王繼玲 吳廣升 王亞飛
[摘要]目的探討黑色素瘤缺乏因子2(AIM2)炎癥體在大鼠牙髓組織中的分布及其在牙髓炎癥發(fā)生、發(fā)展中的表達(dá)變化。方法通過開髓法建立大鼠牙髓炎癥模型,采用免疫熒光染色檢測(cè)AIM2炎癥體在牙髓組織中的表達(dá)分布;利用實(shí)時(shí)定量PCR(RT-PCR)檢測(cè)大鼠牙髓組織中AIM2炎癥體基因表達(dá)量的變化。結(jié)果蘇木精-伊紅(HE)染色顯示單純的開髓可誘發(fā)大鼠牙髓炎癥反應(yīng),開髓3 d后出現(xiàn)炎性反應(yīng)并在7 d后出現(xiàn)牙髓壞死。免疫熒光染色顯示,大鼠牙髓組織中有AIM2炎癥體表達(dá),開髓5 d后牙髓細(xì)胞層出現(xiàn)明顯陽性表達(dá)。RT-PCR結(jié)果顯示,開髓術(shù)后3 d AIM2基因表達(dá)顯著增加(F=1 178.910,P<0.01),下游caspase-1基因表達(dá)上調(diào)(F=81.224,P<0.05),IL-1β在開髓5 d后顯著上調(diào)(F=164.414,P<0.05)。結(jié)論AIM2炎癥體存在于大鼠牙髓組織中,并且其表達(dá)量與牙髓炎癥反應(yīng)呈正相關(guān)。
[關(guān)鍵詞]牙髓炎;黑色素瘤缺乏因子2;炎性小體;大鼠,Sprague-Dawley
[中圖分類號(hào)]R781.31[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2023)03-0407-05
doi:10.11712/jms.2096-5532.2023.59.078[開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版]https://kns.cnki.net/kcms2/detail/37.1517.R.20230725.0936.003.html;2023-07-2614:05:47
EXPRESSION OF ABSENT IN MELANOMA 2 INFLAMMATORY BODY IN RAT DENTAL PULP AND ITS ASSOCIATION WITH INFLAMMATORY RESPONSE? WANG Jiling, WU Guangsheng, WANG Yafei (Disease Prevention and Control Section, Qingdao Special Service Sanatorium of the PLA Navy, Qingdao 266071, China)
[ABSTRACT]Objective To investigate the distribution of absent in melanoma 2 (AIM2) inflammatory body in rat dental pulp tissue and the change in its expression in the development and progression of pulpitis. MethodsOpening of pulp chamber was performed to establish a rat model of dental pulp inflammation. Immunofluorescent staining was used to measure the expression and distribution of AIM2 inflammatory body in dental pulp tissue, and RT-PCR was used to measure the change in the mRNA expression level of AIM2 inflammatory body in rat dental pulp tissue. ResultsHE staining showed that opening of pulp chamber alone could induce inflammatory response of rat dental pulp; inflammatory response was observed on day 3 after pulp opening and dental pulp necrosis was observed on day 7 after pulp opening. Immunofluorescent staining showed the expression of AIM2 inflammatory body in rat dental pulp tissue, with marked positive expression in pulp cell layer on day 5 after pulp opening. RT-PCR showed that on day 3 after pulp opening, there were significant increases in the expression levels of the AIM2 gene (F=1 178.910,P<0.01) and downstream caspase-1 (F=81.224,P<0.05), and there was a significant increase in IL-1β on day 5 after pulp ope-ning (F=164.414,P<0.05). ConclusionAIM2 inflammatory body exists in rat dental pulp tissue, and the changing trend of its expression is positively associated with dental pulp inflammatory response.
[KEY WORDS]pulpitis; absent in melanoma 2; inflammasome; rats, Sprague-Dawley
牙髓炎是口腔常見疾病,因其能引起較為劇烈的疼痛易對(duì)工作、學(xué)習(xí)和生活等方面產(chǎn)生較大的影響,但其發(fā)病機(jī)制尚不完全清楚。近10余年,因?yàn)檠装Y體的發(fā)現(xiàn),人們對(duì)牙髓炎的發(fā)生、發(fā)展及轉(zhuǎn)歸有了全新的認(rèn)識(shí)。已有研究結(jié)果表明,在脂多糖等因素刺激下,牙髓成纖維細(xì)胞中黑色素瘤缺乏因子2(AIM2)炎癥體的表達(dá)增加[1-2],并隨著炎癥的進(jìn)展其表達(dá)量有一定的升高。然而,目前對(duì)AIM2炎癥體在牙髓組織中尤其是體內(nèi)研究還相對(duì)較少。本文通過構(gòu)建大鼠牙髓炎模型,研究AIM2炎癥體在大鼠牙髓炎癥發(fā)生、發(fā)展中的作用機(jī)制,為后期尋找牙髓炎拮抗劑或治療分子靶點(diǎn)提供理論依據(jù)?,F(xiàn)將結(jié)果報(bào)告如下。
1材料與方法
1.1實(shí)驗(yàn)材料
低溫離心機(jī)(Centrifuge 5804R,Eppendorf公司,德國);PCR儀(Mastercyler gradient,Eppendorf公司,德國);超低溫冰箱(EKY0014595,三洋公司,日本);Nanodrop 2000分光光度計(jì)(ThermoScientific公司,美國);熒光定量PCR儀(ABI 7500,賽默飛公司,美國);ODYSSEY雙色紅外線激光成像系統(tǒng)(LI-COR公司,美國);Trizol(Invitrogen公司,美國);八聯(lián)管(Invitrogen公司,美國);牙科高速渦輪機(jī)手機(jī)(NSK公司,日本);1/2球鉆(松風(fēng)公司,日本);氯仿、異丙醇、無水乙醇、RNA酶滅活水(上海士鋒生物科技有限公司);Anti-AIM2(Santa-Cruz公司,美國)。
1.2實(shí)驗(yàn)方法
1.2.1大鼠牙髓炎癥模型的建立所用實(shí)驗(yàn)動(dòng)物為8周齡雄性SD大鼠20只,購于空軍軍醫(yī)大學(xué)動(dòng)物中心。100 g/L水合氯醛腹腔注射麻醉后,仰臥固定于鼠板上,用金屬鑷子撐開大鼠下頜,暴露上頜磨牙,用高速渦輪機(jī)(不噴水,1/2球鉆)在大鼠上頜磨牙面開髓,開髓深度約為1 mm,待有透紅點(diǎn)時(shí)停止磨切,用金屬探針在透紅點(diǎn)加壓,形成穿髓孔。每只大鼠右側(cè)上頜磨牙為開髓牙,左側(cè)為對(duì)照牙。每3只同樣處理的大鼠為1組。開髓組僅依靠物理刺激形成牙髓炎癥反應(yīng)。根據(jù)蘇木精-伊紅(HE)染色后炎癥程度,即組織切片中浸潤的炎性細(xì)胞的程度不同分為正常組、3 d組(少量炎性細(xì)胞浸潤)、5 d組(大量炎性細(xì)胞浸潤)、7 d組(牙髓組織壞死)和10 d組(大部分牙髓組織壞死)。
1.2.2HE染色大鼠給予100 g/L水合氯醛腹腔注射,待完全麻醉后,開胸;用40 g/L 多聚甲醛行心臟灌注,待全身僵硬后,解剖大鼠上頜,取出上頜雙側(cè)磨牙及部分上頜骨。將標(biāo)本置于40 g/L多聚甲醛中固定12 h。常規(guī)乙醇脫水,二甲苯透明,石蠟包埋制作切片,進(jìn)行HE常規(guī)染色,觀察動(dòng)物模型牙髓炎癥狀態(tài)。
1.2.3免疫熒光染色組織固定包埋制成石蠟切片,常規(guī)脫蠟水化后,以PBS(pH值7.4, 0.01 mol/L)洗3次,每次5 min;用甲醇新鮮配制的體積分?jǐn)?shù)0.003 H2O2 孵育15 min;PBS洗3次,每次5 min;胰蛋白酶行抗原修復(fù) 37 ℃下孵育30 min;PBS洗3次,每次5 min;體積分?jǐn)?shù)0.10牛血清清蛋白(BSA)37 ℃孵育30 min;加入一抗AIM2(1∶500, 美國Santa-Cruz),4 ℃濕盒中孵育過夜;PBS洗3次,每次5 min;在避光條件下,加FITC標(biāo)記的二抗(1∶200,英國Abcam),37 ℃孵育30 min;PBS洗3次,每次5 min;加入DIPA(細(xì)胞核染色)室溫下孵育3 min;PBS洗3次,每次5 min;體積分?jǐn)?shù)0.10緩沖甘油封片,4 ℃避光保存。熒光顯微鏡下觀察切片(觀察期間應(yīng)處于避光環(huán)境中)。
1.2.4RT-PCR檢測(cè)100 g/L水合氯醛腹腔注射麻醉后,活體進(jìn)行大鼠上頜磨牙取材,將磨牙小心剝離,去凈周圍軟組織后置于液氮罐中保存。進(jìn)行mRNA提取時(shí),將牙齒去除,用手術(shù)刀片小心刮凈牙齒周圍組織,放入液氮中5 min后置于勻漿器中研磨。
采用TRIzol法提取細(xì)胞總RNA,置于-80 ℃冰箱保存?zhèn)溆?。?yīng)用Takara.RR037A反轉(zhuǎn)錄試劑盒將RNA逆轉(zhuǎn)錄為cDNA。以cDNA為模板利用PCR擴(kuò)增試劑盒完成擴(kuò)增。PCR的反應(yīng)條件為:95 ℃下變性30 s,95 ℃下5 s,共40個(gè)循環(huán);60 ℃下離解30~34 s。以內(nèi)參照蛋白GAPDH基因水平為默認(rèn)值1。PCR引物種類及其序列見表1。
1.3統(tǒng)計(jì)學(xué)分析
采用GraphPad Prism 5.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。所得計(jì)量資料數(shù)據(jù)以±s形式表示,兩組比較采用LSD法,多組比較采用單因素方差分析。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1組織病理學(xué)觀察
大鼠上頜雙側(cè)切牙的HE染色結(jié)果顯示,對(duì)照側(cè)無處理的牙齒牙髓組織正常,開髓5 d后出現(xiàn)炎性細(xì)胞,開髓7 d后聚集了大量的炎性細(xì)胞并有部分牙髓組織壞死。見圖1A~C。
2.2免疫熒光染色觀察
熒光顯微鏡下觀察顯示, 健康的大鼠牙髓組織中AIM2主要表達(dá)于成牙本質(zhì)細(xì)胞層,而在牙髓成纖維細(xì)胞中表達(dá)較少(牙髓成纖維細(xì)胞層中綠色熒光分布較少且熒光強(qiáng)度較低);但在開髓5 d后的牙髓組織中,牙髓成纖維細(xì)胞中AIM2的表達(dá)量有明顯的增加(牙髓成纖維細(xì)胞層中綠色熒光分布范圍增加且熒光強(qiáng)度升高)。見圖2A、B。
2.3RT-PCR檢測(cè)AIM2、caspase-1和白細(xì)胞介素1β(IL-1β)的基因表達(dá)水平
單因素方差分析結(jié)果顯示,5組間AIM2、IL-1β、caspase-1基因表達(dá)比較,差異均有統(tǒng)計(jì)學(xué)意義(F=16.345、50.373、6.217,P<0.05);兩兩比較結(jié)果顯示,每組數(shù)據(jù)與前一組進(jìn)行對(duì)比,在開髓3 d組與空白組比較,AIM2和caspase-1基因表達(dá)量差異有統(tǒng)計(jì)學(xué)意義(F=1 178.910、81.224,P<0.01、0.05),IL-1β基因的表達(dá)量在開髓5 d組有顯著升高(F=164.414,P<0.05),并且在7 d后顯著下降(F=18.786,P<0.05)。見表2。
3討論
哺乳動(dòng)物的天然免疫系統(tǒng)是機(jī)體受到外來微生物侵害后啟動(dòng)的第一道防線[3-4]。免疫細(xì)胞對(duì)感染的病原微生物及其產(chǎn)物的識(shí)別主要是依賴于細(xì)胞質(zhì)內(nèi)存在的一類被稱為“炎癥體”的多蛋白復(fù)合物[5-8],該蛋白復(fù)合物為炎癥反應(yīng)的啟動(dòng)者,能夠感受外界信號(hào)刺激,激活caspase-1(半胱天冬酶-1),調(diào)控IL-1β、IL-18和IL-33的成熟和分泌,從而引發(fā)炎癥反應(yīng)[5,9-12]。炎癥體是caspase活化所必需的反應(yīng)平臺(tái),能夠識(shí)別病原體相關(guān)分子模式[13-15],這是一種不同于宿主自身正常細(xì)胞的保守分子結(jié)構(gòu),它可以識(shí)別自身物質(zhì)(例如宿主蛋白)和非自身物質(zhì)(例如微生物),可以感知像病原微生物或細(xì)胞應(yīng)激等“危險(xiǎn)信號(hào)”的存在并做出反應(yīng),而對(duì)自身或共生菌的無害分子沒有影響。AIM2是一種炎癥體,通過識(shí)別細(xì)胞質(zhì)雙鏈DNA與凋亡相關(guān)點(diǎn)狀蛋白結(jié)合,激活下游的caspase-1,促進(jìn)IL-1β的合成及分泌,而IL-1β是一種針對(duì)感染、損傷和炎癥刺激最有利的促炎因子之一[11,16-18]。
AIM2炎癥體在腫瘤和自身免疫性疾病中的作用已經(jīng)得到了廣泛的認(rèn)同,但其在牙髓炎癥反應(yīng)中的作用尚未完全確定。近年來,AIM2炎癥體的體外研究取得了一些進(jìn)展,而體內(nèi)研究尤其是牙髓組織中的研究還很少。與體外實(shí)驗(yàn)相比,體內(nèi)試驗(yàn)更接近生物體內(nèi)實(shí)際條件,對(duì)后續(xù)深入研究以及臨床轉(zhuǎn)化更具有參考價(jià)值。因此,為了研究AIM2炎癥體在牙髓炎癥中的作用,我們采用大鼠上頜磨牙單純開髓誘導(dǎo)的牙髓炎模型,該方法相對(duì)簡(jiǎn)單實(shí)用,且通過設(shè)置開髓深度具有較強(qiáng)的條件可控性。
本文HE染色結(jié)果顯示,開髓3 d后大鼠牙髓組織中有炎性細(xì)胞浸潤,發(fā)生了明顯的炎癥反應(yīng),隨著牙髓開放時(shí)間的延長,牙髓炎癥反應(yīng)程度逐漸加重,并在開髓7 d后出現(xiàn)牙髓壞死。免疫熒光染色結(jié)果顯示,在健康的大鼠牙髓組織中,AIM2主要表達(dá)于成牙本質(zhì)細(xì)胞層,在牙髓細(xì)胞層中僅有少量的表達(dá);而在開髓后的大鼠牙髓細(xì)胞層中AIM2的表達(dá)量有明顯的增多。因此,我們認(rèn)為在大鼠牙髓組織中存在AIM2,并且隨著牙髓開放時(shí)間的延長,AIM2的表達(dá)量尤其是牙髓細(xì)胞層中有顯著的升高,預(yù)示著AIM2的表達(dá)與牙髓的炎癥反應(yīng)有一定的聯(lián)系。至此,我們證實(shí)了牙髓組織中AIM2炎癥體的表達(dá)并且其表達(dá)量與炎癥呈正相關(guān)。
本文RT-PCR檢測(cè)結(jié)果顯示,牙髓組織開髓的早期,AIM2、caspase-1和IL-1β基因表達(dá)水平均有上升的趨勢(shì),表明AIM2在大鼠牙髓組織中的表達(dá)量增加與牙髓炎癥反應(yīng)的程度有著密切的聯(lián)系,并且AIM2和caspase-1表達(dá)顯著上調(diào)的時(shí)間節(jié)點(diǎn)要早于IL-1β,而且上調(diào)的趨勢(shì)更為顯著。因此,我們推測(cè)AIM2在大鼠牙髓炎的發(fā)生、發(fā)展中起到了正調(diào)節(jié)作用。后期隨著牙髓組織的壞死其表達(dá)量出現(xiàn)了下降的趨勢(shì),我們認(rèn)為可能是由于組織壞死引起的細(xì)胞量減少繼而導(dǎo)致AIM2表達(dá)量的下降。同時(shí),AIM2炎癥體對(duì)細(xì)胞凋亡可能也有一定的調(diào)控作用,這一點(diǎn)還有待進(jìn)一步研究證實(shí)。
本文研究AIM2炎癥體在大鼠牙髓組織中的表達(dá),結(jié)果顯示,在基因水平上其表達(dá)量與炎癥反應(yīng)呈正相關(guān);對(duì)其下游因子的檢測(cè)結(jié)果顯示,促炎細(xì)胞因子IL-1β的表達(dá)量變化發(fā)生時(shí)間要晚于AIM2,我們認(rèn)為AIM2能夠在大鼠牙髓組織中對(duì)IL-1β的表達(dá)起到正調(diào)節(jié)作用,即AIM2在大鼠牙髓炎發(fā)生發(fā)展中起到了重要的促進(jìn)作用。此外,AIM2炎癥體表達(dá)量的上調(diào)出現(xiàn)的非常早,在開髓3 d即出現(xiàn)了顯著的上升,提示AIM2可能在大鼠牙髓炎癥的早期或急性期發(fā)揮重要作用。開髓7~10 d,AIM2炎癥體的表達(dá)量出現(xiàn)了小幅度的上升,而HE染色顯示這一時(shí)間段內(nèi)牙髓組織開始出現(xiàn)壞死。我們推測(cè)除了炎癥反應(yīng)以外,AIM2炎癥體可能與牙髓組織的壞死有著密切的聯(lián)系。當(dāng)然,這些結(jié)論尚需進(jìn)一步的研究證實(shí)。
牙髓炎一直是困擾臨床醫(yī)生的一個(gè)難題[19-20],就目前的診療方式而言,根管治療是治療牙髓炎癥,尤其是不可逆炎癥的首選方法[21-25]。但是,在治療過程中清除的牙髓組織難以再生,而缺少牙髓組織營養(yǎng)供給的牙本質(zhì)因其有機(jī)物的降解而增加了其脆性,導(dǎo)致術(shù)后容易發(fā)生冠根折[26-32],最終引起牙齒的缺失[33]。而對(duì)于炎癥反應(yīng)的早期干預(yù)是否能夠有效地降低不可逆性牙髓炎的發(fā)生尚不確定[34]。本研究證實(shí)了牙髓組織中存在AIM2炎癥信號(hào)通路,這將會(huì)為后期尋找牙髓炎癥上游的調(diào)控靶點(diǎn)提供研究基礎(chǔ),也可為后期臨床牙髓炎的早期干預(yù)提供理論依據(jù)。
[參考文獻(xiàn)]
[1]WANG Y F, ZHAI S F, WANG H J, et al. Absent in melanoma 2 (AIM2) in rat dental pulp mediates the inflammatory response during pulpitis[J]. Journal of Endodontics, 2013,39(11):1390-1394.
[2]ZHAI S F, WANG Y F, JIANG W K, et al. Nemotic human dental pulp fibroblasts promote human dental pulp stem cells migration[J]. Experimental Cell Research, 2013,319(10):1544-1552.
[3]RAY A, COT M, PUZO G, et al. Bacterial cell wall macroamphiphiles: pathogen-/microbe-associated molecular patterns detected by mammalian innate immune system[J]. Biochimie, 2013,95(1):33-42.
[4]OSHIUMI H, MATSUMOTO M, SEYA T. Role of ubiquitin ligase in innate immune response in mammal[J]. Seikagaku the Journal of Japanese Biochemical Society, 2012,84(6):455-462.
[5]SHARMA B R, KARKI R, KANNEGANTI T D. Role of AIM2 inflammasome in inflammatory diseases, cancer and infection[J]. European Journal of Immunology, 2019,49(11):1998-2011.
[6]FARSHCHIAN M, NISSINEN L, SILJAMKI E, et al. Tumor cell-specific AIM2 regulates growth and invasion of cutaneous squamous cell carcinoma[J]. Oncotarget, 2017,8(28):45825-45836.
[7]KARKI R, KANNEGANTI T D. Diverging inflammasome signals in tumorigenesis and potential targeting[J]. Nature Reviews Cancer, 2019,19(4):197-214.
[8]JACOBS S R, DAMANIA B. NLRs, inflammasomes, and viral infection[J]. Journal of Leukocyte Biology, 2012,92(3):469-477.
[9]FERNANDES-ALNEMRI T, YU J W, JULIANA C, et al.The AIM2 inflammasome is critical for innate immunity toFrancisella tularensis[J]. Nature Immunology, 2010,11(5):385-393.
[10]HORNUNG V, ABLASSER A, CHARREL-DENNIS M, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC[J]. Nature, 2009,458(7237):514-518.
[11]WARREN S E, ARMSTRONG A, HAMILTON M K, et al. Cutting edge: cytosolic bacterial DNA activates the inflammasome via Aim2[J]. Journal of Immunology (Baltimore, Md:1950), 2010,185(2):818-821.
[12]SCHRODER K, MURUVE D A, TSCHOPP J. Innate immunity: cytoplasmic DNA sensing by the AIM2 inflammasome[J]. Current Biology, 2009,19(6): R262-R265.
[13]TANG D L, KANG R, COYNE C B, et al. PAMPs and DAMPs: signal 0s that spur autophagy and immunity[J]. Immunological Reviews, 2012,249(1):158-175.
[14]LI N, XU H B, OU Y R, et al. LPS-induced CXCR7 expression promotes gastric Cancer proliferation and migration via the TLR4/MD-2 pathway[J]. Diagnostic Pathology, 2019,14(1):3.
[15]LUDGATE C M. Optimizing cancer treatments to induce an acute immune response: radiation abscopal effects, PAMPs, and DAMPs[J]. Clinical Cancer Research, 2012,18(17):4522-4525.
[16]MASSOUMI R L, TEPER Y, AKO S, et al. Direct effects of lipopolysaccharide on human pancreatic cancer cells[J]. Pancreas, 2021,50(4):524-528.
[17]YOKOYAMA S, CAI Y, MURATA M, et al. A novel pathway of LPS uptake through syndecan-1 leading to pyroptotic cell death[J]. eLife, 2018,7: e37854.
[18]MURAKAMI K, KAMIMURA D, HASEBE R, et al. Rhodobacter azotoformans LPS (RAP99-LPS) is a TLR4 agonist that inhibits lung metastasis and enhances TLR3-mediated chemokine expression[J]. Frontiers in Immunology, 2021,12:675909.
[19]DONNERMEYER D, DAMMASCHKE T, LIPSKI M, et al. Effectiveness of diagnosing pulpitis: a systematic review[J]. International Endodontic Journal, 2022. doi:10.1111/iej.13762.
[20]BRODZIKOWSKA A, CIECHANOWSKA M, KOPKA M, et al. Role of lipopolysaccharide, derived from various bacterial species, in pulpitis-a systematic review[J]. Biomolecules, 2022,12(1):138.
[21]SKITIOUI M, SECK A, NIANG S O, et al. The treatment of mature permanent teeth with irreversible pulpitis by cervical pulpotomy: a systematic review[J]. Australian Endodontic Journal: the Journal of the Australian Society of Endodontology Inc, 2022. doi:10.1111/aej.12694.
[22]BURNS L E, KIM J, WU Y X, et al. Outcomes of primary root canal therapy: an updated systematic review of longitudinal clinical studies published between 2003 and 2020[J]. International Endodontic Journal, 2022,55(7):714-731.
[23]SADAF D, AHMAD M Z, ONAKPOYA I J. Effectiveness of intracanal cryotherapy in root canal therapy: a systematic review and meta-analysis of randomized clinical trials[J]. Journal of Endodontics, 2020,46(12):1811-1823.e1.
[24]CASTAGNOLA R, MINCIACCHI I, RUPE C, et al. The outcome of primary root canal treatment in postirradiated patients: ACaseSeries[J]. Journal of Endodontics, 2020,46(4):551-556.
[25]RUKSAKIET K, HANK L, FARKAS N, et al. Antimicrobial efficacy of chlorhexidine and sodium hypochlorite in root canal disinfection: a systematic review and meta-analysis of randomized controlled trials[J]. Journal of Endodontics, 2020,46(8):1032-1041.e7.
[26]ASGARY S, EGHBAL M J, SHAHRAVAN A, et al. Outcomes of root canal therapy or full pulpotomy using two endodontic biomaterials in mature permanent teeth: a randomized controlled trial[J]. Clinical Oral Investigations, 2022,26(3):3287-3297.
[27]BHUVA B, GIOVARRUSCIO M, RAHIM N, et al. The restoration of root filled teeth: a review of the clinical literature[J]. International Endodontic Journal, 2021,54(4):509-535.
[28]UYSAL S, AKCICEK G, YALCIN E D, et al. The influence of voxel size and artifact reduction on the detection of vertical root fracture in endodontically treated teeth[J]. Acta Odontologica Scandinavica, 2021,79(5):354-358.
[29]HILTON T J, FUNKHOUSER E, FERRACANE J L, et al. Baseline characteristics as 3-year predictors of tooth fracture and crack progression[J]. The Journal of the American Dental Association, 2021,152(2):146-156.
[30]LIAO W C, CHEN C H, PAN Y H, et al. Vertical root fracture in non-endodontically and endodontically treated teeth: current understanding and future challenge[J].? Journal of Personalized Medicine, 2021,11(12):1375.
[31]YAMAGUCHI M, FUKASAWA S. Is inflammation a friend or foe for orthodontic treatment?? inflammation in orthodontically induced inflammatory root resorption and accelerating tooth movement[J].? International Journal of Molecular Sciences, 2021,22(5):2388.
[32]XU H P, YE N, LIN F, et al. A new method to test the fracture strength of endodontically treated root dentin[J].? Dental Materials, 2021,37(5):796-804.
[33]HILTUNEN K, VEHKALAHTI M M. Why and when older people lose their teeth: a study of public healthcare patients aged 60 years and over in 2007—2015[J].? Gerodontology, 2022. doi:10.1111/ger.12657.
[34]LIN L M, RICUCCI D, SAOUD T M, et al. Vital pulp therapy of mature permanent teeth with irreversible pulpitis from the perspective of pulp biology[J].? Australian Endodontic Journal, 2020,46(1):154-166.
(本文編輯牛兆山)