成人欧美大片| 日韩av在线免费看完整版不卡| 搡老乐熟女国产| 高清欧美精品videossex| 午夜视频国产福利| 日韩中字成人| 成人漫画全彩无遮挡| 麻豆精品久久久久久蜜桃| 亚洲不卡免费看| 成人国产麻豆网| 最近中文字幕高清免费大全6| 又爽又黄无遮挡网站| 亚洲性久久影院| 精品久久久久久久久亚洲| 欧美zozozo另类| 观看免费一级毛片| 纵有疾风起免费观看全集完整版| av一本久久久久| 中文字幕人妻熟人妻熟丝袜美| 久久99蜜桃精品久久| 午夜福利视频1000在线观看| 欧美+日韩+精品| 高清av免费在线| 精品99又大又爽又粗少妇毛片| 久久精品人妻少妇| 性插视频无遮挡在线免费观看| 免费看不卡的av| 一区二区av电影网| 亚洲综合精品二区| 国产成人a区在线观看| 在线观看av片永久免费下载| 搡老乐熟女国产| 蜜桃亚洲精品一区二区三区| 十八禁网站网址无遮挡 | 国产精品精品国产色婷婷| 麻豆精品久久久久久蜜桃| 91精品一卡2卡3卡4卡| 国产 一区精品| 亚洲高清免费不卡视频| 别揉我奶头 嗯啊视频| 白带黄色成豆腐渣| 国产精品av视频在线免费观看| 美女内射精品一级片tv| 日日啪夜夜爽| 国产精品久久久久久久电影| 一本色道久久久久久精品综合| 禁无遮挡网站| 免费人成在线观看视频色| 国产高潮美女av| a级毛片免费高清观看在线播放| 国产成人aa在线观看| 国产伦理片在线播放av一区| 国产精品国产三级专区第一集| 欧美一区二区亚洲| 色视频www国产| 十八禁网站网址无遮挡 | 久久精品国产亚洲网站| av在线亚洲专区| 国产黄频视频在线观看| 亚洲精品久久午夜乱码| 真实男女啪啪啪动态图| 神马国产精品三级电影在线观看| 深爱激情五月婷婷| 国产精品蜜桃在线观看| 黄色日韩在线| 99久久中文字幕三级久久日本| 精品一区二区三区视频在线| 国产又色又爽无遮挡免| 亚洲欧美精品专区久久| 久久97久久精品| 高清在线视频一区二区三区| 免费观看在线日韩| 高清av免费在线| 欧美xxxx性猛交bbbb| 亚洲性久久影院| 日韩中字成人| 18禁裸乳无遮挡免费网站照片| 精品久久久噜噜| 免费高清在线观看视频在线观看| 一区二区三区四区激情视频| 亚洲精品一区蜜桃| 天堂中文最新版在线下载 | 嫩草影院入口| 日本一本二区三区精品| 男女边摸边吃奶| 日本av手机在线免费观看| 免费黄网站久久成人精品| 国产男女超爽视频在线观看| 欧美精品国产亚洲| 成年免费大片在线观看| 五月开心婷婷网| 精品午夜福利在线看| 国产精品一二三区在线看| 国产毛片a区久久久久| 成人国产av品久久久| 91在线精品国自产拍蜜月| 别揉我奶头 嗯啊视频| 亚洲第一区二区三区不卡| 国国产精品蜜臀av免费| 免费看av在线观看网站| 国产精品.久久久| 黑人高潮一二区| 亚洲精品成人av观看孕妇| 岛国毛片在线播放| 中国三级夫妇交换| 少妇人妻精品综合一区二区| 伦精品一区二区三区| 搡女人真爽免费视频火全软件| 春色校园在线视频观看| 小蜜桃在线观看免费完整版高清| 成人黄色视频免费在线看| 欧美日韩国产mv在线观看视频 | 国产高清三级在线| 亚洲激情五月婷婷啪啪| 69av精品久久久久久| 国产日韩欧美在线精品| 久久精品人妻少妇| 久久97久久精品| 国产色爽女视频免费观看| 久久热精品热| 69人妻影院| 成人欧美大片| 亚洲伊人久久精品综合| 国产69精品久久久久777片| 2022亚洲国产成人精品| 能在线免费看毛片的网站| 日韩,欧美,国产一区二区三区| 亚洲av男天堂| 99热全是精品| 人体艺术视频欧美日本| av在线天堂中文字幕| 亚洲不卡免费看| 中文字幕av成人在线电影| 亚洲av二区三区四区| 特级一级黄色大片| 国产成人精品婷婷| 美女视频免费永久观看网站| 精品熟女少妇av免费看| 深爱激情五月婷婷| tube8黄色片| 国产一区二区三区av在线| 久久久色成人| 国产精品一区二区三区四区免费观看| 一本色道久久久久久精品综合| 啦啦啦啦在线视频资源| av.在线天堂| 观看美女的网站| 午夜精品一区二区三区免费看| 26uuu在线亚洲综合色| 国产美女午夜福利| 久久女婷五月综合色啪小说 | 性插视频无遮挡在线免费观看| 欧美变态另类bdsm刘玥| 国产成人91sexporn| 少妇熟女欧美另类| 熟女电影av网| 欧美一区二区亚洲| 日韩视频在线欧美| 国产一区二区在线观看日韩| 在线免费十八禁| 黄色日韩在线| 一级二级三级毛片免费看| 成人美女网站在线观看视频| 亚洲精品成人久久久久久| 亚洲成人久久爱视频| 在线a可以看的网站| 国产精品女同一区二区软件| 在线观看一区二区三区激情| 精华霜和精华液先用哪个| 国产人妻一区二区三区在| 老司机影院毛片| 国产精品女同一区二区软件| 天堂网av新在线| 男女下面进入的视频免费午夜| 日韩一区二区三区影片| 欧美三级亚洲精品| 日日摸夜夜添夜夜爱| 免费av观看视频| av又黄又爽大尺度在线免费看| 精品99又大又爽又粗少妇毛片| 神马国产精品三级电影在线观看| 亚洲综合精品二区| 免费大片黄手机在线观看| 成人特级av手机在线观看| 在线观看人妻少妇| 3wmmmm亚洲av在线观看| 99热6这里只有精品| 亚洲欧美精品自产自拍| 一个人观看的视频www高清免费观看| 国产精品人妻久久久久久| 亚洲国产欧美在线一区| 高清毛片免费看| 亚洲欧美日韩无卡精品| 狂野欧美激情性bbbbbb| 日本免费在线观看一区| 一二三四中文在线观看免费高清| 国产成人午夜福利电影在线观看| 精品午夜福利在线看| 久久精品国产鲁丝片午夜精品| 五月伊人婷婷丁香| 色视频www国产| 日韩av不卡免费在线播放| 日本欧美国产在线视频| 免费av不卡在线播放| 久久精品久久精品一区二区三区| 国产成人午夜福利电影在线观看| 啦啦啦在线观看免费高清www| 又爽又黄a免费视频| av免费观看日本| 性色av一级| 久久99精品国语久久久| 乱系列少妇在线播放| 国产午夜福利久久久久久| av卡一久久| 日韩国内少妇激情av| 99九九线精品视频在线观看视频| 99久久精品一区二区三区| 国产男人的电影天堂91| 日本一本二区三区精品| 亚洲国产精品专区欧美| 内地一区二区视频在线| 欧美bdsm另类| 欧美成人精品欧美一级黄| 成人毛片60女人毛片免费| 亚洲精品国产av成人精品| 久久女婷五月综合色啪小说 | 少妇 在线观看| 国产乱人视频| 国产精品一区www在线观看| 麻豆久久精品国产亚洲av| 最近手机中文字幕大全| 最近中文字幕2019免费版| videossex国产| 亚洲经典国产精华液单| 色播亚洲综合网| 人妻制服诱惑在线中文字幕| 久久99热这里只频精品6学生| 人人妻人人爽人人添夜夜欢视频 | 欧美丝袜亚洲另类| 日产精品乱码卡一卡2卡三| 韩国av在线不卡| 亚洲精品日韩在线中文字幕| 久久久久国产精品人妻一区二区| 91午夜精品亚洲一区二区三区| 国产 精品1| 男女啪啪激烈高潮av片| 少妇 在线观看| 亚洲一区二区三区欧美精品 | 麻豆久久精品国产亚洲av| 男人爽女人下面视频在线观看| 纵有疾风起免费观看全集完整版| 精品一区二区三区视频在线| 男的添女的下面高潮视频| 下体分泌物呈黄色| 天天躁夜夜躁狠狠久久av| 亚洲成人久久爱视频| 亚洲一区二区三区欧美精品 | 国产女主播在线喷水免费视频网站| 亚洲国产精品成人久久小说| 久久久午夜欧美精品| 少妇熟女欧美另类| 少妇人妻一区二区三区视频| 亚洲久久久久久中文字幕| 国产真实伦视频高清在线观看| 国产精品久久久久久精品古装| 少妇被粗大猛烈的视频| 亚洲人成网站在线播| 亚洲怡红院男人天堂| videos熟女内射| 各种免费的搞黄视频| 中文字幕久久专区| 97在线视频观看| 人人妻人人爽人人添夜夜欢视频 | 超碰97精品在线观看| av国产免费在线观看| 亚洲不卡免费看| av免费在线看不卡| 18+在线观看网站| 王馨瑶露胸无遮挡在线观看| 在现免费观看毛片| 大香蕉久久网|