張茗越, 周龍洋, 蒲淞, 崔愛潔, 張麗榮, 陳春燕,薛凱歌, 樊萍, 甘勝偉,△
褪黑素對膽紅素腦病大鼠腦頂葉皮質(zhì)AQP4的調(diào)控及其保護(hù)機(jī)制研究*
張茗越1, 周龍洋1, 蒲淞1, 崔愛潔1, 張麗榮2, 陳春燕2,薛凱歌2, 樊萍3, 甘勝偉1,2△
(1重慶醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)國家級實(shí)驗(yàn)教學(xué)示范中心,重慶 400016;2重慶醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院神經(jīng)科學(xué)研究中心,重慶 400016;3重慶市第五人民醫(yī)院婦產(chǎn)科,重慶 400062)
研究腦頂葉皮質(zhì)水通道蛋白4(aquaporin 4, AQP4)在褪黑素(melatonin, MT)治療膽紅素腦病(bilirubin encephalopathy, BE)中的表達(dá)變化,以及哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)/蛋白激酶C(protein kinase C, PKC)信號通路在MT對AQP4調(diào)控中的作用,以探討MT對BE的治療機(jī)制。80只出生5~7 d的健康SD乳鼠,根據(jù)其處理方式,隨機(jī)分為以下5組:假手術(shù)組、BE模型組、MT干預(yù)組、PKC抑制劑(PKC inhibitor, PKCi)干預(yù)組和mTOR抑制劑(mTOR inhibitor, mTORi)干預(yù)組。采用HE染色和尼氏染色檢測各組鼠腦皮質(zhì)病理改變;采用干-濕重法測定各組腦頂葉皮質(zhì)含水量;應(yīng)用免疫熒光染色法檢測腦皮質(zhì)AQP4的表達(dá)區(qū)域;運(yùn)用TUNEL染色法檢測腦頂葉皮質(zhì)神經(jīng)細(xì)胞的凋亡變化;使用Western blot法測定各組鼠腦頂葉皮質(zhì)AQP4、caspase-3、cleaved caspase-3和PKCε的表達(dá)量。HE和尼氏染色顯示,MT可減輕膽紅素所致神經(jīng)細(xì)胞的損傷。干-濕重法結(jié)果顯示,MT可降低BE乳鼠腦頂葉皮質(zhì)腦含水量。免疫熒光染色顯示,BE組AQP4熒光強(qiáng)度增加,主要表達(dá)于大腦頂葉皮質(zhì)血管壁和星形膠質(zhì)細(xì)胞膜;MT干預(yù)可阻止BE所致AQP4表達(dá)的增加。TUNEL染色顯示,MT可減少BE所致細(xì)胞凋亡。Western blot顯示,與假手術(shù)組相比,BE組腦頂葉皮質(zhì)AQP4、cleaved caspase-3和caspase-3表達(dá)增加,PKCε表達(dá)降低;MT干預(yù)可降低BE鼠頂葉皮質(zhì)AQP4、cleaved caspase-3和caspase-3表達(dá),增加PKCε表達(dá)。PKCi和mTORi均可下調(diào)PKCε的表達(dá),阻止MT通過mTOR/PKC信號通路降低AQP4的表達(dá)。MT可通過減少BE大鼠腦頂葉皮質(zhì)中AQP4的表達(dá)來緩解腦水腫,并減少caspase-3介導(dǎo)的神經(jīng)細(xì)胞凋亡。MT下調(diào)AQP4表達(dá)的機(jī)制與mTOR/PKC信號通路的激活有關(guān)。
膽紅素腦病;褪黑素;水通道蛋白4;mTOR/PKC信號通路
膽紅素腦病(bilirubin encephalopathy, BE)是由于新生兒血液中未結(jié)合膽紅素(unconjugated bilirubin, UCB)水平升高,透過尚未成熟的血腦屏障入腦,對腦細(xì)胞產(chǎn)生嚴(yán)重?fù)p傷的疾病。它是新生兒高膽紅素血癥的嚴(yán)重并發(fā)癥之一,病死率及致殘率高,約50%~75%的患兒死于急性期,而幸存者絕大多數(shù)仍留有各種嚴(yán)重的神經(jīng)系統(tǒng)后遺癥,如智力低下、聽覺受損、發(fā)育障礙等[1],給患者及其家庭帶來很大負(fù)擔(dān)。
水通道蛋白4(aquaporin 4, AQP4)是腦中表達(dá)量最多、水轉(zhuǎn)運(yùn)功能最強(qiáng)的水通道蛋白,參與星形膠質(zhì)細(xì)胞水平衡功能的調(diào)控[2]。AQP4的表達(dá)異常將導(dǎo)致細(xì)胞水平衡功能異常,引起細(xì)胞毒性腦水腫的發(fā)生[3-4],進(jìn)而使細(xì)胞膜通透性增加,導(dǎo)致UCB更易通過擴(kuò)散作用進(jìn)入細(xì)胞產(chǎn)生毒性作用[5]。本組的前期研究證實(shí),UCB的神經(jīng)毒性將增加大腦皮質(zhì)AQP4的表達(dá)[6],而在BE模型中發(fā)現(xiàn),腦血管周圍的星形膠質(zhì)細(xì)胞足突會產(chǎn)生水腫[7],而該部位正是AQP4在腦中的極性分布區(qū)域之一[8-9],提示UCB可能促進(jìn)星形膠質(zhì)細(xì)胞足突AQP4表達(dá)的增加,導(dǎo)致腦內(nèi)水轉(zhuǎn)運(yùn)失衡及神經(jīng)細(xì)胞水腫的發(fā)生,而神經(jīng)細(xì)胞水腫將導(dǎo)致其對UCB的神經(jīng)毒性敏感性增加[5]。另外,UCB對神經(jīng)細(xì)胞的毒性作用還可通過引起細(xì)胞內(nèi)Ca2+超載、內(nèi)質(zhì)網(wǎng)相關(guān)凋亡等途徑激活凋亡關(guān)鍵酶caspase-3,促使蛋白酶家族呈級聯(lián)式激活,導(dǎo)致神經(jīng)細(xì)胞凋亡[10]。由此可見,UCB導(dǎo)致的腦水腫是由AQP4介導(dǎo)的細(xì)胞毒性水腫[7],并可加重UCB對星形膠質(zhì)細(xì)胞和神經(jīng)元的神經(jīng)毒性作用,最終導(dǎo)致神經(jīng)細(xì)胞凋亡。
褪黑素(melatonin, MT)是由哺乳動物和人類的松果體產(chǎn)生的吲哚類神經(jīng)內(nèi)分泌激素,有很強(qiáng)的自由基清除能力和間接抗氧化作用[11]。MT具有高脂溶性,使其容易透過血腦屏障和細(xì)胞膜進(jìn)入神經(jīng)元,對包括BE在內(nèi)的多種神經(jīng)性疾病發(fā)揮保護(hù)作用[11-13]。哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)是一種絲氨酸/蘇氨酸蛋白激酶,可與不同的亞基相互結(jié)合形成mTOR復(fù)合體1(mTOR complex 1, mTORC1)和mTORC2兩個復(fù)合體,其中mTORC2可通過TOR序列調(diào)控下游效應(yīng)子蛋白激酶C(protein kinase C, PKC)疏水基序的磷酸化而調(diào)節(jié)其活性[14-15]。有研究表明,MT可以激活星形膠質(zhì)細(xì)胞和神經(jīng)元中mTOR/PKC途徑[16-18],降低細(xì)胞膜上AQP4的表達(dá)[17, 19];另有文獻(xiàn)表明,腦卒中模型中PKC的上調(diào)也可抑制AQP4的表達(dá)[20-22]。同時(shí),MT能夠增強(qiáng)腦固有的抗氧化劑狀態(tài),抑制細(xì)胞內(nèi)Ca2+水平的升高,進(jìn)而抑制caspase-3活化,減少神經(jīng)細(xì)胞凋亡[23]。然而,MT是否可通過mTOR信號通路激活PKC,下調(diào)AQP4的表達(dá),從而在BE大鼠中發(fā)揮腦保護(hù)作用,尚未見報(bào)道。
本研究采用SD乳鼠制備BE模型,探究MT是否可通過mTOR分子激活下游PKC信號通路,從而降低AQP4表達(dá),以阻止BE中神經(jīng)細(xì)胞的水腫,并下調(diào)caspase-3減輕神經(jīng)細(xì)胞凋亡,對抗UCB的神經(jīng)毒性作用,為臨床上使用MT治療BE提供理論依據(jù)和實(shí)驗(yàn)基礎(chǔ)。
1.1實(shí)驗(yàn)動物SPF級SD孕鼠,由重慶醫(yī)科大學(xué)實(shí)驗(yàn)動物中心提供。所有孕鼠均在12 h明/暗環(huán)境,(22±1) ℃,采用純凈水和標(biāo)準(zhǔn)嚙齒動物飼料喂養(yǎng)。待其分娩后,新生鼠由母鼠喂養(yǎng)至5~7 d,體重(15±2) g備用。
1.2實(shí)驗(yàn)材料膽紅素(源葉生物);MT(Sigma-Aldrich);PKC抑劑制(PKC inhibitor, PKCi)Ro 31-8220和mTOR抑制劑(mTOR inhibitor, mTORi)Torkinib (PP242)均購自MedChemExpress;兔來源AQP4單克隆抗體、兔來源mTOR多克隆抗體和兔來源PKCε多克隆抗體(Abcam);兔來源caspase-3多克隆抗體和熒光Ⅱ抗(碧云天公司);α-tubulin抗體(Proteintech)。
2.1膽紅素溶液避光稱取晶體膽紅素5 mg溶于50 μL 0.5 mol/L NaOH溶液中,加入ddH2O 450 μL,使用0.5 mol/L HCl調(diào)節(jié)pH至8.5,配制成濃度為1.71 mol/ L、pH為8.5的膽紅素溶液,將配制好的膽紅素溶液置于-20 ℃的黑暗環(huán)境中保存。
2.2MT溶液的配制10 mg MT溶于1 mL無水乙醇中,加入19 mL生理鹽水,無水乙醇濃度為5%,置于4 ℃環(huán)境中保存,現(xiàn)配現(xiàn)用。
2.3Ro 31-8220溶液的配制將0.9 mg Ro 31-8220溶于60 μL DMSO中,充分溶解后再依次加入240 μL PEG300、30 μL Tween-80和270 μL生理鹽水,用ddH2O定容至3 mL,置于4 ℃環(huán)境下保存。
2.4PP242溶液的配制避光取1 mg PP242粉末溶于0.14 mL無水乙醇中,用生理鹽水將無水乙醇稀釋至5%,置于4 ℃環(huán)境下保存,現(xiàn)配現(xiàn)用。
篩選出產(chǎn)后5~7 d的健康SD乳鼠80只,隨機(jī)分為假手術(shù)(sham)組、BE模型(BE)組、MT干預(yù)(BE+MT)組、PKCi干預(yù)(BE+MT+PKCi)組和mTORi干預(yù)(BE+MT+mTORi)組5組,每組16只,參照胡影等[24]的方法制備BE模型及進(jìn)行如下處理(在進(jìn)行小腦延髓池注射時(shí),先抽取相應(yīng)體積的腦脊液,再注射不含膽紅素的溶劑或膽紅素溶液,避免增加的顱內(nèi)壓對新生乳鼠造成影響):(1)sham組:先腹腔注射注射不含PKCi或mTORi的溶劑67 mL/kg,30 min后腹腔注射不含MT的溶劑10 mL/kg,再30 min后小腦延髓池注射注射不含膽紅素的溶劑2 mL/kg;(2)BE組:先腹腔注射注射不含PKCi或mTORi的溶劑67 mL/kg,30 min后腹腔注射注射不含MT的溶劑10 ml/kg,再30 min后小腦延髓池注射膽紅素溶液2 mL/kg (即20 mg/kg);(3)BE+MT組:先腹腔注射注射不含PKCi或mTORi的溶劑67 mL/kg,30 min后腹腔注射MT溶液10 ml/kg (即10 mg/kg),再30 min后小腦延髓池注射膽紅素溶液2 mL/kg (即20 mg/kg);(4)BE+MT+PKCi組:先腹腔注射PKCi Ro 31-8220溶液67 mL/kg,30 min后腹腔注射MT溶液10 mL/kg (即10 mg/kg),再30 min后小腦延髓池注射膽紅素溶液2 mL/kg (即20 mg/kg);(5)BE+MT+mTORi組:先腹腔注射mTORi PP242溶液67 mL/kg,30 min后腹腔注射MT溶液10 mL/kg (即10 mg/kg),再30 min后小腦延髓池注射膽紅素溶液2 mL/kg (即20 mg/kg)。在注射膽紅素溶液后24 h后取腦,進(jìn)行后續(xù)實(shí)驗(yàn)。
4.1一般情況及神經(jīng)行為變化觀察造模前及造模后24 h,觀察各組乳鼠的一般情況及神經(jīng)行為學(xué)變化并進(jìn)行對比。觀察各組乳鼠體溫、皮色、心率、呼吸及其他一般情況,觀察是否出現(xiàn)反射喪失或不正常運(yùn)動,是否出現(xiàn)肌陣攣或肌張力障礙等異常神經(jīng)行為學(xué)變化。并將造模后24 h觀察的信息與造模前進(jìn)行比較。后續(xù)取腦時(shí)判斷腦組織是否有膽紅素沉積、血腫或損傷,根據(jù)觀察信息綜合判斷是否造模成功。
4.2腦組織含水量測定各組選取6只SD乳鼠,采用干-濕重法測定大鼠腦頂葉皮質(zhì)含水量。其過程為:取造模成功后的大鼠,腹腔注射戊巴比妥鈉麻醉后,斷頭處死,取腦頂葉皮質(zhì),用濾紙吸干腦組織表面血液,放在已標(biāo)記的錫箔紙上稱重,即為腦組織濕重(wet weight, WW);即刻放入100 ℃烤箱烘烤2 d,經(jīng)過3次稱量重量不再變化,即為腦組織干重(dry weight, DW);用公式計(jì)算腦含水量。腦含水量=(WW-DW)/WW。
4.3腦切片的制備、HE染色和尼氏染色各組選取5只乳鼠,使用戊巴比妥鈉麻醉后于冰上剪開右心耳,經(jīng)左心室快速灌注0.9 %氯化鈉20 mL,采用4%多聚甲醛PBS溶液50 mL繼續(xù)灌注。斷頭取腦,將已固定的腦組織置于4%多聚甲醛PBS固定液后固定24 h后,置于10%、20%、30%梯度蔗糖溶液脫水,OCT包埋劑包埋,行冰凍切片,切片厚度10 μm,風(fēng)干,部分切片進(jìn)行HE染色及尼氏染色,剩余切片標(biāo)記后置于-20 ℃冰箱保存待用。
4.4Western blot各組選取5只乳鼠,腹腔麻醉后置于冰上,左心室快速灌注預(yù)冷PBS 20 mL。快速斷頭取腦,分離大腦頂葉皮質(zhì),使用含PMSF的細(xì)胞裂解液提取蛋白,在冰上勻漿后將裂解液于4 ℃低溫離心機(jī)中12 000 r/min離心30 min,取上清液,BCA法檢測蛋白濃度,使用SDS-PAGE分離蛋白,電轉(zhuǎn)印后使用封閉液封閉PVDF膜,使用AQP4、caspase-3、cleaved caspase-3、PKCε和α-tubulin Ⅰ抗及相應(yīng)Ⅱ抗進(jìn)行孵育,DAB顯色分析,最終結(jié)果使用AQP4/α-tubulin、caspase-3/α-tubulin、cleaved caspase-3/α-tubulin和PKCε/α-tubulin條帶灰度比值表示。
4.5免疫熒光染色取冰凍切片,37 ℃復(fù)溫1 h。用0.01 mol/L PBS漂洗3次,每次10 min。使用1% BSA封閉,蓋封口膜放入濕盒,37 ℃封閉1 h。隨后滴加AQP4 Ⅰ抗,覆蓋組織,置于溫盒中4 ℃冰箱過夜。第2天從冰箱中取出后于室溫復(fù)溫1 h,隨后0.01 mol/L PBS漂洗3次,每次10 min;擦干,滴加已被熒光標(biāo)記的Ⅱ抗,37 ℃孵育1 h,0.01 mol/L PBS漂洗3次,每次10 min,使用5% DAPI-甲醇溶液孵育5 min,0.01 mol/L PBS漂洗3次,每次10 min,隨后使用50%甘油+50% PBS封片。建立空白對照,使用Ⅰ抗稀釋液代替Ⅰ抗外,其余步驟一致。使用激光共焦顯微鏡(Leica)觀察并拍照。
應(yīng)用SPSS 24.0統(tǒng)計(jì)軟件包進(jìn)行資料的統(tǒng)計(jì)學(xué)分析。測定資料數(shù)據(jù)均以均數(shù)±標(biāo)準(zhǔn)誤(mean±SEM)表示。采用單因素方差分析進(jìn)行多組間比較,采用SNK-檢驗(yàn)進(jìn)行組間兩兩比較。以<0.05為差異有統(tǒng)計(jì)學(xué)意義。
各組乳鼠經(jīng)相應(yīng)處理后24 h觀察一般情況,可見sham組一般情況良好,無反射喪失或不正常運(yùn)動,無肌陣攣或肌張力障礙等異常神經(jīng)行為學(xué)變化,對外界刺激反應(yīng)較強(qiáng),取腦發(fā)現(xiàn)腦組織無異常色素沉積、無血腫或損傷;BE組一般情況較差,對外界反應(yīng)刺激弱,可見明顯角弓反張、不能直線行走、向輕癱側(cè)轉(zhuǎn)圈或傾倒,部分乳鼠出現(xiàn)肌陣攣、肌張力增高等異常行為學(xué)變化,取腦發(fā)現(xiàn)腦組織明顯黃染,部分區(qū)域如第三、四腦室出現(xiàn)明顯黃色色素淤積,無異常血腫或腦干、小腦損傷;BE+MT組一般情況較BE組有所改善,對外界刺激一般,可觀察到反射減弱及不能直線行走,未觀察到肌陣攣、肌張力障礙,取腦后可見腦組織黃染及腦室中黃色色素沉積,無異常血腫或腦干、小腦損傷。
HE染色結(jié)果顯示,sham組腦皮質(zhì)神經(jīng)細(xì)胞核染色明顯,細(xì)胞核完整,排列整齊;BE組腦皮質(zhì)神經(jīng)細(xì)胞核染色不均,各細(xì)胞核染色顏色不一致,與sham組比較,神經(jīng)細(xì)胞排列極性改變,細(xì)胞空泡樣變;BE+MT組腦皮質(zhì)細(xì)胞染色明顯,呈藍(lán)紫色,部分細(xì)胞核完整,排列較為整齊,出現(xiàn)少量異常核象,周圍組織呈伊紅色均染,出現(xiàn)空泡,但數(shù)量明顯少于BE組,未觀察到有異常色素沉積,見圖1A。尼氏染色顯示,sham組腦皮質(zhì)神經(jīng)細(xì)胞呈整齊極性排列,染色呈淺藍(lán)色;BE組腦皮質(zhì)神經(jīng)細(xì)胞極性消失,染色不均,胞體變小,同視野下細(xì)胞尼氏體減少,出現(xiàn)大量細(xì)胞空泡化;BE+MT組腦皮質(zhì)神經(jīng)細(xì)胞數(shù)量較少,尼氏體減少,但較BE組有所好轉(zhuǎn),見圖1B。上述HE及尼氏染色在BE組及MT干預(yù)組中的表現(xiàn)提示了BE可能造成腦組織皮質(zhì)損傷,而經(jīng)過MT處理后BE所致的皮質(zhì)損傷減輕。
Figure 1. Pathological changes of the parietal cortex of the rats in different groups observed by HE staining (A) and Nissl staining (B). Scale bar=200 or 50 μm.
采用干-濕重法測定腦含水量的變化,對各組腦組織含水量進(jìn)行分析。實(shí)驗(yàn)結(jié)果顯示,經(jīng)膽紅素處理的各組腦組織含水量均大于sham組(<0.01),MT可降低BE模型大鼠的腦水腫程度(<0.05),見圖2B。利用免疫熒光染色和Western blot,對各處理組的大腦皮質(zhì)中AQP4表達(dá)和分布情況進(jìn)行分析。免疫熒光結(jié)果顯示,sham組乳鼠腦皮質(zhì)AQP4主要位于血管壁上;BE組乳鼠腦皮質(zhì)AQP4表達(dá)量較sham組增多,多見于血管壁上,BE組細(xì)胞膜上AQP4表達(dá)增多,在胞質(zhì)表面呈線性排列;BE+MT組乳鼠腦皮質(zhì)中AQP4表達(dá)明顯下降,血管周圍AQP4表達(dá)量明顯低于BE組,AQP4在胞質(zhì)表面不呈線性排列(圖2A)。平均熒光強(qiáng)度分析趨勢提示BE組AQP4表達(dá)強(qiáng)度較sham組顯著升高,BE+MT組較BE組顯著下降(圖2A)。Western blot結(jié)果顯示,BE組乳鼠腦皮質(zhì)AQP4表達(dá)量明顯高于sham組(<0.01),而與BE組相比,BE+MT組AQP4表達(dá)量明顯降低(<0.01),與免疫熒光染色平均熒光強(qiáng)度趨勢相同,見圖2C。
Figure 2. The expression and localization of AQP4 in the parietal cortex and the cerebral water content of the rats in different groups. A: localization of AQP4 demonstrated by immunofluorescence [green: AQP4; blue: DAPI; wide arrow: AQP4 lies on the end feet of astrocytes along the vessels; narrow arrow: AQP4 is arranged in line around the cell membrane. Scale bar (including the insets)=100 μm]; B: cerebral water content in different groups; C: the protein levels of AQP4 of the parietal cortex in different groups. Mean±SEM. n=6. **P<0.01 vs sham group; #P<0.05 vs BE group.
為了研究BE對神經(jīng)細(xì)胞的凋亡作用,以及MT對其的影響,使用TUNEL染色檢測各組頂葉皮質(zhì)凋亡情況。TUNEL染色結(jié)果顯示,與假手術(shù)組相比,BE組中TUNEL陽性細(xì)胞明顯增多;而在經(jīng)過MT處理后,TUNEL陽性細(xì)胞明顯減少,見圖3A。利用Western blot對各組大腦皮質(zhì)中caspase-3及cleaved caspase-3進(jìn)行半定量分析。Western blot結(jié)果顯示,BE組和sham組中caspase-3無顯著差異(>0.05),但BE組cleaved caspase-3表達(dá)量較sham組明顯增加(<0.01),BE+MT組caspase-3表達(dá)量明顯下降(<0.05),cleaved caspase-3表達(dá)量顯著低于BE組(<0.01),與sham組無顯著差異(>0.05),見圖3B。上述結(jié)果提示,BE大鼠頂葉皮質(zhì)可發(fā)生凋亡,而MT可阻止BE大鼠頂葉皮質(zhì)中凋亡的發(fā)生。
Figure 3. The apoptosis and the expression of cleaved caspase-3 and caspase-3 in the parietal cortex of the rats in different groups. A: the location of apoptosis (indicated by arrows) of the parietal cortex observed by TUNEL staining (scale bar=100 μm), and the number of apoptotic cells per mm2; B: the protein levels of cleaved caspase-3 and caspase-3 in the parietal cortex. Mean±SEM. n=5. **P<0.01 vs sham group; #P<0.05, ##P<0.01 vs BE group.
為研究BE中PKCε的變化在MT對AQP4調(diào)控中的作用,采用Western blot對各組大腦皮質(zhì)PKCε和AQP4表達(dá)量進(jìn)行半定量分析。結(jié)果顯示,與sham組相比,BE組PKCε表達(dá)量顯著下降(<0.01);MT組中PKCε表達(dá)量較BE組顯著增加(<0.01);而BE+MT+PKCi組中PKCε表達(dá)量又較BE+MT組顯著降低(<0.05),見圖4。上述結(jié)果提示,PKCε參與了BE的進(jìn)展,而MT也可通過激活PKCε來阻止BE的進(jìn)展。
Figure 4. The protein levels of PKCε and AQP4 in the parietal cortex of the rats in different groups, and the effect of PKC inhibitor (PKCi) Ro 31-8220. Mean±SEM. n=5. **P<0.01 vs sham group; #P<0.05, ##P<0.01 vs BE group; ▲P<0.05 vs BE+MT group.
作為PKC的上游信號分子,mTOR的激活可以促進(jìn)PKC的表達(dá)[24-25]。為研究mTOR在BE發(fā)生發(fā)展中的作用,以及MT通過mTOR/PKCε參與BE的治療過程,用mTORi PP242處理BE+MT組,通過Western blot對各組大腦皮質(zhì)AQP4表達(dá)量進(jìn)行半定量分析。結(jié)果顯示,BE+MT+mTORi組AQP4表達(dá)量與BE組相比無顯著差異(>0.05),但比BE+MT組和sham組顯著增多(<0.05),逆轉(zhuǎn)了MT對BE組AQP4的下調(diào)效應(yīng);同時(shí),BE+MT+mTORi組PKCε表達(dá)量與BE組相比無顯著差異(>0.05),但與BE+MT組相比顯著降低(<0.01),見圖5。上述結(jié)果提示,MT通過對BE所致AQP4升高進(jìn)行調(diào)控是通過上調(diào)mTOR表達(dá),間接影響PKCε表達(dá)實(shí)現(xiàn)的。
Figure 5. The protein levels of PKCε and AQP4 in the parietal cortex of the rats in different groups, and the effect of mTOR inhibitor (mTORi) PP242. Mean±SEM. n=5. *P<0.05 vs sham group; #P<0.05 vs BE group; ▲P<0.05 vs BE+MT group.
BE作為新生兒高膽紅素血癥的嚴(yán)重并發(fā)癥,具有較高的死亡率,并可導(dǎo)致一系列神經(jīng)系統(tǒng)后遺癥。BE的發(fā)病機(jī)制主要與UCB的神經(jīng)毒性有關(guān),在BE患兒中常見的病理改變?yōu)樯窠?jīng)細(xì)胞的水腫,并且水腫改變在BE的發(fā)生發(fā)展中具有重要的意義[5]。腦水腫分為細(xì)胞毒性水腫、離子性水腫、血管源性水腫和出血轉(zhuǎn)換[25]。研究表明,AQP4的表達(dá)異常與細(xì)胞毒性水腫的發(fā)生密切相關(guān),AQP4表達(dá)于大腦星形膠質(zhì)細(xì)胞終足膜上,對水具有通透性[26],降低AQP4的表達(dá)能減輕腦出血后腦組織的細(xì)胞毒性水腫[27]。由于細(xì)胞毒性水腫與BE的進(jìn)展有密切的關(guān)系,因此調(diào)控腦AQP4的表達(dá)可能有助于BE的治療。
本課題組前期研究表明,UCB將使SD乳鼠BE模型大腦皮質(zhì)[6]及海馬[28]中AQP4表達(dá)增加,并在BE造模后24~48 h達(dá)到峰值,且AQP4表達(dá)變化可能與BE中神經(jīng)細(xì)胞水腫有關(guān)[5]。在本研究中,我們發(fā)現(xiàn)腦組織AQP4表達(dá)變化與腦含水量具有密切聯(lián)系:與假手術(shù)組相比,BE組腦頂葉皮質(zhì)AQP4表達(dá)增加,免疫熒光結(jié)果顯示,BE鼠腦AQP4主要表達(dá)于頂葉皮質(zhì)細(xì)胞膜及血管內(nèi)皮細(xì)胞上,且AQP4的表達(dá)增加與BE頂葉皮質(zhì)含水量增加趨勢一致,證實(shí)AQP4參與了BE中腦水腫的形成。
MT可通過PKC信號通路對腦缺血模型中腦水腫和神經(jīng)細(xì)胞凋亡進(jìn)行調(diào)控[29],對多種神經(jīng)系統(tǒng)疾病具有保護(hù)作用[30]。另有研究表明,MT可通過mTOR途徑對星形膠質(zhì)細(xì)胞代謝進(jìn)行調(diào)控[16, 31-32]。mTOR屬于PI3K相關(guān)激酶,能被雷帕霉素特異性抑制,mTOR通路通過TOR序列控制PKC的磷酸化,進(jìn)一步介導(dǎo)PKC的調(diào)控。經(jīng)雷帕霉素抑制mTOR的信號傳遞后,小鼠的PKC亞型豐度和活性降低,其帶來的影響與給予小鼠PKC抑制劑的結(jié)果一致[32],提示mTOR信號通路的抑制可降低PKC表達(dá)和活性。上述研究表明,MT可通過mTOR信號通路對PKC進(jìn)行調(diào)控,同時(shí)有研究證實(shí)MT可通過激活PKC,抑制AQP4的表達(dá)[29]。本實(shí)驗(yàn)免疫熒光實(shí)驗(yàn)結(jié)果顯示,與sham組相比,UCB大幅上調(diào)BE頂葉皮質(zhì)的AQP4表達(dá),同時(shí)在星形膠質(zhì)細(xì)胞終足膜及周圍細(xì)胞膜[9]上觀察到AQP4表達(dá)上升,證實(shí)了BE將導(dǎo)致血管周圍星形膠質(zhì)細(xì)胞終足膜上AQP4的表達(dá)升高。而使用MT干預(yù)后上述部位AQP4的表達(dá)均降低,表明MT能顯著逆轉(zhuǎn)UCB導(dǎo)致的AQP4上調(diào)。在使用UCB處理后,SD乳鼠頂葉皮質(zhì)中AQP4的表達(dá)較sham組明顯增高,而PKC亞型PKCε的表達(dá)量明顯降低,但在使用MT對BE組進(jìn)行干預(yù)后,SD乳鼠頂葉皮質(zhì)中的AQP4表達(dá)出現(xiàn)降低,PKCε表達(dá)明顯上升,而PKCε參與了腦中AQP4的調(diào)控[21, 33]。BE+MT組AQP4表達(dá)量降低與免疫熒光標(biāo)記圖像及熒光強(qiáng)度趨勢相符合,以及Western blot中BE+MT組PKCε表達(dá)明顯上升,進(jìn)一步提示MT逆轉(zhuǎn)UCB所致AQP4上調(diào)的作用,是由PKCε所介導(dǎo)的。
為了進(jìn)一步明確PKC在MT對AQP4調(diào)控中的作用,我們使用PKC抑制劑Ro 31-8220進(jìn)行干預(yù),在我們的實(shí)驗(yàn)結(jié)果中,BE+MT+PKCi組腦AQP4表達(dá)量明顯高于未使用PKCi的BE+MT組,且PKCε的表達(dá)量和AQP4表達(dá)量呈負(fù)相關(guān),證實(shí)了MT可通過激活PKCε,從而降低AQP4的表達(dá),達(dá)到對BE小鼠腦功能的保護(hù)作用。
同時(shí)為了明確mTOR在MT對BE治療中的作用,研究中也使用了mTOR抑制劑PP242進(jìn)行干預(yù)。PP242作為雷帕霉素特異性抑制劑,能通過抑制mTOR復(fù)合物的表達(dá),來降低PKC的表達(dá)[25]。即PKC可作為mTOR的下游效應(yīng)分子,受到mTOR的調(diào)控[34]。mTOR途徑的激活可減輕蛛網(wǎng)膜下腔出血早期腦損傷介導(dǎo)的腦水腫[35]。本實(shí)驗(yàn)使用PP242干預(yù)后,在BE+MT+mTORi組中,AQP4表達(dá)量與BE組的表達(dá)水平接近,其干預(yù)效果與使用PKC抑制劑結(jié)果類似,提示MT降低BE頂葉皮質(zhì)AQP4的效應(yīng)被mTORi所阻止,也進(jìn)一步證實(shí)了MT通過激活mTOR/PKC途徑參與對BE腦中AQP4的調(diào)控。
此外,caspase-3作為凋亡級聯(lián)“瀑布”的重要酶分子,也可改變線粒體膜通透性,干擾線粒體電子傳遞鏈運(yùn)輸,使線粒體合成ATP的功能受損[36-38],最終導(dǎo)致細(xì)胞水腫和凋亡。cleaved caspase-3作為caspase-3的活性裂解產(chǎn)物,可以進(jìn)一步反映細(xì)胞凋亡水平[21, 37, 39]。我們的實(shí)驗(yàn)結(jié)果證實(shí)MT能夠顯著下調(diào)BE組頂葉皮質(zhì)caspase-3及cleaved caspase-3的水平,且與TUNEL、AQP4表達(dá)水平具有同步變化;UCB介導(dǎo)下的caspase-3和cleaved caspase-3的升高,伴隨著AQP4表達(dá)量升高,同時(shí)TUNEL陽性細(xì)胞數(shù)量增加,提示這種凋亡與UCB介導(dǎo)的AQP4升高具有相關(guān)性,并且外源性MT可降低BE的神經(jīng)細(xì)胞凋亡。本研究結(jié)果與MT在其它神經(jīng)系統(tǒng)疾病模型如局灶性腦缺血[40]、阿爾茲海默?。?1]、多發(fā)性硬化[42]中降低腦caspase-3及凋亡水平的研究結(jié)果一致。
本研究中BE組及MT干預(yù)組腦含水量變化提示,BE可發(fā)生腦水腫,而MT可減輕甚至阻止BE腦水腫的形成。免疫熒光染色及Western blot結(jié)果證實(shí),UCB可增加BE腦中AQP4的表達(dá),從而促進(jìn)BE腦水腫的形成,而MT對BE腦水腫的干預(yù)也是通過調(diào)控AQP4的表達(dá)部位及表達(dá)強(qiáng)度實(shí)現(xiàn)的。通過BE中AQP4表達(dá)量與TUNEL、caspase-3及cleaved caspase-3凋亡指標(biāo)的同步變化,我們認(rèn)為上述蛋白變化之間的關(guān)系為,隨著UCB介導(dǎo)的AQP4表達(dá)升高,導(dǎo)致細(xì)胞毒性水腫的形成,增加細(xì)胞對UCB的敏感性,來增強(qiáng)UCB對細(xì)胞的毒性作用,產(chǎn)生正反饋的致病效應(yīng),最終促使細(xì)胞器如線粒體的水腫[43],進(jìn)一步激活caspase家族蛋白,介導(dǎo)神經(jīng)細(xì)胞凋亡[21, 37]。而本實(shí)驗(yàn)證實(shí)MT可通過mTOR/PKC途徑,阻斷腦水腫的形成,又可直接阻止細(xì)胞凋亡產(chǎn)生,因而對UCB的致病效應(yīng)具有良好的保護(hù)效應(yīng),對BE的治療具有應(yīng)用價(jià)值。綜上所述,MT可通過減少BE腦頂葉皮質(zhì)中AQP4的表達(dá)來緩解腦水腫,并減少caspase-3介導(dǎo)的神經(jīng)細(xì)胞凋亡。而MT下調(diào)AQP4表達(dá)的機(jī)制與mTOR/PKC信號通路的激活有關(guān)。
[1] Slusher TM, Owa JA, Painter MJ, et al. The kernicteric facies: facial features of acute bilirubin encephalopathy[J]. Pediatr Neurol, 2011, 44(2):153-154.
[2] Kitchen P, Salman MM, Halsey AM, et al. Targeting aquaporin-4 subcellular localization to treat central nervous system edema[J]. Cell, 2020, 181(4):784-799.e19.
[3]劉佳麗, 王曄. 缺血后處理通過水通道蛋白-4對大鼠缺血再灌注損傷的腦保護(hù)作用及其機(jī)制[J]. 中風(fēng)與神經(jīng)疾病雜志, 2019, 36(3):209-213.
Liu JL, Wang Y. Ischemic postconditioning alleviates brain edema after ischemia reperfusion in rats through down-regulation of aquaporin-4[J]. J Apopl Nerv Dis, 2019, 36(3):209-213.
[4] Abo El Gheit RE, Atef MM, Badawi GA, et al. Role of serine protease inhibitor, ulinastatin, in rat model of hepatic encephalopathy: aquaporin 4 molecular targeting and therapeutic implication[J]. J Physiol Biochem, 2020, 76(4):573-586.
[5] Turkel SB, Miller CA, Guttenberg ME, et al. A clinical pathologic reappraisal of kernicterus[J]. Pediatrics, 1982, 69(3):267-272.
[6]文鳳, 樊萍, 隆令, 等. 膽紅素腦病SD乳鼠模型中腦水通道蛋白-4表達(dá)發(fā)生變化[J]. 中國生物化學(xué)與分子生物學(xué)報(bào), 2019, 35(12):1384-1391.
Wen F, Fan P, Long L, et al. Expression and significance of brain AQP4 in the neonatal SD rat model of bilirubin encephalopathy[J]. Chin J Biochem Mol Biol, 2019, 35(12):1384-1391.
[7] Chen HC, Tsai DJ, Wang CH, et al. An electron microscopic and radioautographic study on experimental kernicterus. I. Bilirubin transport via astroglia[J]. Am J Pathol, 1969, 56(1):31-58.
[8]黃娟. 細(xì)胞毒性腦水腫的發(fā)生發(fā)展過程中AQP4內(nèi)化和溶酶體分選現(xiàn)象及其機(jī)制的研究[D]. 重慶: 重慶醫(yī)科大學(xué), 2014.
Huang J. The internalization and lysosomal degradation of AQP4 in cytotoxic brain edema and its mechanism[D].Chongqing: Chongqing Medical University, 2014.
[9] Jorga?evski J, Zorec R, Potokar M. Insights into cell surface expression, supramolecular organization, and functions of aquaporin 4 isoforms in astrocytes[J]. Cells, 2020, 9(12):2622.
[10] Watchko JF, Tiribelli C. Bilirubin-induced neurologic damage: mechanisms and management approaches[J]. N Engl J Med, 2013, 369(21):2021-2030.
[11] Gunata M, Parlakpinar H, Acet HA. Melatonin: a review of its potential functions and effects on neurological diseases[J]. Rev Neurol (Paris), 2020, 176(3):148-165.
[12] 王維蘋, 朱耀峰, 張金, 等. 褪黑素對帕金森病模型大鼠代謝機(jī)能和DA能神經(jīng)元的保護(hù)作用[J]. 解剖學(xué)研究, 2017, 39(2):81-84, 161-162.
Wang WP, Zhu YF, Zhang J, et al. The protective effect of melatonin on dopaminergic neurons and on the metabolic function in rats with Parkinson disease[J]. Anat Res, 2017, 39(2):81-84,161-162.
[13] Pandi-Perumal SR, Srinivasan V, Maestroni GJ, et al. Melatonin: Nature's most versatile biological signal? [J]. FEBS J, 2006, 273(13):2813-2838.
[14] Baffi TR, Lordén G, Wozniak JM, et al. mTORC2 controls the activity of PKC and Akt by phosphorylating a conserved TOR interaction motif[J]. Sci Signal, 2021, 14(678):eabe4509.
[15] Baffi TR, Newton AC. Protein kinase C: release from quarantine by mTORC2[J]. Trends Biochem Sci, 2022, 47(6):518-530.
[16] Hao EY, Wang DH, Chang LY, et al. Melatonin regulates chicken granulosa cell proliferation and apoptosis by activating the mTOR signaling pathway via its receptors[J]. Poult Sci, 2020, 99(11):6147-6162.
[17] Xu LX, Lv Y, Li YH, et al. Melatonin alleviates brain and peripheral tissue edema in a neonatal rat model of hypoxic-ischemic brain damage: the involvement of edema related proteins[J]. BMC Pediatr, 2017, 17(1):90.
[18] Tiong YL, Ng KY, Koh RY, et al. Melatonin prevents oxidative stress-induced mitochondrial dysfunction and apoptosis in high glucose-treated schwann cells via upregulation of Bcl2, NF-κB, mTOR, Wnt signalling pathways[J]. Antioxidants (Basel), 2019, 8(7):198.
[19] Koral L, Ovali MA, Tufekcioglu NK, et al. The role of AQP3 and AQP4 channels in cisplatin-induced cardiovascular edema and the protective effect of melatonin[J]. Mol Biol Rep, 2021, 48(11):7457-7465.
[20] Wei X, Zhang B, Cheng L, et al. Hydrogen sulfide induces neuroprotection against experimental stroke in rats by down-regulation of AQP4 via activating PKC[J]. Brain Res, 2015, 1622:292-299.
[21] No?l G, Tham DKL, Guadagno E, et al. The laminin-induced phosphorylation of PKCδ regulates AQP4 distribution and water permeability in rat astrocytes[J]. Cell Mol Neurobiol, 2021, 41(8):1743-1757.
[22] Datta A, Sarmah D, Kaur H, et al. Post-stroke impairment of the blood-brain barrier and perifocal vasogenic edema is alleviated by endovascular mesenchymal stem cell administration: modulation of the PKCδ/MMP9/AQP4-mediated pathway[J]. Mol Neurobiol, 2022, 59(5):2758-2775.
[23] Kunduzova OR, Escourrou G, Seguelas MH, et al. Prevention of apoptotic and necrotic cell death, caspase-3 activation, and renal dysfunction by melatonin after ische-mia/reperfusion[J]. FASEB J, 2003, 17(8):872-874.
[24] 胡影, 田巧紅, 華子瑜, 等. 小腦延髓池注射膽紅素溶液建立新生大鼠膽紅素腦病模型的評價(jià)[J]. 重慶醫(yī)科大學(xué)學(xué)報(bào), 2008, 33(2):177-181, 244.
Hu Y, Tian QH, Hua ZY, et al. Evaluation of a new approach that inject bilirubin solution into cerebellomedullary cistern to establish bilirubin encephalopathy model in neonatal mouse[J]. J Chongqing Med Univ, 2008, 33(2):177-181, 244.
[25] 劉亞玲, 于秋紅, 王叢, 等. 腦損傷后繼發(fā)腦水腫的分型及其分子機(jī)制研究進(jìn)展[J]. 中華物理醫(yī)學(xué)與康復(fù)雜志, 2021, 43(6):567-570.
Liu YL, Yu QH, Wang C, et al. Research progress in classification and molecular mechanism of secondary brain edema after brain injury[J]. Chin J Phys Med Rehab, 2021, 43(6):567-570.
[26] Nagelhus EA, Ottersen OP. Physiological roles of aquaporin-4 in brain[J]. Physiol Rev, 2013, 93(4):1543-1562.
[27] Xu M, Su W, Xu Q. Aquaporin-4 and traumatic brain edema[J]. Chin J Traumatol, 2010, 13(2):103-110.
[28] 張麗榮, 樊萍, 胡嘉恒, 等. 膽紅素對幼年大鼠海馬細(xì)胞凋亡及水通道蛋白4表達(dá)的影響[J]. 神經(jīng)解剖學(xué)雜志, 2022, 38(1):85-92.
Zhang LR, Fan P, Hu JH, et al. The effects of bilirubin on cell apoptosis and the expression of aquaporin4 in hippocampus of young rats[J]. J Neuroanat, 2022, 38(1):85-92.
[29] Bhattacharya P, Pandey AK, Paul S, et al. Melatonin renders neuroprotection by protein kinase C mediated aquaporin-4 inhibition in animal model offocal cerebral ischemia[J]. Life Sci, 2014, 100(2):97-109.
[30] 裴進(jìn)升, 張華. 褪黑素對新生鼠膽紅素腦損傷的保護(hù)機(jī)制[J]. 廣東醫(yī)學(xué), 2012, 33(12):1706-1708.
Pei JS, Zhang H. Protective mechanism of melatonin on bilirubin brain injury in neonatal rats[J]. Guangdong Med, 2012, 33(12):1706-1708.
[31] Mueed Z, Rai PK, Kamal MA, et al. Decoding the inter-relationship between sleep disorders and Alzheimer's di-sease pathogenesis[J]. CNS Neurol Disord Drug Targets, 2021, 20(8):723-735.
[32] Li H, Zhang Y, Liu S, et al. Melatonin enhances prolifera-tion and modulates differentiation of neural stem cells via autophagy in hyperglycemia[J]. Stem Cells, 2019, 37(4):504-515.
[33] Chen SJ, Yang JF, Kong FP, et al. Overactivation of corticotropin-releasing factor receptor type 1 and aquaporin-4 by hypoxia induces cerebral edema[J]. Proc Natl Acad Sci U S A, 2014, 111(36):13199-13204.
[34] Ribeiro MC, Peruchetti DB, Silva LS, et al. LPS induces mTORC1 and mTORC2 activation during monocyte adhesion[J]. Front Mol Biosci, 2018, 5:67.
[35] Tian J, Yang L, Wang P, et al. Exogenous CGRP regulates apoptosis and autophagy to alleviate traumatic brain injury through Akt/mTOR signalling pathway[J]. Neurochem Res, 2020, 45(12):2926-2938.
[36] Pessoa J. Live-cell visualization of cytochrome c: a tool to explore apoptosis[J]. Biochem Soc Trans, 2021, 49(6):2903-2915.
[37] Kalpage HA, Wan J, Morse PT, et al. Cytochromephosphorylation: control of mitochondrial electron transport chain flux and apoptosis[J]. Int J Biochem Cell Biol, 2020, 121:105704.
[38] 王海鵬, 劉同帥, 于群, 等.基因敲減促進(jìn)氧糖剝奪/復(fù)氧誘導(dǎo)的小鼠神經(jīng)母細(xì)胞瘤N2a細(xì)胞凋亡[J]. 中國病理生理雜志, 2021, 37(8):1422-1429.
Wang HP, Liu TS, Yu Q, et al. Knockdown ofgene promotes apoptosis of mouse neuroblastoma N2a cells induced by oxygen-glucose deprivation/reoxygenation[J]. Chin J Pathophysiol, 2021, 37(8):1422-1429.
[39] Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis[J]. Annu Rev Biochem, 1999, 68:383-424.
[40] Kilic E, Kilic U, Yulug B, et al. Melatonin reduces disseminate neuronal death after mild focal ischemia in mice via inhibition of caspase-3 and is suitable as an add-on treatment to tissue-plasminogen activator[J]. J Pineal Res, 2004, 36(3):171-176.
[41] Luengo E, Buendia I, Fernández-MC, et al. Pharmacological doses of melatonin impede cognitive decline in tau-related Alzheimer models, once tauopathy is initiated, by restoring the autophagic flux[J]. J Pineal Res, 2019, 67(1):e12578.
[42] Vakilzadeh G, Khodagholi F, Ghadiri T, et al. The effect of melatonin on behavioral, molecular, and histopathological changes in cuprizone model of demyelination[J]. Mol Neurobiol, 2016, 53(7):4675-4684.
[43] Hu JH, Fan P, Zhang LR, et al. Neuroglobin expression and function in the temporal cortex of bilirubin encephalopathy rats[J]. Anat Rec (Hoboken), 2022, 305(2):254-264.
Melatonin down-regulates cerebral parietal cortex aquaporin 4 and induces neuroprotection through mTOR/PKC signaling in bilirubin encephalopathy rats
ZHANG Mingyue1, ZHOU Longyang1, PU Song1, CUI Aijie1, ZHANG Lirong2, CHEN Chunyan2, XUE Kaige2, FAN Ping3, GAN Shengwei1,2△
(1,,400016,;2,,,400016,;3,,400062,)
To investigate the changes of cerebral parietal cortical aquaporin 4 (AQP4) and neural apoptosis induced by melatonin (MT) in bilirubin encephalopathy (BE), and to determine the role of the mammalian target of the rapamycin (mTOR)/protein kinase C (PKC) signaling pathway in the therapeutic mechanism of MT for BE.Eighty 7-day-old Sprague-Dawley (SD) rats were randomly divided into sham group, BE group, MT group, PKC inhibitor (PKCi) group, and mTOR inhibitor (mTORi) group. The BE model was established in neonatal SD rats by injecting bilirubin solution into the cisterna magna. In the mTORi group, the mTOR inhibitor solution was then injected intraperitoneally 1 h before modeling, and the MT solution was injected intraperitoneally 30 min before modeling. At 24 h after modeling, the brains of neonatal SD rats were removed, and hematoxylin-eosin (HE) and Nissl staining were used to detect cortical pathological changes in each group. The water content of the cerebral cortex was measured using the wet-dry weight method, and the expression level of AQP4 in cerebral cortex was detected by immunofluorescence staining. TUNEL staining was used to detect the neuronal apoptosis, and the expression levels of AQP4, caspase-3, cleaved caspase-3 and PKCε were detected by Western blot.Compared with BE group, HE and Nissl staining showed that MT alleviated unconjugated bilirubin (UCB)-induced neural damage. The wet-dry weight method showed that the water content of the cerebral parietal cortical area was decreased after treatment with MT. Immunofluorescence staining showed that AQP4 was mainly expressed along the vessels on the end feet membrane of astrocytes, and MT prevented increased AQP4 levels induced by UCB. TUNEL staining showed that MT alleviated the cerebral parietal cortical neuronal apoptosis caused by BE. Western blot showed that in comparison with sham group, AQP4 and cleaved caspase-3 expression levels were increased, and PKC expression was decreased in the parietal cortex of the rats in BE group. MT intervention reduced the increased expression levels of AQP4 and cleaved caspase-3, and decreased expression of PKCε. Treatment with PKCi or mTORi reversed the ameliorative effect of MT on the above-mentioned pathological changes in BE group.Treatment with MT induces potential neuroprotection in the neonatal SD rat model of BE by activating mTOR/PKC signaling pathway.
bilirubin encephalopathy; melatonin; aquaporin 4; mTOR/PKC signaling pathway
1000-4718(2023)07-1199-10
2022-08-30
2023-06-16
15825906442; E-mail: 406970700@cqmu.edu.cn
R363.1+3; R741
A
10.3969/j.issn.1000-4718.2023.07.006
[基金項(xiàng)目]重慶市衛(wèi)生計(jì)生委2015年科研計(jì)劃項(xiàng)目(No. 2015MSXM109);中華醫(yī)學(xué)會醫(yī)學(xué)教育分會立項(xiàng)課題(No. 2020B-N13332);國家級大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目、重慶醫(yī)科大學(xué)大學(xué)生科學(xué)研究與創(chuàng)新實(shí)驗(yàn)項(xiàng)目(No. SRIEP202004);重慶市2022年創(chuàng)新人才工程項(xiàng)目(No. CY220408)
(責(zé)任編輯:余小慧,李淑媛)