潘建龍
(麗水市公路港航與運(yùn)輸管理中心,浙江 麗水 323000)
隨著我國(guó)橋梁建設(shè)的快速發(fā)展,因系桿拱橋能夠充分發(fā)揮梁受彎和拱受壓的結(jié)構(gòu)性能和組合作用,兼具拱與梁的優(yōu)點(diǎn),具有結(jié)構(gòu)美觀輕巧、跨越能力大、承載能力強(qiáng)等特點(diǎn),近年來(lái)在國(guó)內(nèi)得到廣泛應(yīng)用。此外,因鋼管混凝土結(jié)構(gòu)結(jié)合了鋼管與混凝土的優(yōu)點(diǎn),互相彌補(bǔ)了各自材料的缺點(diǎn),有助于提高整體結(jié)構(gòu)的受力特性,在系桿拱橋中也逐漸得到應(yīng)用。
吊桿作為系桿拱橋關(guān)鍵的受力構(gòu)件,其內(nèi)力變化和分布情況容易受環(huán)境溫度、橋梁正常運(yùn)營(yíng)、健康狀況等因素影響。吊桿索力是指鋼管混凝土系桿拱各根吊桿所受的張拉力,可分為兩類:第一類是在各施工階段吊桿所受的張拉力;第二類是成橋后吊桿所要保持的張拉力,即吊桿成橋索力,它是運(yùn)營(yíng)時(shí)期關(guān)注的重點(diǎn)?,F(xiàn)有研究表明當(dāng)溫度大幅變化時(shí),系桿拱橋的內(nèi)力會(huì)發(fā)生較大的變化,吊桿成橋索力也將隨之改變。而且,系桿拱橋作為一種多次超靜定的三元結(jié)構(gòu),其拱肋和主梁的受力狀態(tài)會(huì)隨著吊桿索力的改變而發(fā)生較大變化,因此吊桿索力的優(yōu)化設(shè)計(jì)和施工控制成為施工關(guān)鍵因素。對(duì)于已經(jīng)完工的鋼管混凝土系桿拱橋,成橋后吊桿索力控制值理論上應(yīng)為平衡載恒產(chǎn)生的吊桿張拉力,同時(shí)考慮成橋后結(jié)構(gòu)線形、短吊桿受力等因素。但受外載作用和自然環(huán)境影響,經(jīng)常存在吊桿索力損失嚴(yán)重,甚至損失偏差超過(guò)規(guī)范值,必須對(duì)吊桿索力進(jìn)行調(diào)整,使橋梁結(jié)構(gòu)達(dá)到相對(duì)理想受力狀態(tài),線形更接近設(shè)計(jì)線形。
針對(duì)石浦大橋邊跨存在吊桿索力損失病害,本文制定了相應(yīng)的調(diào)整方案,并通過(guò)建立有限元模型模擬分析了邊跨相關(guān)吊桿索力的變化情況,研究成果有助于同類系桿拱橋吊桿索力病害的處治經(jīng)驗(yàn)借鑒。
如圖1 所示,石浦大橋主橋?yàn)?0+100+70m 三跨下承式鋼管混凝土系桿拱,拱肋采用啞鈴型鋼管混凝土,橫向兩片平行拱肋,拱肋中距25.9m,主跨100m 設(shè)置5 道風(fēng)撐,邊跨70m 設(shè)置3 道風(fēng)撐,拱軸線為拋物線,矢跨比1/5。主跨100m,計(jì)算矢高20m,邊跨70m 計(jì)算矢高14m。系梁和橫梁為預(yù)應(yīng)力混凝土結(jié)構(gòu),吊桿采用GJ 型鋼絞線整束擠壓式拉索體系,吊桿間距為4.9m,行車道板為25cm 實(shí)心板體系。該橋采用先梁后拱的施工方法,端橫梁及系梁采用支架現(xiàn)澆,中橫梁采用懸掛裝配式施工,主跨拱肋采用龍門吊吊裝、邊跨拱肋采用履帶吊吊裝施工。
圖1 石浦大橋航拍圖
該橋于2019 年12 月通過(guò)交工驗(yàn)收并交付試運(yùn)營(yíng),2022 年初兩年試運(yùn)營(yíng)期滿后經(jīng)檢測(cè)各部構(gòu)件變形均與成橋時(shí)總體一致,但邊跨小樁號(hào)方向邊孔左側(cè)3 號(hào)桿和右側(cè)3 號(hào)桿、4 號(hào)桿索力超出規(guī)范規(guī)定的±20%范圍,偏差分別達(dá)到了+26.1%、+26.1%和-28.6%。由表1 可見(jiàn),特別是拱腳附近吊桿較短,拱肋、系梁剛度又相對(duì)較大,不易協(xié)調(diào)恒載和外載產(chǎn)生的吊桿力,更容易發(fā)生吊桿索力變化而偏離規(guī)范要求?;诖耍鲜龅鯒U索力需要調(diào)整滿足規(guī)范要求后才能通過(guò)竣工驗(yàn)收,安全投入正式運(yùn)營(yíng)。該橋投入試運(yùn)營(yíng)后交通量與日俱增,日交通量達(dá)1 萬(wàn)多輛,按常規(guī)調(diào)整吊桿索力方法需多次調(diào)試,要長(zhǎng)時(shí)間封閉交通,將對(duì)運(yùn)營(yíng)帶來(lái)巨大影響。因此,有必要采取一次性調(diào)整吊桿索力的方法。
表1 調(diào)整前邊跨吊桿索力實(shí)測(cè)值
從表1 可以看出,只是靠近拱腳左右側(cè)的3 號(hào)吊桿索力偏大,同時(shí)右側(cè)靠近3 號(hào)的4 號(hào)吊桿索力又偏小,而其它均在規(guī)范范圍內(nèi)?;诠袄吆拖盗簞偠缺葘?duì)吊桿張拉產(chǎn)生的影響,特別是跨中長(zhǎng)吊桿在張拉過(guò)程中,在已張拉對(duì)應(yīng)恒載索力的情況下,會(huì)由于系梁和拱肋的彈性變形而損失后期調(diào)整的這部分張拉力。拱腳附近剛度相對(duì)較強(qiáng),吊桿索力隨著千斤頂?shù)膹埨龃?。也就是說(shuō)對(duì)于調(diào)索而言,長(zhǎng)吊桿反映在結(jié)構(gòu)的變形,而短吊桿的索力對(duì)張拉較敏感??紤]到這些因素,吊桿主動(dòng)張拉力以成橋恒載力為控制目標(biāo)值,吊桿調(diào)整索力兼顧結(jié)構(gòu)線形。因此,本文采取釋放左右側(cè)3 號(hào)桿一定量張拉力的手段,實(shí)現(xiàn)對(duì)吊桿索力的一次性調(diào)整,如表2 所示。
表2 邊跨吊桿索力調(diào)整方案
根據(jù)設(shè)計(jì)圖紙,本文采用MIDAS 建立了邊跨有限元計(jì)算模型(圖2)。該模型共有436 個(gè)節(jié)點(diǎn),580 個(gè)單元,其中吊桿單元26 個(gè),梁?jiǎn)卧?54 個(gè)。
圖2 邊跨有限元計(jì)算模型
混凝土系桿拱橋是一個(gè)外部靜定而內(nèi)部高次超靜定的結(jié)構(gòu),在張拉吊桿的過(guò)程中,后張拉的吊桿張拉時(shí)會(huì)引起已張拉吊桿的索力發(fā)生變化,而已張拉的吊桿也會(huì)對(duì)后張拉的吊桿索力產(chǎn)生影響,所以在整個(gè)張拉過(guò)程中,除了最后張拉的一組吊桿,其他的一直都處于變化狀態(tài),因此需要對(duì)施工過(guò)程的吊桿張拉控制力進(jìn)行監(jiān)控,確保吊桿力正常。經(jīng)過(guò)各階段張拉,使吊桿索力達(dá)到目標(biāo)控制力。
根據(jù)表2 的一次性調(diào)整方案進(jìn)行有限元模擬,得到圖3 中微調(diào)后的理論計(jì)算索力和有限元計(jì)算索力結(jié)果,以及與成橋理論索力的偏差??梢?jiàn),通過(guò)微調(diào)后,整個(gè)橋梁的吊桿索力均發(fā)生變化。其中,與調(diào)整前實(shí)測(cè)索力相比,左側(cè)3 號(hào)吊桿微調(diào)后,4、5 號(hào)吊桿的理論計(jì)算索力和有限元計(jì)算索力均發(fā)生了1%以上的變化(最大偏差達(dá)到14.1%),其他吊桿索力變化在1%以下。右側(cè)3 號(hào)吊桿微調(diào)后,4、5、6 號(hào)吊桿的理論計(jì)算索力和有限元計(jì)算索力均發(fā)生了1%以上的變化(最大偏差達(dá)到-17.1%),其他吊桿索力變化在1%以下。
圖3 微調(diào)前后的吊桿索力理論值和計(jì)算值
圖4 為微調(diào)后的結(jié)構(gòu)變形分析??梢?jiàn),微調(diào)左側(cè)3號(hào)桿后,拱肋結(jié)構(gòu)最大變形在調(diào)索處,為1.4mm,系梁最大變形也在調(diào)索處,為0.6mm;微調(diào)右側(cè)3 號(hào)桿后,拱肋結(jié)構(gòu)最大變形在調(diào)索處,為2.4mm,系梁最大變形也在調(diào)索處,為1.1mm。
圖4 微調(diào)后的結(jié)構(gòu)變形(mm)
現(xiàn)場(chǎng)施工時(shí)按順序張拉吊桿進(jìn)行索力調(diào)整,經(jīng)施工方和第三方檢測(cè)后得到的各吊桿索力實(shí)測(cè)值如圖5 所示。可見(jiàn),微調(diào)后右側(cè)3 號(hào)和4 號(hào)吊桿索力的調(diào)整效果好于預(yù)期,但左側(cè)3 號(hào)和4 號(hào)吊桿索力實(shí)測(cè)值與理論計(jì)算值有一定差距。其中,雖然微調(diào)后左側(cè)3 號(hào)吊桿索力偏差率有19.8%,但仍然滿足規(guī)范規(guī)定的不超過(guò)20%要求;微調(diào)后左側(cè)4 號(hào)吊桿索力反而與成橋索力仍然相接近,其它吊桿索力也變化不大。這可能是由于左側(cè)3 號(hào)吊桿釋放張拉力不足造成的,這一點(diǎn)也可以從右側(cè)3 號(hào)吊桿調(diào)整索力后的結(jié)果看出,為此釋放張拉力應(yīng)考慮適當(dāng)?shù)母挥嗔坎趴赡苓_(dá)到調(diào)整吊桿索力的理想目的??傮w而言,采用本文的一次性調(diào)整方法能夠滿足規(guī)范要求,達(dá)到了預(yù)期目標(biāo),而且節(jié)省了一半的交通管制時(shí)間。
圖5 微調(diào)前后的吊桿索力實(shí)測(cè)值
針對(duì)石浦大橋邊跨吊桿索力病害,本文采用一次性調(diào)整方法,并通過(guò)建立有限元模型模擬分析了邊跨相關(guān)吊桿索力的變化情況,主要結(jié)論有:
(1)根據(jù)理論調(diào)試計(jì)算和有限元模擬分析,相比調(diào)整前實(shí)測(cè)索力,與調(diào)整吊桿相鄰的吊桿索力變化相對(duì)較大,拱肋和系梁最大變形均發(fā)生在調(diào)索處,但最大變形僅有2.4mm。
(2)調(diào)整后現(xiàn)場(chǎng)實(shí)測(cè)的各吊桿索力均滿足規(guī)范要求,表明采取釋放靠近拱腳處號(hào)桿一定量張拉力的手段,實(shí)現(xiàn)了對(duì)吊桿索力的一次性調(diào)整。
(3)建議釋放張拉力時(shí)應(yīng)考慮適當(dāng)?shù)母挥嗔坎趴赡苓_(dá)到調(diào)整吊桿索力的目的,對(duì)于有相鄰吊桿索力明顯偏低的吊桿,可以采用通過(guò)提升相鄰吊桿索力的方法達(dá)到調(diào)整降低索力明顯偏高的吊桿索力。