夏一夫 王騊
摘 要:為了研究氮氧自由基聚合物刷層的抗貽貝粘附性能,利用SI-Cu0CRP策略,在引發(fā)劑修飾表面接枝PTEMPMA刷子,進(jìn)一步通過氧化得到了含氮氧自由基的PTEMPOMA聚合物刷涂層,并將涂層用于抗貽貝粘附。利用接觸角儀、掃描探針顯微鏡、電子順磁共振光譜儀、傅里葉紅外光譜儀、3D光學(xué)輪廓儀等對(duì)聚合物刷進(jìn)行物理和化學(xué)性質(zhì)的表征,通過多巴胺溶液浸泡實(shí)驗(yàn)以及真實(shí)的貽貝浸泡實(shí)驗(yàn)來研究貽貝粘附過程。結(jié)果表明:PTEMPMA聚合物刷可以成功接枝在不同基底(如硅片、石英玻璃、不銹鋼片、鋁片)上,并且可以通過控制反應(yīng)時(shí)間控制聚合物刷涂層的厚度;有效的氧化過程可以得到含有氮氧自由基的PTEMPOMA聚合物刷層,經(jīng)過貽貝浸泡測試,聚合物刷涂層展現(xiàn)了極好的抗貽貝粘附效果。
關(guān)鍵詞:海洋防污;抗貽貝粘附;聚合物刷;自由基聚合
中圖分類號(hào):TQ317.4
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1009-265X(2023)04-0201-07
收稿日期:2023-01-18
網(wǎng)絡(luò)出版日期:2023-03-21
基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(52003279)
作者簡介:夏一夫(1997—),男,湖北黃岡人,碩士研究生,主要從事功能聚合物刷合成及應(yīng)用方面的研究。
通信作者:王騊,E-mail:wangtao@zstu.edu.cn
海洋生物如微生物、藤壺和貽貝在船體上的附著和積累,是海洋工業(yè)面臨的一個(gè)全球性問題,維護(hù)的經(jīng)濟(jì)和環(huán)境成本都很高[1]。自20世紀(jì)中葉以來,科學(xué)家們已經(jīng)開發(fā)了各種防污涂層,例如銅化合物樹脂涂層[2]、三丁基錫自拋光涂層[3]等,他們雖然具有很好的抗生物粘附效果,但是都是通過向周圍水域釋放有毒的物質(zhì)而發(fā)揮作用,這將對(duì)非目標(biāo)生物和海洋造成嚴(yán)重危害。自2008年1月31日三丁基錫等有毒涂料被禁止使用后,已經(jīng)有人研究出了各種新型的無毒的海洋防污涂層,例如受控耗盡涂料(Controlled depletion paints,CDPs)、無錫自拋光涂料(Tin-free self-polishing paints,TF-SPC)等環(huán)保涂料,還有通過在船體表面構(gòu)造各種仿生微納結(jié)構(gòu)[4],或者形成水合層[5],從而達(dá)到防污的目的。但是這些涂層對(duì)于周圍水域的生物具有同等的防污效果,不具備特異性防污能力,開發(fā)特異性的防污涂層將會(huì)是未來新型海洋防污涂層的發(fā)展趨勢。
聚合物刷是一種線性聚合物材料,可以接枝在不同基底上,通過引入不同的功能單體可以獲得所需的物理和化學(xué)性能,所以廣泛用于界面改性[6]。目前,聚合物刷已經(jīng)廣泛用于潤滑減阻[7]、生物醫(yī)學(xué)[8]、界面粘合[9]和防污[10-11]等領(lǐng)域。表面引發(fā)原子轉(zhuǎn)移自由基聚合(Surface-initiated atom transfer radical polymerization,SI-ATRP)是一種廣泛使用的聚合方法,可以在各種引發(fā)劑改性的表面上原位生長聚合物刷,在眾多SI-ATRP策略中,表面引發(fā)零價(jià)銅介導(dǎo)的自由基聚合(Surface-initiated Cu(0)-mediated controlled radical polymerization,SI-Cu0CRP)策略允許在開放環(huán)境下可控地合成聚合物刷,這將有利于聚合物刷的大面積應(yīng)用。因此,開發(fā)特殊的聚合物刷涂層用于防止貽貝及類似物的特異性粘附是非常有意義的探索。具有持久性氮氧自由基的2,2,6,6-四甲基哌啶-1-氧基(TEMPO)是一種常見的用于氧化過程的催化劑[12],除此之外,它還具有抗氧化的效果。貽貝與不同界面的強(qiáng)粘附是通過貽貝足部蛋白實(shí)現(xiàn)的,其中主要起粘附作用的是含有鄰苯二酚基團(tuán)的貽貝足部蛋白(mfp-5)[13-14],而聚甲基丙烯酸-2,2,6,6-四甲基哌啶-1-氧基酯(PTEMPOMA)聚合物刷層中豐富的氮氧自由基可以在外部環(huán)境中O2作用下將鄰苯二酚基團(tuán)氧化為鄰苯醌[15],這將極大地減小貽貝足蛋白的粘附強(qiáng)度,進(jìn)而達(dá)到抗粘附的效果。基于以上考慮,首先利用SI-Cu0CRP制備PTEMPMA層,進(jìn)一步通過氧化形成PTEMPOMA聚合物刷涂層用于抗貽貝粘附,這將為開發(fā)特異性涂層用于抵抗貽貝或貽貝類似物的粘附提供思路。
1 實(shí) 驗(yàn)
1.1 材料與儀器
Cu片、硅晶圓片(~300 nm 氧化層),購于蘇州銳材半導(dǎo)體有限公司;甲基丙烯酸-2,2,6,6-四甲基-4-哌啶基酯(TEMPMA)、二甲基亞砜(DMSO)、二氯甲烷(DCM)、五甲基二乙烯三胺(PMDETA)、2-溴-2-甲基丙酸(3-三甲氧基硅基)丙酯、多巴胺鹽酸鹽(DA)、間氯過氧苯甲酸(mCPBA),均購于麥克林試劑公司;貽貝為瓜子貝,購于生鮮市場。
1.2 實(shí)驗(yàn)方法
1.2.1 引發(fā)劑功能化基底的制備
將基底(具有納米級(jí)氧化物層的硅晶片、鋁片)用乙醇和去離子水洗滌5 min,并用干燥的氮?dú)饬鞲稍?,然后用氧等離子體處理10 min。大面積不銹鋼基底以及玻璃基底則不需要前面的氧等離子體處理過程。隨后,將基底置于一個(gè)裝有5 μL 2-溴-2-甲基丙酸(3-三甲氧基硅基)丙酯的小瓶的封閉容器中。在容器中60 ℃保持3 h,用去離子水和乙醇洗滌后,用干燥的氮?dú)饬鞲稍铩?/p>
1.2.2 PTEMPMA聚合物刷的制備
將單體TEMPMA(0.5 g)、溶劑DMSO(1.5 mL,需提前除氧)和配體PMDETA(17 μL)添加到玻璃管中。在室溫下超聲5 min,得到無色透明的反應(yīng)溶液。硅晶片和鋁片基底:將一塊用引發(fā)劑改性的硅晶片(鋁片)平行于銅板,將兩層相同大小的濾紙放在中間(銅板與基底距離約為0.4 mm),在板之間注入反應(yīng)溶液。在室溫下聚合預(yù)定時(shí)間后,分離板,用二甲基甲酰胺、乙醇和去離子水徹底清洗基底,并在氮?dú)饬飨赂稍?。不銹鋼和玻璃基底:將銅片放于基底之下,中間也用雙層濾紙隔開,注入反應(yīng)溶液,直至溶液充滿整個(gè)間隙,反應(yīng)2 h,用乙醇和去離子水徹底清洗基底,用氮?dú)饬鞲稍铩?/p>
1.2.3 PTEMPMA聚合物刷的氧化
將接枝有PTEMPMA聚合物刷的基底放入10 mL DCM中,然后將10 mL的mCPBA(0.76 g,4.4 mmol) DCM溶液滴加到上述溶液中,在氮?dú)夥諊?,將所得溶液在室溫下攪? h。取出基底,分別用二甲基甲酰胺、乙醇和去離子水徹底清洗,然后用氮?dú)饬鞲稍铩?/p>
1.2.4 貽貝浸泡樣品(大面積不銹鋼和玻璃片)的制備
將TEMPMA(0.49 g,2.2 mmol)溶于10 mL DCM中,然后將10 mL的mCPBA(0.76 g,4.4 mmol) DCM溶液滴加到上述溶液中,并將所得溶液在氮?dú)庀率覝財(cái)嚢? h。然后用20 mL質(zhì)量分?jǐn)?shù)為5%的碳酸鈉水溶液和水洗滌溶液。分離晶體,在真空下干燥,得到TEMPOMA。后面的聚合物刷接枝過程參考PTEMPMA聚合物刷的制備過程,只需要將單體換成TEMPOMA即可,其他部分不變。
1.3 測試與表征
采用靜態(tài)接觸角儀(OCA,DCAT21,寧波金茂進(jìn)出口有限公司)進(jìn)行水接觸角的測試。采用掃描探針顯微鏡(SPM,Bruker Dimension ICON)的敲擊模式進(jìn)行多巴胺溶液(Dopamine,DA)浸泡后樣品的表面形貌及粗糙度的表征。采用顯微傅里葉變換紅外光譜儀(Micro FT-IR,Agilent Cary660+620,范圍650~4000 cm-1)進(jìn)行紅外光譜表征。電子順磁共振光譜(EPR,Bruker E500)進(jìn)行自由基的表征。采用3d光學(xué)輪廓儀(UP-Lambda,艾泰克儀器科技有限公司)進(jìn)行貽貝浸泡后樣品的表面形貌以及粗糙度表征。
2 結(jié)果與討論
2.1 聚合物刷的制備及聚合機(jī)理
圖1(a)為聚合物刷制備的過程:主要分為引發(fā)劑接枝和聚合物刷接枝。圖1(b)展示了SI-Cu0CRP的通用反應(yīng)裝置及聚合機(jī)理,反應(yīng)裝置為三明治結(jié)構(gòu),相同尺寸的銅片和引發(fā)劑改性基底用0.4 mm厚的濾紙隔開,中間為反應(yīng)溶液(溶劑DMSO、單體TEMPMA和配體PMDETA),反應(yīng)全程在外部開放環(huán)境中進(jìn)行。銅物種(CuⅠ和CuⅡ)主要通過在配體存在下銅的耗氧腐蝕形成(見圖1(b),黃色小球),CuⅠ物種可以被溶解氧氧化為CuⅡ物種,CuⅡ物種也可以再次被銅片還原為CuⅠ物種,通過銅片和基底之間的歧化/歸中反應(yīng)平衡,使得聚合反應(yīng)具有優(yōu)異的耐氧性,進(jìn)而催化單體聚合形成聚合物刷涂層[16]。
2.2 聚合物刷的生長動(dòng)力學(xué)及自由基表征
利用SPM對(duì)PTEMPMA聚合物刷子的生長動(dòng)力學(xué)過程進(jìn)行表征,并用接觸角儀測量相應(yīng)的靜態(tài)水接觸角,通過EPR測試了PTEMPMA聚合物刷子氧化前后自由基的形成。圖2(a)的生長動(dòng)力學(xué)曲線展示了單體極快的聚合速率,這得益于SI-Cu0CRP的優(yōu)越性,圖2(a)中在反應(yīng)時(shí)間為30 min和180 min時(shí)PTEMPOMA聚合物刷子的靜態(tài)水接觸角分別為57.58°和55.10°,這說明涂層具有一定的親水性,有利于表面形成水合層,阻礙貽貝足蛋白的粘附[17]。圖2(b)顯示了在氧化前PTEMPMA聚合物刷子沒有出現(xiàn)自由基的信號(hào),氧化后的PTEMPOMA聚合物刷子則出現(xiàn)了強(qiáng)烈的氮氧自由基信號(hào),這表明了氧化過程是有效的。
2.3 鹽酸多巴胺浸泡測試
隨后利用鹽酸多巴胺溶液代替貽貝粘附蛋白模擬PTEMPOMA聚合物刷子的抗粘附性能,通過AFM進(jìn)行表面粗糙度表征(基底為硅晶片),通過FT-IR分析了表面物質(zhì)(基底為鋁片),并且利用EPR測試了浸泡前后的自由基的變化。圖3分別展示了空白基底(見圖3(a))、聚合物刷接枝后的基底
(見圖3(b))以及分別經(jīng)過鹽酸多巴胺溶液浸泡三天后的基底(見圖3(c)-(d))的表面形貌以及粗糙度變化。可以看到,空白基底在浸泡前后,表面粗糙度(Ra)變化量達(dá)到了20 nm,而接枝有聚合物刷的基底在浸泡前后的表面粗糙度的變化量只有4.16 nm,這從某種程度上證明了PTEMPOMA聚合物刷涂層對(duì)于多巴胺的抗粘附效果。圖4則展示了
空白鋁片基底(見圖4(a))和聚合物刷接枝后的基底(見圖4(b))浸泡前后表面物質(zhì)的變化,在鹽酸多巴胺溶液浸泡三天后,空白鋁片基底上出現(xiàn)了明顯的氨基(~3200 cm-1)和苯環(huán)(~1600 cm-1)的信號(hào),而聚合物刷接枝基底兩個(gè)位置的峰強(qiáng)度則要小得多,這同樣說明了PTEMPOMA聚合物刷對(duì)于抗多巴胺粘附的有效性。經(jīng)過EPR測試了聚合物刷層在浸泡前后的自由基信號(hào),發(fā)現(xiàn)自由基在浸泡后信號(hào)強(qiáng)度基本不變(見圖5),這證明了聚合物刷在抗粘附過程中起到了催化劑的作用,自身性能在反應(yīng)前后是不會(huì)發(fā)生變化的,這將有助于PTEMPOMA涂層的應(yīng)用。
通過多巴胺代替貽貝粘附蛋白,對(duì)PTEMPOMA的抗貽貝粘附機(jī)理進(jìn)行了探究。多巴胺鹽酸鹽的內(nèi)聚交聯(lián)是氧化過程導(dǎo)致的,然而與不同基底的接觸粘附是靠鄰苯二酚基團(tuán)實(shí)現(xiàn)的,在外界環(huán)境中O2的作用下鄰苯二酚會(huì)被氧化為鄰苯醌,鄰苯醌基團(tuán)的粘附強(qiáng)度則比鄰苯二酚基團(tuán)要小得多,但是鄰苯醌不穩(wěn)定,在一系列轉(zhuǎn)化下最后還是會(huì)變回鄰苯二酚[13-15],這樣就能粘附在基底上。通過PTEMPOMA聚合物刷涂層來催化鄰苯二酚基團(tuán)的氧化過程,使得靠近聚合物刷表面的多巴胺能不斷的被氧化為多巴醌(見圖6),這樣就能極大降低其粘附強(qiáng)度,聚合物刷表面的水合層也能進(jìn)一步阻礙粘附過程。
2.4 貽貝浸泡測試
為了探究氮氧自由基聚合物刷涂層真實(shí)的抗貽貝粘附性能,將大面積制備的樣品以及空白基底放入貽貝養(yǎng)殖箱里,浸泡一個(gè)星期后得到真實(shí)的貽貝粘附情況,并用3D光學(xué)輪廓儀表征表面形貌和粗糙度。圖7(a)―(b)展示了玻璃基底的粘附情況,相比于聚合物刷接枝后的玻璃,空白玻璃基底顯示了強(qiáng)烈的貽貝粘附,其表面粗糙度也比聚合物刷涂層覆蓋基底大了一個(gè)數(shù)量級(jí)。聚合物刷涂層改性的不銹鋼基底也顯示出了同樣的抗粘附效果(見圖7(c)―(d))。通過貽貝浸泡測試,這不僅展示了PTEMPOMA聚合物刷涂層優(yōu)越的抗貽貝粘附性能,也充分顯示了其對(duì)于不同基底的適用性。
3 結(jié) 論
本文制備了一種可用于抵抗貽貝粘附的聚合物刷涂層,通過SI-Cu0CRP將單體TEMPMA原位接枝在引發(fā)劑修飾表面,經(jīng)過氧化得到含有氮氧自由基的PTEMPOMA聚合物刷層。通過鹽酸多巴胺浸泡實(shí)驗(yàn)以及真實(shí)的貽貝浸泡實(shí)驗(yàn),從理論和實(shí)際上都證明了PTEMPOMA聚合物刷層具有優(yōu)良的抗貽貝粘附性能,并且涂層在使用過程中具有良好的穩(wěn)定性,這對(duì)于涂層的實(shí)際應(yīng)用是非常有利的。因此,利用PTEMPOMA聚合物刷涂層進(jìn)行表面改性,將有效防止貽貝類生物的粘附,這將為新型海洋防污涂層用于抗貽貝粘附提供新的思路。
參考文獻(xiàn):
[1]PISTONE A, SCOLARO C, VISCO A. Mechanical properties of protective coatings against marine fouling: A Review[J]. Polymers, 2021, 13(2): 173.
[2]TIAN J J, XU K W, HU J H, et al. Durable self-polishing antifouling Cu-Ti coating by a micron-scale Cu/Ti laminated microstructure design[J]. Journal of Materials Science & Technology, 2021, 79: 62-74.
[3]ZHANG J B, LIU Y Z, WANG X W, et al. Self-polishing emulsion platforms: Eco-friendly surface engineering of coatings toward water borne marine antifouling[J]. Progress in Organic Coatings, 2020, 149:105945-105945.
[4]JIN H C, TIAN L M, BING W, et al. Bioinspired marine antifouling coatings: Status, prospects, and future[J]. Progress in Materials Science, 124: 100889.
[5]YANG W S, ZHAO Z Q, PAN M F, et al. Mussel-inspired polyethylene glycol coating for constructing antifouling membrane for water purification[J]. Journal of Colloid and Interface Science, 2022, 625: 628-639.
[6]MURAD BHAYO A, YANG Y, HE X M. Polymer brushes: Synthesis, characterization, properties and applications[J]. Progress in Materials Science, 2022, 130:101000.
[7]DEHGHANI E S, RAMAKRISHNA S N, SPENCER N D, et al. Controlled crosslinking is a tool to precisely modulate the Nanomechanical and Nanotribological properties of Polymer Brushes[J]. Macromolecules, 2017, 50(7): 2932-2941.
[8]ZHANG M, YU P, XIE J, et al. Recent advances of zwitterionic-based topological polymers for biomedical applications[J]. Journal of Materials Chemistry B, 2022, 10(14): 2338-2356.
[9]YUK H, ZHANG T, PARADA G A, et al. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures[J]. Nature Communications, 2016, 7(1): 1-11.
[10]DAI G X, XIE Q Y, AI X Q, et al. Self-generating and self-Renewing zwitterionic polymer surfaces for marine anti-biofouling[J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41750-41757.
[11]KARDELA J H, MILLICHAMP I S, FERGUSON J, et al. Nonfreezable water and polymer swelling control the marine antifouling performance of polymers with limited hydrophilic content[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 29477-29489.
[12]BEEJAPUR H A, ZHANG Q, HU K C, et al. TEMPO in chemical transformations: From homogeneous to hetero-geneous[J]. ACS Catalysis, 2019, 9(4): 2777-2830.
[13]PETRONE L, KUMAR A, SUTANTO C N, et al. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins[J]. Nature Communications, 2015, 6: 8737.
[14]MAIER GREG P, RAPP MICHAEL V, WAITE J H, et al. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement[J]. Science, 2015, 349(6248): 628-632.
[15]VALOIS E, MIRSHAFIAN R, WAITE J H. Phase-dependent redox insulation in mussel adhesion[J]. Science Advances, 2020, 6(23): eaaz6486.
[16]ZHANG T, DU Y, KALBACOVA J, et al. Wafer-scale synthesis of defined polymer brushes under ambient conditions 1[J]. Polymer Chemistry, 2015, 6(47): 8176-8183.
[17]LIU Y L, ZHANG D, REN B P, et al. Molecular simulations and understanding of antifouling zwitterionic polymer brushes[J]. Journal of Materials Chemistry B, 2020, 8(17): 3814-3828.
Application of nitroxide radical functional polymercoating to resist mussel adhesion
XIA Yifu, WANG Tao
(School of Materials Science & Engineering, Zhejiang Sci-tech University, Hangzhou 310018, China)
Abstract:
The Earth's oceans cover a vast area (approximately 71% of the earth's total surface). Marine transport is an important part of international trade, which cannot be ignored for social and economic development. Due to the oceans' complex environment and biodiversity, various fouling organisms are easy to adhere to marine equipment such as ships and oil platforms. For example, mussels and other invertebrates are firmly attached to the surface of ship hulls by secreting biological adhesives. Due to the massive adhesion of fouling organisms, the weight of the hull increases and the surface becomes rougher, which leads to increased energy consumption during operation and causes significant economic losses. In order to prevent further damage, much money is invested every year in the regular cleaning of ship surfaces and the maintenance of marine installations. Therefore, it is essential to develop economical and effective marine antifouling coatings.
In order to prevent fouling organisms from adhering to underwater surfaces, the application of antifouling coatings is the simplest and most widely used method currently. Nevertheless, conventional antifouling coatings usually kill fouling organisms by releasing toxic materials such as organo-tins and cuprous oxide, which cause irreversible damage to marine ecology. Therefore, the development of efficient and environmentally friendly marine antifouling coatings has become a popular research topic. Polymer brushes are linear polymers with a brush-like structure anchored to a surface at one side. Surface-initiated radical polymerization is a widely used polymerization method that can be grown in-situ on various initiator-modified surfaces, and many researchers are currently using surface-initiated radical polymerization to synthesize polymer brush layers for investigations related to anti-protein adhesion and anti-bacterial applications, with good results, showing that polymer brushes have great potential for application in the field of anti-biofouling. Thus, we synthesized the functional polymer brush coating for mussel adhesion resistance, and used its catalytic effect to oxidize the catechol groups, significantly reducing the adhesion of mussel adhesion proteins. It is found that the PTEMPMA polymer brush coating is grafted on the initiator-modified surface by the SI-Cu0CRP strategy, and the PTEMPOMA polymer brush coating is obtained by oxidation. The surface roughness is characterized after dopamine hydrochloride immersion experiments and real mussel immersion experiments. The polymer brush coating shows the excellent anti-mussel adhesion performance and good stability after immersion.
Nowadays,with the development of sustainable economy, it has become an inevitable trend to develop economical, efficient and environmentally friendly new types of marine antifouling coatings, especially for the anti-adhesion research of specific species (e.g. mussels and barnacles). The use of nitroxide radical functionalized polymer brush coatings for anti-mussel adhesion meets expectations in terms of both principle and experimental results, and the findings may provide new insights into the development of new marine antifouling coatings.
Keywords:
marine antifouling; anti-mussel adhesion; polymer brush; free radical polymerization