江金魚 何浩宇 黃磊 吳振鵬 董博聞
摘 要:采用模壓成型技術(shù)制備了太陽(yáng)能電池陣用碳纖維增強(qiáng)環(huán)氧樹脂(CF/EP)復(fù)合板材,并通過(guò)光學(xué)顯微鏡、SEM及XRD對(duì)其宏觀、微觀結(jié)構(gòu)進(jìn)行表征?;诙辔锢韴?chǎng)耦合計(jì)算軟件Comsol建立了CF/EP復(fù)合板的固體傳熱數(shù)值模型,借助曲線坐標(biāo)系轉(zhuǎn)換算法揭示了熱量于復(fù)合板碳纖維中優(yōu)先沿纖維軸向傳導(dǎo),進(jìn)而解釋了碳纖維對(duì)CF/EP復(fù)合板導(dǎo)熱性能提升的作用機(jī)制。并基于有限元計(jì)算軟件Abaqus,建立了CF/EP的軸向應(yīng)力-應(yīng)變模型。研究發(fā)現(xiàn)在CF/EP的彈性變形過(guò)程中,沿平行于應(yīng)力方向排列的碳纖維承擔(dān)了絕大部分應(yīng)力,且當(dāng)應(yīng)變率升至1%時(shí),軸向碳纖維的內(nèi)部應(yīng)力最高可達(dá)54.1 MPa。
關(guān)鍵詞:太陽(yáng)能電池陣;碳纖維增強(qiáng)環(huán)氧樹脂(CF/EP);曲線坐標(biāo);固體傳熱;彈性變形
中圖分類號(hào):TB33
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1009-265X(2023)04-0111-08
收稿日期:2022-11-24
網(wǎng)絡(luò)出版日期:2023-02-23
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(52201038),湖北省重點(diǎn)實(shí)驗(yàn)室開放課題(2021XY104),省級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)項(xiàng)目(S202210920021)
作者簡(jiǎn)介:江金魚(1983—),女,安徽池州人,副教授,碩士,主要從事非金屬材料的性能分析方面的研究。
碳纖維增強(qiáng)環(huán)氧樹脂(CF/EP)是以環(huán)氧樹脂(EP)作為基體相,以碳纖維(CF)作為增強(qiáng)相復(fù)合制備得到的復(fù)合材料,具有高比模量、高比強(qiáng)度、低熱膨脹系數(shù)及優(yōu)良導(dǎo)電導(dǎo)熱性等優(yōu)異性能,是太陽(yáng)能電池陣、人造衛(wèi)星、電子儀表等電子器件中不可缺少的結(jié)構(gòu)材料[1-3]。然而,CF/EP中的碳纖維在導(dǎo)熱系數(shù)、彈性模量等方面均呈現(xiàn)明顯的各向異性,導(dǎo)致其排列方向?qū)@著影響CF/EP復(fù)合材料的導(dǎo)熱及力學(xué)性能[4-6]。目前,相關(guān)學(xué)者圍繞CF/EP復(fù)合材料的性能優(yōu)化開展了大量基礎(chǔ)研究[7-8],分別探究了材料結(jié)構(gòu)(例如增韌相濃度)、材料缺陷(例如孔隙、夾雜及裂紋)、纖維增強(qiáng)方式(例如纖維表面改性)及固化工藝對(duì)復(fù)合材料力學(xué)性能的影響,然而卻極少關(guān)注CF的各向異性對(duì)材料性能的影響機(jī)制。同時(shí),受服役條件變化及環(huán)境因素影響,CF/EP復(fù)合材料的各向異性也將對(duì)其傳熱、承載等性能產(chǎn)生更為顯著的影響。因此,研究CF/EP復(fù)合材料中CF各向異性對(duì)材料性能的影響機(jī)制具有十分重要的意義。
鑒于此,本文擬針對(duì)實(shí)驗(yàn)制備的CF/EP復(fù)合板材,基于數(shù)值仿真技術(shù)進(jìn)行相關(guān)復(fù)合板材的熱傳導(dǎo)及靜力學(xué)分析,揭示CF在導(dǎo)熱系數(shù)及彈性模量方面的各向異性對(duì)復(fù)合板材相關(guān)性能的影響機(jī)制。
1 實(shí) 驗(yàn)
1.1 實(shí)驗(yàn)材料
本文涉及的實(shí)驗(yàn)材料參數(shù)如表1所示。
1.2 實(shí)驗(yàn)方法
1.2.1 碳纖維預(yù)處理
首先將待使用的T-300型號(hào)PAN基碳纖維置于體積比1∶1的乙醇/丙酮溶液中進(jìn)行回流處理,靜置72 h以達(dá)到清潔碳纖維表面并脫除碳纖維表層上漿劑的效果;隨后將碳纖維取出并用丙酮洗凈置于干燥箱中干燥至恒重;進(jìn)一步將干燥后的碳纖維置于50 ℃的去離子水中進(jìn)行4 h的超聲處理;最后將處理好的碳纖維置于干燥箱中于60 ℃干燥至恒重。
1.2.2 CF/EP復(fù)合板材制備
本實(shí)驗(yàn)采用正交刷搭配模壓成型技術(shù)制備CF/EP復(fù)合材料,用作太陽(yáng)能電池陣(見(jiàn)圖1(a))的結(jié)構(gòu)材料。將上一步中經(jīng)過(guò)預(yù)處理的碳纖維平紋布剪裁成200 mm×150 mm尺寸并置于干燥箱中于60 ℃烘干并稱重。以碳纖維:環(huán)氧樹脂質(zhì)量比3∶2的比例稱取環(huán)氧樹脂,并將樹脂通過(guò)丙酮稀釋至40%后向溶液中加入質(zhì)量分?jǐn)?shù)為12%的苯二胺,通過(guò)磁力攪拌器將溶液攪拌均勻。將以上配置好的樹脂膠溶液通過(guò)正交刷涂的方式均勻涂覆到碳纖維平紋布表面,并將平紋布疊層排布(共4層)。將鋪展好的碳纖維平紋布放置于平面模壓模具中在變溫條件下靜置:室溫(4~6 h)80 ℃(3 h)120 ℃(3 h)180 ℃(3 h),隨后于加熱器中自然冷卻至25 ℃。靜置固化過(guò)程中需每1.5 h進(jìn)行一次加壓,將產(chǎn)品最終厚度控制為2 mm。
1.3 CF/EP宏觀、微觀結(jié)構(gòu)表征
首先通過(guò)線切割對(duì)上一步中制備的CF/EP復(fù)合材料(見(jiàn)圖1(b))進(jìn)行取樣,通過(guò)MEF-4A徠卡光學(xué)顯微鏡(Optical microscope, OM)對(duì)樣品進(jìn)行宏觀結(jié)構(gòu)表征;通過(guò)X射線衍射儀(XRD-6000)對(duì)CF/EP復(fù)合材料進(jìn)行物相分析,掃描速率為2 (°)/min,掃描角度范圍設(shè)置為20~70 ℃,隨后通過(guò)MDI JADE 6晶體分析軟件對(duì)材料進(jìn)行物相分析(見(jiàn)圖1(c));最后通過(guò)ZEISS場(chǎng)發(fā)射掃描電子顯微鏡對(duì)碳纖維進(jìn)行二次電子成像。
2 結(jié)果及分析
2.1 CF/EP復(fù)合板各向異性傳熱分析
基于圖2中CF/EP的宏觀、微觀結(jié)構(gòu)表征結(jié)果,通過(guò)三維建模軟件CREO構(gòu)建如圖2所示的單層碳纖維對(duì)應(yīng)的CF/EP復(fù)合材料三維幾何模型,并將其帶入到后續(xù)有限元計(jì)算軟件中,模型中碳纖維直徑為15 μm,長(zhǎng)度約300 μm,CF/EP復(fù)合板尺寸為300 μm×300 μm×40 μm。同時(shí),由于所構(gòu)建的三維模型尺度遠(yuǎn)小于實(shí)際CF/EP復(fù)合板尺寸,為減小模型邊界造成的計(jì)算誤差及與實(shí)際情況的偏差,需在傳熱計(jì)算前對(duì)模型邊界區(qū)域劃分無(wú)限元域,如圖2(a)所示。
各樣品的三維幾何模型如圖3所示,將圖3中的單層碳纖維及環(huán)氧樹脂基體模型合并后代入有限元計(jì)算軟件Comsol中,基于固體傳熱數(shù)值模型進(jìn)行傳熱分析。各樣品傳熱分析模型相關(guān)物性參數(shù)如表2所示[10],由于碳纖維的導(dǎo)熱系數(shù)呈明顯的各向異性趨勢(shì),即沿纖維軸向的傳熱系數(shù)遠(yuǎn)高于徑向,因此其各向異性導(dǎo)熱系數(shù)k需用式(1)中的二階張量表示[9]:
k=kxxkxykxzkyxkyykyzkzxkzykzz=6000040004(1)
受碳纖維的各向異性導(dǎo)熱系數(shù)及其于空間中的不規(guī)則形狀影響如圖3(b)所示,碳纖維的軸向非單一水平或垂直方向,常規(guī)笛卡爾坐標(biāo)系不再適用于此處CF/EP的傳熱分析,需首先基于擴(kuò)散方法求解纖維的方向矢量場(chǎng)(見(jiàn)圖4(a))將笛卡爾坐標(biāo)系轉(zhuǎn)化為能反映纖維軸向、徑向特征的曲面坐標(biāo)系(見(jiàn)圖4(b))。CF/EP熱分析過(guò)程的邊界條件如圖5所示,首先于CF/EP上表面定義一直徑約30 μm、功率為1×105 W/m2的激光熱源(見(jiàn)圖5(a),模擬光線聚焦生熱),隨后于上下兩表面設(shè)置對(duì)流換熱區(qū)域以模擬空氣對(duì)流散熱(見(jiàn)圖5(b)),將圖5(c)中4個(gè)無(wú)限元域端面設(shè)置為恒溫293.15 K以降低由于邊界限制導(dǎo)致的誤差,最后將圖5(d)中無(wú)限元域表面設(shè)置為熱絕緣區(qū)域以簡(jiǎn)化計(jì)算。熱傳導(dǎo)數(shù)值計(jì)算模型見(jiàn)式(2)和式(3)[11]:
Tt=a22Tx2+2Ty2+2Tz2(2)
a2=k/cρ(3)
式中:T為溫度,K;t為時(shí)間,s;k為導(dǎo)熱系數(shù),W/(m·K);c為恒壓熱容,J/(kg·(K)-1);ρ為密度,kg/m3。
CF/EP復(fù)合板在局部光源加熱條件下的傳熱過(guò)程計(jì)算結(jié)果如圖6所示,由圖6(a)可見(jiàn)復(fù)合板上表面首先于光斑聚焦區(qū)域升溫(光斑直徑約為30 μm),上表面局部最高溫度高于380 K,而遠(yuǎn)離光斑區(qū)域溫度接近室溫(293.15 K,初始值)。如圖6(b)所示
為碳纖維內(nèi)部溫度場(chǎng)計(jì)算結(jié)果,可見(jiàn)熱量由表層光斑區(qū)域傳至碳纖維,進(jìn)而沿碳纖維軸向優(yōu)先傳遞,導(dǎo)致碳纖維軸向區(qū)域升溫效果強(qiáng)于徑向,即證明受碳纖維各向異性熱傳導(dǎo)系數(shù)影響,碳纖維中的熱量會(huì)優(yōu)先沿軸向傳導(dǎo)。圖6(c)-(d)所示為CF/EP復(fù)合板中間橫截面溫度場(chǎng)場(chǎng)及全局溫度等值面計(jì)算結(jié)果,可見(jiàn)高溫區(qū)域(圖6(c)中黃色區(qū)域)主要沿著靠近光斑處碳纖維軸向分布。
碳纖維平紋布內(nèi)部熱通量如圖7所示,從圖7中可明顯觀測(cè)到熱量?jī)?yōu)先沿著碳纖維的軸向方向傳遞,其徑向方向熱通量較低(與軸向熱通量數(shù)值相差較大,因此未顯示),這進(jìn)一步證明了CF/EP復(fù)合板在局部受熱條件下熱量會(huì)優(yōu)先沿碳纖維軸向方向傳遞至遠(yuǎn)離熱源的低溫區(qū)域,即揭示了碳纖維對(duì)于CF/EP導(dǎo)熱性能提升方面的作用機(jī)制。
2.2 CF/EP復(fù)合板彈性變形分析
將2.1中建立的CF/EP復(fù)合板幾何模型進(jìn)一步代入到有限元計(jì)算軟件Abaqus中進(jìn)行靜力學(xué)分析。采用C3D10四面體網(wǎng)格對(duì)相關(guān)幾何模型進(jìn)行網(wǎng)格劃分,如圖8為網(wǎng)格劃分結(jié)果,隨后于復(fù)合板一端面設(shè)置固定邊界以模擬實(shí)際拉伸實(shí)驗(yàn)中的固定端,同時(shí)在與固定端面平行面設(shè)置模型邊長(zhǎng)1%的軸向應(yīng)變率以模擬CF/EP復(fù)合板的實(shí)際拉伸實(shí)驗(yàn)。
如圖9所示分別為不同應(yīng)變率下EP基體和CF增強(qiáng)相中的應(yīng)力分布計(jì)算結(jié)果,可以發(fā)現(xiàn)隨著應(yīng)變率增加,EP基體和CF增強(qiáng)相中均出現(xiàn)局部應(yīng)力集中現(xiàn)象,但兩者應(yīng)力最大值相差較大,EP基體由于彈性模量低(約1 GPa),其上應(yīng)力峰值小于0.7 MPa。而對(duì)于彈性模量較高的CF(T-300的拉伸模量約為240 GPa,壓縮及剪切模量約8 GPa),在拉伸過(guò)程中的應(yīng)力峰值高于50 MPa,且應(yīng)力集中區(qū)域(即主要承擔(dān)應(yīng)力的部分)主要位于軸向與拉伸方向平行的CF上,而軸向與拉伸方向垂直的CF增強(qiáng)相承擔(dān)的應(yīng)力較低。由此可見(jiàn),碳纖維的各相異性對(duì)CF/EP的導(dǎo)熱及力學(xué)性能均會(huì)造成顯著影響。
3 結(jié) 論
本文首先采用模壓成型技術(shù)制備了太陽(yáng)能電池陣用碳纖維增強(qiáng)環(huán)氧樹脂CF/EP復(fù)合板材,并基于相關(guān)宏觀、微觀結(jié)構(gòu)表征結(jié)果建立了可用于傳熱分析和靜力學(xué)分析的數(shù)值仿真模型,通過(guò)傳熱分析發(fā)現(xiàn)在局部加熱條件下CF/EP復(fù)合板材中的熱量會(huì)優(yōu)先沿CF的軸向方向由高溫區(qū)域傳導(dǎo)至遠(yuǎn)離熱源
的低溫區(qū)域,從而實(shí)現(xiàn)材料散熱并提升復(fù)合材料的導(dǎo)熱性能。進(jìn)一步基于靜力學(xué)計(jì)算發(fā)現(xiàn)在復(fù)合板材彈性變形過(guò)程中,應(yīng)力集中優(yōu)先發(fā)生于與拉伸方向平行的CF中,且當(dāng)應(yīng)變率升至1%時(shí),軸向碳纖維的內(nèi)部應(yīng)力最高可達(dá)54.1 MPa,由此證明CF能顯著提升復(fù)合板材的力學(xué)性能。綜上所述,本文揭示了碳纖維導(dǎo)熱系數(shù)及彈性模量的各向異性對(duì)CF/EP復(fù)合板材的影響機(jī)制。
參考文獻(xiàn):
[1]胡丹麗,付大鵬,張?jiān)?,?配副材料對(duì)碳纖維增強(qiáng)環(huán)氧樹脂復(fù)合材料摩擦學(xué)性能的影響[J]. 潤(rùn)滑與密封, 2022, 47(7): 97-103.
HU Danli, FU Dapeng, ZHANG Yue, et al. Effect of tribopair matrials on tribological properties of carbon fiber reinforced epoxy composites[J]. Lubrication Engineering, 2022, 47(7):97-103.
[2]劉熠晨,李穎杰,曹錦鋒,等.碳纖維織物增強(qiáng)環(huán)氧樹脂/石墨烯微片復(fù)合材料的導(dǎo)熱及摩擦性能[J].塑料,2022,51(4):52-55,59.
LIU Yichen,LI Yingjie, CAO Jinfeng, et al. Preparation and performance research of epoxy resin/graphene microsheet/carbon fiber cloth composite[J]. Plastics, 2022, 51(4): 52-55,59.
[3]李琴.廢舊再生碳纖維增強(qiáng)環(huán)氧樹脂復(fù)合材料力學(xué)性能及界面性能研究[J].塑料科技,2022,50(2):19-22.
LI Qin. Research on mechanical properties and interface properties of waste recycled carbon fiber reinforced epoxy resin composites[J]. Plastics Science and Technology, 2022, 50(2):19-22.
[4]SCHOLLE P, SINAPIUS M. Influence of the electrical anisotropy of unidirectional carbon fiber reinforced plastics on their self strain sensing properties[J]. Composites Part C: Open Access, 2022, 8: 100256.
[5]KHUDIAKOVA A, BERER M, NIEDERMAIR S, et al. Systematic analysis of the mechanical anisotropy of fibre-reinforced polymer specimens produced by laser sintering[J]. Additive Manufacturing, 2020, 36:101671.
[6]張杰,寧榮昌,李紅,等.碳纖維增強(qiáng)環(huán)氧樹脂基復(fù)合材料的性能研究[J].中國(guó)膠粘劑,2009,18(3):21-25.
ZHANG Jie, NING Rongchang, LI Hong, et al. Study on performance of composite material based on epoxy resin reinforced by carbon fiber[J]. China Adhesives, 2009, 18(3):21-25.
[7]羅銳祺,劉勇瓊,廖英強(qiáng),等.碳纖維增強(qiáng)環(huán)氧樹脂復(fù)合材料力學(xué)性能影響因素的研究進(jìn)展[J].材料導(dǎo)報(bào),2021,35(S2):558-563.
LUO Ruiqi, LIU Yongqiong, LIAO Yinqiang, et al. Research progress on the influencing factors of mechanical properties of carbon fiber reinforced epoxy resin composites[J]. Materials Reports, 2021, 35(S2):558-563.
[8]黃遠(yuǎn),何芳,萬(wàn)怡灶,等.碳纖維增強(qiáng)環(huán)氧樹脂基復(fù)合材料濕熱殘余應(yīng)力的微Raman光譜測(cè)試表征[J].復(fù)合材料學(xué)報(bào),2009,26(4):22-28.
HUANG Yuan, HE Fang, WAN Yizhao, et al. Testing and characterization of hygrothermal stresses in carbon-fibers reinforced epoxy composites using Raman spectroscopy[J]. Acta Materiae Compositae Sinica, 2009, 26(4):22-28.
[9]WANG G N, GAO M Y, YANG B, et al. The morphological effect of carbon fibers on the thermal conductive composites[J]. International Journal of Heat and Mass Transfer, 2020, 152:119477.
[10]MAYBOUDI L S. COMSOL Heat Transfer Models[M]. Dulles, Virginia: Mercury Learning and Information, 2020.
[11]LEBON G, MATHIEU P. A numerical calculation of nonlinear transient heat conduction in the fuel elements of a nuclear reactor[J]. International Journal of Heat and Mass Transfer, 1979, 22(8):1187-1198.
Preparation, anisotropic heat transfer and elastic deformation of CF/EP composite plates
JIANG Jinyu1a,1b, HE Haoyu1a, HUANG Lei1a, WU Zhenpeng1a, DONG Bowen1a,2
(1a.School of Mechanical and Electrical Engineering; 1b. Key Laboratory of Intelligent Transportation Technology and
Equipment of Hubei Province, Hubei Polytechnic University, Huangshi 435000, China; 2.School of Materials Science
and Engineering, Dalian University of Technology, Dalian 116000, China)
Abstract:
In this paper, carbon fiber reinforced epoxy (CF/EP) composite plates for solar arrays were prepared by molding technology, and the macrostructure and microstructure were characterized by optical and scanning electron microscopy. Based on the above characterization results, a three-dimensional geometric model of CF/EP composite plates was constructed and substituted into the subsequent heat transfer and mechanical numerical model for solution. Firstly, based on the multi-physics field coupling calculation software Comsol, the solid heat transfer numerical model of CF/EP composite plates was established to reveal the mechanism of the influence of carbon fibers′ anisotropy on the heat transfer behavior of the composite plates. Through the curve coordinate system conversion algorithm, the relevant geometric model was converted from the three-dimensional Cartesian coordinate system to a curve coordinate system which is more suitable to describe the axial/longitudinal properties of carbon fibers, and can simplify the calculation. The actual heat transfer behavior of CF/EP was simulated with the boundary conditions such as surficial heat source region and surface air convection area. A constant temperature area and a thermal insulation area were set to reduce the difficulty of the solution. The above mathematical models were further solved based on the finite element method. Based on the calculated temperature field diagram and the heat vector in CF/EP composite plates, it is found that heat was transmitted preferentially along the axial direction of carbon fibers during heating. However, the thermal conductivity of the fiber in the radial direction was low. The mechanism of carbon fibers in improving the thermal conductivity of CF/EP composite plates was thus revealed.
Further, the CF/EP three-dimensional geometric modelwas substituted into the mechanical numerical model, and the axial stress-strain model of CF/EP was established based on the finite element calculation software Abaqus. The research shows that, in the uniaxial tensile test along the fiber axis, the stress concentration occurs preferentially at the bonding interface between the carbon fiber and the resin matrix. The stress-strain relationship of CF/EP composite plates is calculated. It is found that during the initial elastic deformation of CF/EP, the carbon fibers arranged along the direction parallel to the stress bear most of the stress. When the strain rate rises to 1%, the internal stress of the axial carbon fibers can reach 54.1 MPa at most. It can be seen that the strengthening effect of carbon fiber reinforcement on the mechanical properties also presents obvious anisotropy.
In conclusion, based on the three-dimensional geometric model of the actual CF/EP composite plate, the anisotropic heat transfer and elastic deformation behavior model of CF/EP was constructed by combining the physical properties of carbon fibers and epoxy resins. The finite element method was used to solve the above models. The strengthening mechanism of carbon fibers on the heat transfer and mechanical properties of the epoxy resin matrix was revealed. This work can serve as a positive theoretical significance for the subsequent production, preparation and performance optimization of high-performance CF/EP composites and other carbon fiber-reinforced composites.
Keywords:
solar array; CF/EP; curve coordinate; solid heat transfer; elastic deformation