王濤,徐丹
金屬有機框架材料載體系統(tǒng)在食品抗菌包裝中的應用
王濤,徐丹
(西南大學 食品科學學院,重慶 400715)
綜述金屬有機框架材料(Metal-organic frameworks,MOFs)作為載體系統(tǒng)在食品抗菌包裝領域的研究現(xiàn)狀和應用進展,以期為MOFs類抗菌包裝材料的研發(fā)和應用提供參考。介紹MOFs的基本概念及分類,概述MOFs的制備方法(加熱法、機械法和電化學法等),總結歸納近年來MOFs作為載體系統(tǒng)在無機抗菌劑、有機抗菌劑和天然抗菌劑領域的應用,并討論MOFs作為載體系統(tǒng)的機遇和挑戰(zhàn)。MOFs作為一種有機與無機相結合的多孔性復合材料,不僅可有效封裝抗菌劑,實現(xiàn)緩釋和控釋,且將MOFs復合材料作為高分子填料可提高其抗菌性能、力學性能和抗紫外線性能等,因此在制備高效、安全的食品抗菌包裝方面具有巨大潛力。
金屬有機框架材料;載體系統(tǒng);食品抗菌包裝
微生物污染是造成食品變質并導致食品安全問題的主要原因之一,可能發(fā)生在原料獲得、加工、貯藏和銷售等各環(huán)節(jié)[1]。為了更好地減少微生物在食品加工和流通各環(huán)節(jié)對食品的污染,減少食品中防腐劑的添加,抗菌食品包裝逐漸成為近年的研究熱點。抗菌包裝指將抗菌物質添加到包裝材料中,通過抗菌物質與食品的直接接觸或以一定速度釋放至食品中,起到殺菌或抑制微生物生長的作用,從而延緩食品的腐敗變質,提升食品安全[2]。
在抗菌包裝中添加的抗菌物質可分為無機抗菌劑、有機抗菌劑和天然抗菌劑。直接將抗菌劑添加至包裝基材中可能存在以下2個問題:一是抗菌劑與包裝基材的相容性不足,導致抗菌劑在基材中難以分散,對基材性能存在不良影響;二是釋放型抗菌劑的抗菌效果好,但需對其釋放速率進行調控。目前,采用載體系統(tǒng)對抗菌劑進行封裝和控釋是解決上述問題的有效策略之一。采用載體系統(tǒng)對抗菌劑進行封裝,不僅能提高其相容性,還能起到控釋效果。有機和無機化合物都可作為載體系統(tǒng),如聚合物[3]、脂質體[4]、沸石[5]和量子點[6]等。雖然有機載體具有生物相容性好、低毒、可化學改性等優(yōu)點,但其合成過程通常較復雜,且負載率較低。雖然無機多孔材料具有較高的負載能力,但存在結構單一、缺乏柔性、孔道不規(guī)則等缺點,不具備控釋性能,限制了其應用范圍。
金屬有機框架材料(Metal-organic frameworks,MOFs)是近年來發(fā)展起來的一種由有機配體和金屬離子或團簇通過配位鍵自組裝形成的具有分子內(nèi)孔隙的有機?無機雜化材料,具有比表面積大、孔徑可調節(jié)、生物相容性好等優(yōu)點[7],在醫(yī)藥[8]、化工[9]、環(huán)境[10]等多個領域具有良好的應用前景。在食品工程領域,大量研究已經(jīng)將MOFs用作氣體吸附劑[11]或活性物質載體[12],應用于食品檢測、食品加工及食品包裝[13]等領域。同時,MOFs也被作為多種抗菌劑的載體,用于提高抗菌效率或調控釋放速率,表現(xiàn)出良好的應用前景。文中首先介紹MOFs的基本概念及分類,然后綜述其作為抗菌劑載體系統(tǒng)在食品包裝中的最新研究進展,以期為MOFs類抗菌包裝材料的研發(fā)和應用提供參考。
MOFs主要是由含氧、氮等多齒有機配體(大多為芳香多酸和多堿)與金屬離子或離子簇通過配位鍵連接而成的一類多孔晶體材料[14],其孔隙率較高,且孔隙形狀和尺寸可調[15],兼具無機材料的剛性和有機材料的柔性,是一類極具應用前景的多孔材料。根據(jù)MOFs的配體結構,可將其分為羧酸類、氮雜環(huán)類,以及環(huán)糊精等生物分子類,如表1所示。
MOFs可采用以下3種方法合成。
1)加熱法。以水、N,N-二甲基甲酰胺、甲醇等為溶劑體系,將金屬離子和有機配體等原料混合均勻后加熱合成MOFs。根據(jù)加熱方式,可分為溶劑熱法[22]、超聲波法[23]和微波法[24]。相較于溶劑熱法,超聲波法能在短時間內(nèi)合成粒徑較小的MOFs材料[25],微波法有利于合成粒徑均一的MOFs材料[26]。
2)機械法[27]。機械法的優(yōu)點在于無須加入溶劑,只需按比例添加金屬鹽和配體后進行機械研磨,即可合成MOFs材料,具有操作簡便、環(huán)保等優(yōu)點。
3)電化學法[28]。這種方法以有機配體為電解質,以陽極為金屬離子產(chǎn)生源,通電后在電極附近持續(xù)不斷地合成MOFs。這種方法對配體的利用率較高,可連續(xù)化生產(chǎn),適用于MOFs的工業(yè)化生產(chǎn)。
通過有機配體的選擇,可以調控MOFs比表面積和孔隙結構,使其具有高負載和可控釋放的能力[29],為其包封不同種類和尺寸的抗菌劑奠定基礎。此外,MOFs中的金屬活性位點較多且分布均勻[30],用于抗菌劑負載時,不僅負載率高,且能均勻分散。目前,將MOFs作為載體系統(tǒng)對抗菌劑進行包封包括3種封裝方式(圖1)[31]:原位封裝法,將合成MOFs的原料與抗菌劑溶液混合,在合成MOFs的同時也將抗菌劑包封在孔內(nèi);后合成法,將合成后的MOFs與抗菌劑溶液混合,利用兩者之間的相互作用將抗菌劑封裝在MOFs孔內(nèi);自組裝法,將抗菌劑作為MOFs的配體(或配位中心)合成MOFs,制備的MOFs材料不僅負載率高,且能負載其他抗菌劑,實現(xiàn)協(xié)同抗菌效果。將MOFs載體系統(tǒng)與抗菌劑通過以上3種包封方法形成的復合物或配合物統(tǒng)稱為MOFs抗菌系統(tǒng)。在使用時,可將MOFs抗菌系統(tǒng)放入無紡布袋中直接使用,也可與高分子基材成膜,或作為其他薄膜材料的涂層,通過與食品接觸或釋放抗菌劑來發(fā)揮抗菌作用。
根據(jù)常用抗菌劑的化學組成和來源,可將其分為無機抗菌劑、有機抗菌劑和天然抗菌劑3類。針對以上3類抗菌劑,MOFs均可作為其載體來制備抗菌材料,如圖2所示。
表1 MOFs的分類
Tab.1 Classification of MOFs
圖1 MOFs包封抗菌劑的方式[31]
圖2 MOFs作為抗菌劑載體系統(tǒng)的分類
按照抗菌機理可將無機抗菌劑分為金屬型和光催化型兩大類。金屬型抗菌劑指利用銀、銅、鋅等金屬(或其離子)的抗菌性能,通過物理吸附或離子交換等方式將其固定在載體材料上制成的抗菌劑[32]。它們的抗菌機制是與微生物內(nèi)蛋白質的硫基(—SH)等相互作用,破壞細胞合成酶的活性,影響細胞的正常代謝,導致微生物死亡[33]。其中,銀離子的抗菌能力遠高于其他金屬離子,其應用也最廣泛。光催化型抗菌劑主要為一些金屬氧化物(如二氧化鈦、氧化鋅等),在光的作用下金屬離子激活空氣和水中的氧,產(chǎn)生羥基自由基和活性氧離子,與細菌細胞膜上的多元不飽和磷脂發(fā)生反應,導致細菌死亡[34]。二氧化鈦具有穩(wěn)定性高、氧化能力強、毒性小等優(yōu)點,應用較廣泛。
無機抗菌劑具有良好的廣譜抗菌活性,在短時間和低濃度接觸下對真核細胞的影響較弱,對微生物具有很強的毒性[35],但單獨使用時存在分散性差、釋放速率不易控制、長時間直接接觸對人類有毒性作用等缺點[36]。采用多孔性材料(如MOFs)對其進行負載,能有效解決上述問題。表2列舉了以MOFs為無機抗菌劑載體在食品保鮮和食品包裝中的研究。其中,Duan等[37]將合成后的金屬有機框架(HKUST-1)@羧甲基纖維(Carboxymethylated fibers,CFs)作為載體浸入硝酸銀溶液中,利用原位微波還原技術將納米銀(AgNPs)均勻固定在載體表面和孔隙中,成功制備了納米銀顆粒@金屬有機框架@羧甲基纖維復合材料(AgNPs@HKUST-1@CFs)。結果表明,該復合材料對金黃色葡萄球菌的生長抑制率為99.41%,遠高于AgNPs@CFs的12.94%和HKUST-1@CFs的64.12%,具有作為高效復合抗菌包裝膜的潛力。Zhang等[38]利用Ag+和殼聚糖(CS)分子間的相互作用,將Ag+作為配位中心,引導Ag-MOFs在殼聚糖基質中生長,制備出在水中具有良好分散性和穩(wěn)定性的Ag-MOFs@CS復合材料。結果表明,Ag-MOFs@CS對大腸桿菌和金黃色葡萄球菌的抑制能力均高于Ag@CS,且放置100 d后仍能保持良好的抗菌性能。將 Ag-MOFs@CS懸浮液噴灑于火龍果表面,可將其貨架期延長7 d。以上研究表明,MOFs可用作銀等金屬納米顆?;螂x子類抗菌劑的載體,不僅可以防止其過度釋放,也可促進其在基材中均勻分散,提高抗菌效果。
有機抗菌劑指以酚類、醇類、季胺類、鹵化物類、吡啶類、咪唑類等有機物為主要成分的抗菌劑,根據(jù)分子量可分為高分子和低分子2類。高分子抗菌劑主要通過均聚、接枝等方式引入抗菌官能團來獲得抗菌能力[42],其殺菌速度快、抗菌效果好,在水處理[43]、涂料[44]、家裝[45]等領域得到廣泛應用。低分子抗菌劑可與微生物細胞膜結合并進入細胞內(nèi),破壞蛋白質結構,阻礙細胞膜的合成,從而抑制微生物的繁殖[46]。
MOFs作為載體系統(tǒng)已經(jīng)應用于一些低分子有機抗菌劑,如乙醇[47]、乙醛等。Nagarajan等[48]利用環(huán)糊精金屬有機框架(CD-MOF)作為模板捕獲并儲存己醛,然后將其應用于芒果保鮮中。結果表明,對照組果實在貯藏第10天時已腐爛變質,而處理組果實由于CD-MOF的控釋作用,其貨架期達到15 d,因此CD-MOF封裝被認為是實現(xiàn)己醛控釋并將其應用于食品保鮮的有效途徑之一。
天然抗菌劑直接源于動植物體內(nèi),或由微生物合成,具有抗菌范圍廣、安全性高、無毒、無害、環(huán)保、生物相容性好等突出優(yōu)點[49],是最古老的抗菌劑。不同來源的天然抗菌劑的抗菌機制有所不同。其中,植物源抗菌劑的抗菌機制為破壞微生物的細胞壁、細胞膜、細胞質膜,導致細胞內(nèi)物質外流,使細胞質發(fā)生凝聚等抑菌現(xiàn)象,每種作用機制都存在一定關聯(lián)性[50]。目前,動物源抗菌劑的抗菌機制尚不完全,在殼聚糖研究中有2種機制被人們廣泛接受[51]:殼寡糖分子中的氨基帶正電,能夠吸附在微生物表面,破壞細胞壁和細胞膜,進而導致細菌死亡;以滲透方式進入細菌細胞內(nèi),吸附陰離子等物質,導致細胞活動紊亂而死亡。微生物源抗菌劑的抗菌機制有以下幾種:通過競爭的方式獲得生存繁殖能力,抑制微生物生長;分泌抗菌物質,抑制微生物生長;直接作用于微生物;寄生于微生物上[52]。
表2 MOFs作為無機抗菌劑載體在食品保鮮和食品包裝中的應用
Tab.2 Application of MOFs as inorganic antibacterial agent carrier in food preservation and packaging
MOFs與以上3種天然抗菌劑的結合均有報道,但尤以植物源抗菌劑研究最多。植物源天然抗菌劑主要為精油類物質,是食品抗菌包裝中研究得最多的一類,它存在揮發(fā)性強、有刺激性氣味、不溶于水等缺點,同時易與食品中的某些成分(如水、脂質、蛋白質)發(fā)生反應,通常需要大劑量才能實現(xiàn)有效抗菌,因此將MOFs作為載體系統(tǒng)與植物源抗菌劑結合使用是發(fā)揮其效用的一種有效策略。列舉了MOFs作為植物源抗菌劑載體的應用研究,見表3。Lashkari等[53]用HKUST-1、MOF-74(Zn)和RPM6-Zn 3種金屬有機框架材料包埋從植物中提取的異硫氰酸烯丙酯(Allyl isothiocyanate,AITC),并測定了復合材料在不同濕度環(huán)境下對AITC的控釋效果。結果表明,在低濕度環(huán)境(相對濕度30%~35%)下僅有少量釋放,而在高濕度環(huán)境(相對濕度95%~100%)下則完全釋放。這種利用濕度作為外部觸發(fā)器為活性物質的控釋提供了新策略。Min等[54]使用卟啉金屬有機框架負載百里酚,并將其與普魯蘭多糖/聚乙烯醇共混,制備出納米纖維(THY@PCN/PUL/PVA),成功解決了百里酚易于揮發(fā)和難溶于水的問題。這種釋放行為表明,純百里酚的釋放時間為96 h,而THY@PCN的釋放時間達到192 h。細胞活力測定結果表明,該膜具有良好的生物安全性。果蔬保鮮實驗表明,該膜對葡萄和草莓均具有延長保鮮時間的效果。Zhao等[55]將辣椒素負載于中空金屬有機框架FeⅢ-HMOF-5中,并加入明膠/殼聚糖制備抗菌包裝膜。結果表明,F(xiàn)eIII-HMOF-5的添加有效提高了辣椒素在明膠/殼聚糖基質中的相容性,顯著增強了膜的拉伸強度、透濕性和抗紫外線性能,以及對大腸桿菌的抗菌活性,并延長了鮮切蘋果的保鮮時間。由此可見,MOFs包埋植物源天然抗菌劑有效解決了其揮發(fā)性強、疏水性高、生物相容性差等問題,為推動該抗生劑在食品抗菌包裝領域的實際應用提供了有效途徑。
動物源天然抗菌劑一般為甲殼素和殼聚糖及其衍生物,是常用的天然抗菌劑之一,其分子量大,不易被MOFs包封,通常將MOFs作為填料與其共混使用[59]。微生物源天然抗菌劑(如乳酸鏈球菌素、納他霉素、溶菌酶和片球菌素等)在食品抗菌包裝中已得到廣泛應用[60-62]。其中,Nisin和納他霉素對環(huán)境變化較敏感,易與食品中的成分相互作用,通常需要借助包埋系統(tǒng)克服其應用局限,目前尚未見以MOFs為載體的相關研究。雖然MOFs已被證實可作為酶等蛋白類物質的載體[63-65],但作為具有抗菌活性的酶類載體系統(tǒng)應用于抗菌包裝的研究較少。后續(xù)可加強MOFs對微生物源天然抗菌劑進行包封的研究,以提高其耐受性、穩(wěn)定性和重復利用性。
表3 MOFs作為植物源天然抗菌劑載體在食品保鮮和食品包裝中的應用
Tab.3 Application of MOFs as plant-derived natural antibacterial agent carriers in food preservation and packaging
MOFs作為一種有機與無機結合的多孔性復合材料,具有比表面積高、孔隙結構可調、適應性強、生物相容性好等優(yōu)點,不僅可有效封裝抗菌劑,實現(xiàn)緩釋和控釋,將MOFs復合材料作為高分子填料還可提高其抗菌性能、力學性能和抗紫外線性能等,因此在制備高效、安全的食品抗菌包裝方面具有巨大潛力。目前,MOFs作為載體系統(tǒng)用于食品包裝領域雖已有較多研究,但仍需在以下幾方面進一步深入探討,以推動其實際應用。
1)根據(jù)抗菌劑的結構和性能特點,制備和選擇具有適宜孔徑和化學特性的MOFs,以提高抗菌劑的負載效率,實現(xiàn)不同環(huán)境下的控釋。
2)不同種類的MOFs載體對抗菌劑的活性、結構、釋放等方面的影響仍有待進一步研究。
3)粉末狀MOFs與合成高分子復合可能對回收利用造成一定影響,可將其與天然/可降解高分子材料復合,并進一步研究其可降解性能。
4)MOFs中的金屬離子或有機配體可能存在潛在毒性,應盡量選用低毒的金屬離子和生物相容性好的有機配體,且在用于食品接觸材料時需對其遷移風險進行評估。
[1] NERíN C, AZNAR M, CARRIZO D. Food Contamination during Food Process[J]. Trends in Food Science & Technology, 2016, 48: 63-68.
[2] APPENDINI P, HOTCHKISS J. Review of Antimicrobial Food Packaging[J]. Innovative Food Science & Emerging Technologies, 2002, 3(2): 113-126.
[3] CHEN Chen-wei, ZONG Lin, WANG Jia-xi, et al. Microfibrillated Cellulose Reinforced Starch/Polyvinyl Alcohol Antimicrobial Active Films with Controlled Release Behavior of Cinnamaldehyde[J]. Carbohydrate Polymers, 2021, 272: 118448.
[4] LI Yi, LU Ai-ling, LONG Meng-meng, et al. Nitroimidazole Derivative Incorporated Liposomes for Hypoxia-Triggered Drug Delivery and Enhanced Therapeutic Efficacy in Patient-Derived Tumor Xenografts[J]. Acta Biomaterialia, 2019, 83: 334-348.
[5] YOUSSEF H F, EL-NAGGAR M E, FOUDA F K, et al. Antimicrobial Packaging Film Based on Biodegradable CMC/PVA-Zeolite Doped with Noble Metal Cations[J]. Food Packaging and Shelf Life, 2019, 22: 100378.
[6] PARDO J, PENG Zhi-li, LEBLANC R. Cancer Targeting and Drug Delivery Using Carbon-Based Quantum Dots and Nanotubes[J]. Molecules, 2018, 23(2): 378.
[7] PETTINARI C, PETTINARI R, DI NICOLA C, et al. Antimicrobial MOFs[J]. Coordination Chemistry Reviews, 2021, 446: 214121.
[8] LIU Yi-wei, ZHOU Lu-yi, DONG Ying, et al. Recent Developments on MOF-Based Platforms for Antibacterial Therapy[J]. RSC Medicinal Chemistry, 2021, 12(6): 915-928.
[9] DU Ying-jie, JIA Xiao-tong, ZHONG Le, et al. Metal-Organic Frameworks with Different Dimensionalities: An Ideal Host Platform for enzyme@MOF Composites[J]. Coordination Chemistry Reviews, 2022, 454: 214327.
[10] JIA Wen-wen, FAN Rui-qing, ZHANG Jian, et al. Smart MOF-on-MOF Hydrogel as a Simple Rod-Shaped Core for Visual Detection and Effective Removal of Pesticides[J]. Small, 2022, 18(19): 2201510.
[11] SULTANA A, KATHURIA A, GAIKWAD K. Metal-Organic Frameworks for Active Food Packaging-A Review[J]. Environmental Chemistry Letters, 2022, 20(2): 1479-1495.
[12] MAGRI A, PETRICCIONE M, GUTIéRREZ T. Metal-Organic Frameworks for Food Applications: A Review[J]. Food Chemistry, 2021, 354: 129533.
[13] WANG Pei-long, XIE Lin-hua, JOSEPH E, et al. Metal-Organic Frameworks for Food Safety[J]. Chemical Reviews, 2019, 119(18): 10638-10690.
[14] LIU Chang, WU Yi-nan, MORLAY C, et al. General Deposition of Metal-Organic Frameworks on Highly Adaptive Organic-Inorganic Hybrid Electrospun Fibrous Substrates[J]. ACS Applied Materials & Interfaces, 2016, 8(4): 2552-2561.
[15] MALLAKPOUR S, NIKKHOO E, HUSSAIN C. Application of MOF Materials as Drug Delivery Systems for Cancer Therapy and Dermal Treatment[J]. Coordination Chemistry Reviews, 2022, 451: 214262.
[16] EDDAOUDI M, KIM J, ROSI N, et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage[J]. Science, 2002, 295(5554): 469-472.
[17] FéREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area[J]. Science, 2005, 309(5743): 2040-2042.
[18] SHOAEE M, ANDERSON M, ATTFIELD M. Crystal Growth of the Nanoporous Metal-Organic Framework HKUST-1 Revealed by in Situ Atomic Force Microscopy[J]. Angewandte Chemie International Edition, 2008, 47(44): 8525-8528.
[19] CAVKA J, JAKOBSEN S, OLSBYE U, et al. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851.
[20] WANG Bo, C?Té A, FURUKAWA H, et al. Colossal Cages in Zeolitic Imidazolate Frameworks as Selective Carbon Dioxide Reservoirs[J]. Nature, 2008, 453(7192): 207-211.
[21] HE Yuan-zhi, ZHANG Wei, GUO Tao, et al. Drug Nanoclusters Formed in Confined Nano-Cages of CD-MOF: Dramatic Enhancement of Solubility and Bioavailability of Azilsartan[J]. Acta Pharmaceutica Sinica B, 2019, 9(1): 97-106.
[22] HE Chun-bai, LIU De-min, LIN Wen-bin. Nanomedicine Applications of Hybrid Nanomaterials Built from Metal-Ligand Coordination Bonds: Nanoscale Metal-Organic Frameworks and Nanoscale Coordination Polymers[J]. Chemical Reviews, 2015, 115(19): 11079-11108.
[23] BIGDELI F, GHASEMPOUR H, AZHDARI TEHRANI A, et al. Ultrasound-Assisted Synthesis of Nano-Structured Zinc(Ⅱ)-Based Metal-Organic Frameworks as Precursors for the Synthesis of ZnO Nano-Structures[J]. Ultrasonics Sonochemistry, 2017, 37: 29-36.
[24] CHOI J, SON W, KIM J, et al. Metal-Organic Framework MOF-5 Prepared by Microwave Heating: Factors to be Considered[J]. Microporous and Mesoporous Materials, 2008, 116(1/2/3): 727-731.
[25] GEDANKEN A. Using Sonochemistry for the Fabrication of Nanomaterials[J]. Ultrasonics Sonochemistry, 2004, 11(2): 47-55.
[26] PARK S, CHANG J, HWANG Y, et al. Supramolecular Interactions and Morphology Control in Microwave Synthesis of Nanoporous Materials[J]. Catalysis Surveys from Asia, 2004, 8(2): 91-110.
[27] YUAN Wen-bing, FRI??I? T, APPERLEY D, et al. High Reactivity of Metal-Organic Frameworks under Grinding Conditions: Parallels with Organic Molecular Materials[J]. Angewandte Chemie International Edition, 2010, 49(23): 3916-3919.
[28] CAMPAGNOL N, VAN ASSCHE T, BOUDEWIJNS T, et al. High Pressure, High Temperature Electrochemical Synthesis of Metal-Organic Frameworks: Films of MIL-100 (Fe) and HKUST-1 in Different Morphologies[J]. Journal of Materials Chemistry A, 2013, 1(19): 5827-5830.
[29] WANG Ying, YAN Jian-hua, WEN Na-chuan, et al. Metal-Organic Frameworks for Stimuli-Responsive Drug Delivery[J]. Biomaterials, 2020, 230: 119619.
[30] JIAO Long, SEOW J Y, SKINNER W, et al. Metal-Organic Frameworks: Structures and Functional Applications[J]. Materials Today, 2019, 27: 43-68.
[31] KAUR N, TIWARI P, KAPOOR K, et al. Metal-Organic Framework Based Antibiotic Release and Antimicrobial Response: An Overview[J]. CrystEngComm, 2020, 22(44): 7513-7527.
[32] MILLER K, WANG Lei, BENICEWICZ B, et al. Inorganic Nanoparticles Engineered to Attack Bacteria[J]. Chemical Society Reviews, 2015, 44(21): 7787-7807.
[33] VALDEZ-SALAS B, BELTRáN-PARTIDA E, ZLATEV R, et al. Structure-Activity Relationship of Diameter Controlled Ag@Cu Nanoparticles in Broad-Spectrum Antibacterial Mechanism[J]. Materials Science and Engineering: C, 2021, 119: 111501.
[34] ZHANG Wan-li, RHIM J. Titanium Dioxide (TiO2) for the Manufacture of Multifunctional Active Food Packaging Films[J]. Food Packaging and Shelf Life, 2022, 31: 100806.
[35] KIM J, KUK E, YU K, et al. Antimicrobial Effects of Silver Nanoparticles[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2007, 3(1): 95-101.
[36] HUSSAIN S M, HESS K L, GEARHART J M, et al. In Vitro Toxicity of Nanoparticles in BRL 3A Rat Liver Cells[J]. Toxicology in Vitro, 2005, 19(7): 975-983.
[37] DUAN Chao, MENG Jing-ru, WANG Xin-qi, et al. Synthesis of Novel Cellulose- Based Antibacterial Composites of Ag Nanoparticles@Metal-Organic Frameworks@ Carboxymethylated Fibers[J]. Carbohydrate Polymers, 2018, 193: 82-88.
[38] ZHANG Yuan-cheng, LIN Zhen-hao, HE Qiu-wen, et al. Enhanced Aqueous Stability and Long-Acting Antibacterial of Silver-Based MOFs via Chitosan-Crosslinked for Fruit Fresh-Keeping[J]. Applied Surface Science, 2022, 571: 151351.
[39] ZHANG Meng, ZHENG Yu-qi, JIN Yang, et al. Ag@MOF-loaded P-Coumaric Acid Modified Chitosan/Chitosan Nanoparticle and Polyvinyl Alcohol/Starch Bilayer Films for Food Packing Applications[J]. International Journal of Biological Macromolecules, 2022, 202: 80-90.
[40] FU Dong-sheng, DING Yuan-zheng, GUO Rui-jie, et al. Polylactic Acid/Polyvinyl Alcohol-Quaternary Ammonium Chitosan Double-Layer Films Doped with Novel Antimicrobial Agent CuO@ZIF-8 NPs for Fruit Preservation[J]. International Journal of Biological Macromolecules, 2022, 195: 538-546.
[41] WU Ya-meng, ZHAO Pei-chen, JIA Bin, et al. A Silver-Functionalized Metal-Organic Framework with Effective Antibacterial Activity[J]. New Journal of Chemistry, 2022, 46(13): 5922-5926.
[42] LUO Hao, YIN Xue-qian, TAN Peng-fei, et al. Polymeric Antibacterial Materials: Design, Platforms and Applications[J]. Journal of Materials Chemistry B, 2021, 9(12): 2802-2815.
[43] ZHU Jun-yong, HOU Jing-wei, ZHANG Ya-tao, et al. Polymeric Antimicrobial Membranes Enabled by Nanomaterials for Water Treatment[J]. Journal of Membrane Science, 2018, 550: 173-197.
[44] GUPTA S, PUTTAIAHGOWDA Y, NAGARAJA A, et al. Antimicrobial Polymeric Paints: An Up-to-Date Review[J]. Polymers for Advanced Technologies, 2021, 32(12): 4642-4662.
[45] WU Yan, BIAN Yu-qing, YANG Feng, et al. Preparation and Properties of Chitosan/Graphene Modified Bamboo Fiber Fabrics[J]. Polymers, 2019, 11(10): 1540.
[46] ROMANAZZI G, SMILANICK J, FELIZIANI E, et al. Integrated Management of Postharvest Gray Mold on Fruit Crops[J]. Postharvest Biology and Technology, 2016, 113: 69-76.
[47] KATHURIA A, PAUWELS A, BUNTINX M, et al. Inclusion of Ethanol in a Nano-Porous, Bio-Based Metal Organic Framework[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 95: 91-98.
[48] NAGARAJAN V, KIZHAERAL S S, SUBRAMANIAN M, et al. Encapsulation of a Volatile Biomolecule (Hexanal) in Cyclodextrin Metal-Organic Frameworks for Slow Release and Its Effect on Preservation of Mangoes[J]. ACS Food Science & Technology, 2021, 1(10): 1936-1944.
[49] MUKURUMBIRA A R, SHELLIE R A, KEAST R, et al. Encapsulation of Essential Oils and Their Application in Antimicrobial Active Packaging[J]. Food Control, 2022, 136: 108883.
[50] 王洪江, 宋雪健, 李志江, 等. 抗菌包裝材料及其在食品包裝領域的研究進展[J]. 黑龍江八一農(nóng)墾大學學報, 2018, 30(4): 69-74.
WANG Hong-jiang, SONG Xue-jian, LI Zhi-jiang, et al. Research Progress of Antimicrobial Packaging Materials in Food Packaging[J]. Journal of Heilongjiang Bayi Agricultural University, 2018, 30(4): 69-74.
[51] 馬超, 吳瑛. 抗菌劑抗菌機理簡述[J]. 中國釀造, 2016, 35(1): 5-9.
MA Chao, WU Ying. Research on Antimicrobial Agents and Their Mechanism of Actions[J]. China Brewing, 2016, 35(1): 5-9.
[52] 郭娟, 張進, 王佳敏, 等. 天然抗菌劑在食品包裝中的研究進展[J]. 食品科學, 2021, 42(9): 336-346.
GUO Juan, ZHANG Jin, WANG Jia-min, et al. Natural Antibacterial Agents and Their Application in Food Packaging: A Review[J]. Food Science, 2021, 42(9): 336-346.
[53] LASHKARI E, WANG Hao, LIU Lin-shu, et al. Innovative Application of Metal-Organic Frameworks for Encapsulation and Controlled Release of Allyl Isothiocyanate[J]. Food Chemistry, 2017, 221: 926-935.
[54] MIN Tian-tian, SUN Xiao-li, ZHOU Li-ping, et al. Electrospun Pullulan/PVA Nanofibers Integrated with Thymol-Loaded Porphyrin Metal-Organic Framework for Antibacterial Food Packaging[J]. Carbohydrate Polymers, 2021, 270: 118391.
[55] ZHAO Jia-yi, WEI Feng, XU Wei-li, et al. Enhanced Antibacterial Performance of Gelatin/Chitosan Film Containing Capsaicin Loaded MOFs for Food Packaging[J]. Applied Surface Science, 2020, 510: 145418.
[56] WU Yun-peng, LUO Ya-guang, ZHOU Bin, et al. Porous Metal-Organic Framework (MOF) Carrier for Incorporation of Volatile Antimicrobial Essential Oil[J]. Food Control, 2019, 98: 174-178.
[57] HUANG Guo-huan, YAN Yu-ping, XU Dan-xia, et al. Curcumin-Loaded nanoMOFs@CMFP: A Biological Preserving Paste with Antibacterial Properties and Long-Acting, Controllable Release[J]. Food Chemistry, 2021, 337: 127987.
[58] NING Hao-yue, LU Li-xin, XU Jing, et al. Development of Sodium Alginate-Based Antioxidant and Antibacterial Bioactive Films Added with IRMOF-3/Carvacrol[J]. Carbohydrate Polymers, 2022, 292: 119682.
[59] KOHSARI I, SHARIATINIA Z, POURMORTAZAVI S. Antibacterial Electrospun Chitosan-Polyethylene Oxide Nanocomposite Mats Containing ZIF-8 Nanoparticles[J]. International Journal of Biological Macromolecules, 2016, 91: 778-788.
[60] GULZAR S, TAGRIDA M, PRODPRAN T, et al. Antimicrobial Film Based on Polylactic Acid Coated with Gelatin/Chitosan Nanofibers Containing Nisin Extends the Shelf Life of Asian Seabass Slices[J]. Food Packaging and Shelf Life, 2022, 34: 100941.
[61] FAJARDO P, MARTINS J T, FUCI?OS C, et al. Evaluation of a Chitosan-Based Edible Film as Carrier of Natamycin to Improve the Storability of Saloio Cheese[J]. Journal of Food Engineering, 2010, 101(4): 349-356.
[62] GONZáLEZ A, ALVAREZ IGARZABAL C. Soy Protein-Poly(lactic acid) Bilayer Films as Biodegradable Material for Active Food Packaging[J]. Food Hydrocolloids, 2013, 33(2): 289-296.
[63] CHEN Guo-sheng, HUANG Si-ming, KOU Xiao-xue, et al. A Convenient and Versatile Amino-Acid-Boosted Biomimetic Strategy for the Nondestructive Encapsulation of Biomacromolecules within Metal-Organic Frameworks[J]. Angewandte Chemie International Edition, 2019, 58(5): 1463-1467.
[64] LYKOURINOU V, CHEN Yao, WANG Xi-sen, et al. Immobilization of MP-11 into a Mesoporous Metal–Organic Framework, MP-11@mesoMOF: A New Platform for Enzymatic Catalysis[J]. Journal of the American Chemical Society, 2011, 133(27): 10382-10385.
[65] MARSH C, SHEARER G, KNIGHT B, et al. Supramolecular Aspects of Biomolecule Interactions in Metal-Organic Frameworks[J]. Coordination Chemistry Reviews, 2021, 439: 213928.
Application of Metal-organic Frameworks as Carrier System in Food Antibacterial Packaging
WANG Tao, XU Dan
(College of Food Science, Southwest University, Chongqing 400715, China)
The work aims to review the research status and application progress of metal-organic frameworks (MOFs) as carrier systems in the field of food antibacterial packaging, so as to provide reference for the development and application of MOFs antibacterial packaging materials. Firstly, the basic concepts and classification of MOFs were introduced. Secondly, the preparation methods of MOFs (heating method, mechanical method and electrochemical method) were analyzed. Then, the applications of MOFs as carrier systems in the fields of inorganic antibacterial agents, organic antibacterial agents and natural antibacterial agents in recent years were summarized. Finally, the opportunities and challenges of MOFs as carrier systems were discussed. In general, as a porous composite material combining organic and inorganic materials, MOFs can not only effectively encapsulate antibacterial agents to achieve sustained release and controlled release, but also improve their antibacterial properties, mechanical properties and UV resistance when used as polymer fillers. Therefore, MOFs have great potential in the preparation of efficient and safe food antibacterial packaging.
metal-organic frameworks; carrier system; food antibacterial packaging
TS206.4
A
1001-3563(2023)15-0086-08
10.19554/j.cnki.1001-3563.2023.15.012
2023?01?18
王濤(1998—),男,碩士生,主攻活性包裝材料。
徐丹(1983—),女,博士,教授,主要研究方向為食品包裝材料與農(nóng)產(chǎn)品保鮮。
責任編輯:彭颋