• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The HD-Zip transcription factor GhHB12 represses plant height by regulating the auxin signaling in cotton

    2023-07-17 09:42:30LlUYanWANGWeipingZHANGLinZHULongfuZHANGXianlongHEXin
    Journal of Integrative Agriculture 2023年7期

    LlU Yan,WANG Wei-ping,ZHANG Lin,ZHU Long-fu,ZHANG Xian-long,HE Xin

    1 College of Agronomy,Hunan Agricultural University,Changsha 410128,P.R.China

    2 National Key Laboratory of Crop Genetic Improvement,Huazhong Agricultural University,Wuhan 430070,P.R.China

    Abstract Upland cotton (Gossypium hirsutum L.) is the most important natural textile fiber crop worldwide. Plant height (PH) is a significant component of plant architecture,strongly influencing crop cultivation patterns,overall yield,and economic coefficient. However,cotton genes regulating plant height have not been fully identified. Previously,an HD-Zip gene(GhHB12) was isolated and characterized in cotton,which regulates the abiotic and biotic stress responses and the growth and development processes. In this study,we showed that GhHB12 was induced by auxin. Moreover,overexpression of GhHB12 induces the expression of HY5,ATH1,and HAT4,represses the spatial-temporal distribution,polar transport,and signaling of auxin,alters the expression of genes involved in cell wall expansion,and restrains the plant height in cotton. These results suggest a role of GhHB12 in regulating cotton plant height,which could be achieved by affecting the auxin signaling and cell wall expansion.

    Keywords: cotton,GhHB12,plant height,auxin,cell wall,HD-Zip

    1.lntroduction

    Upland cotton (GossypiumhirsutumL.) is an important economic crop worldwide and is the main source of renewable textile fibers (Zhanget al.2015;Fenget al.2022). With the advancement of agricultural modernization in China,the cotton cropping system is undergoing a fundamental change,and the cotton planting areas are reduced year by year and concentrated in Xinjiang Autonomous Region,which requires compacttype cotton cultivars (National Bureau of Statistics of China: https://data.stats.gov.cn/index.htm). Plant architecture is an important agronomic trait that strongly influences crop cultivation patterns,overall yield,and economic coefficient (Song and Zhang 2009). Plant height (PH) is a key factor affecting plant architecture and an important agronomic trait determining plant density and yield (Yanet al.2019). The moderate dwarfing of crops can significantly increase the overall photosynthate partitioning and harvesting index (Maet al.2019).

    The discovery and application of dwarf and semi-dwarf genes (such as the wheatRhtand ricesd-1) have greatly improved crop yield and brought great economic benefits for agriculture,referred to as the first “Green Revolution”(Penget al.1999;Sasakiet al.2002;Udvardi and Scheible 2005). At present,a number of genes controlling plant height have been identified in rice and wheat (Piaoet al.2014;Sannemannet al.2018). Unfortunately,the germplasm resources of dwarf and semi-dwarf cotton in China are limited,and the corresponding research in this field has lagged behind. Only a few QTLs and genes controlling plant height have been identified in cotton (Song and Zhang 2009;Yanget al.2014;Shanget al.2015;Maet al.2019;Qanmberet al.2019;Yanet al.2019;Jiet al.2021;Heet al.2022),which seriously restricts the breeding of compact-type cotton cultivars in China.

    Plant height is mostly determined by the elongation of stems,which is controlled by several hormones,such as auxin,gibberellin (GA),brassinosteroids (BRs),and strigolactones (SLs) (Silverstone and Sun 2000;Breweret al.2013;Gallavotti 2013;Wanget al.2018;Castorina and Consonni 2020). In plants,auxin stimulates cell elongationviaincreasing wall extensibility (Perrot-Rechenmann 2010;Majda and Robert 2018). The most abundant endogenous auxin is indole-3-acetic acid (IAA),which is involved in plant development and responses to the environment (Saueret al.2013). The intercellular auxin concentration gradient plays a crucial role in the regulation of auxin action,which is coordinately generated by polar transportviaauxin influx/efflux transportation and biosynthesis,inactivation,and degradation of auxin (Fukui and Hayashi 2018). At auxin concentration maxima in the tissue,auxin binds with the receptor transport inhibitor resistant 1/auxin signaling F-box (TIR1/AFB),which is the substrate-recognition subunit of the SCF E3 ubiquitin ligase complex and promotes the interaction between TIR1/AFB and auxin/indoleacetic acid (Aux/IAA) proteins,triggering ubiquitination and degradation of the Aux/IAA.The Aux/IAA repressors bind to auxin response factor(ARF) transcription factors and block the transcriptional activity of ARFs. Thus,the removal of Aux/IAA allows the transcription factors ARF to activate or repress early auxinresponsive gene transcription (Maet al.2018). As the receptor of auxin,TIR1/AFB is crucial for auxin perception,and the mutants of TIR1/AFB displayed dwarfism inArabidopsisand rice (Dharmasiriet al.2005;Guoet al.2021). Mutations in the degron motif of Aux/IAA proteins(blocking the degradation of Aux/IAA proteins) and overexpression of Aux/IAA proteins have been found to cause dwarfism in plants (Nagpalet al.2000;Liet al.2019,2022;Qanmberet al.2019). ARF proteins act as activators or repressors in auxin signaling,depending on the activation domain (AD) or repression domain (RD),and mutation or overexpression of ARF leads to dwarf phenotype in plants(Guilfoyle and Hagen 2007;Fuet al.2019). Additionally,the genes involved in auxin biosynthesis (YUCCA:YUC)(Yamamotoet al.2007;Kimet al.2013),polar transport(PIN-FORMED:PIN) (Chenet al.2012;Luet al.2015),and response (small auxin-up RNA:SAUR) (Chaeet al.2012;Xuet al.2017) usually regulate hypocotyl elongation and plant height.

    Previously,an HD-ZIP gene (GhHB12) was isolated and characterized in cotton,which regulates the abiotic and biotic stress responses and the growth and development processes (Zhuet al.2011;Heet al.2018a,b;He Xet al.2020).GhHB12decreases drought and salt tolerance by negatively regulating the ABA signaling and stress-related genes (He Xet al.2020). Furthermore,GhHB12increases the susceptibility to fungal pathogens and herbivory insects by suppressing the JA signaling(Heet al.2018b). Additionally,GhHB12suppresses the expression ofGhFT,GhSOC1,andGhFUL,promotes the outgrowth of vegetative branches,inhibits the cotton fruit branch development,and delays flowering time by mediating the MiR157-SPLs pathway in cotton (Heet al.2018a). In this study,we showed thatGhHB12was induced by auxin,alters the auxin content,transport and transduction of auxin signaling,and the expression of genes involved in cell wall expansion,which subsequently restrains the plant height in cotton.

    2.Materials and methods

    2.1.Plant materials and growth conditions

    The Upland cotton (Gossypiumhirsutum) cultivar YZ1 was used as the transgenic receptor and wild type (WT). TheGhHB12-overexpression and RNA-interference (RNAi)cotton lines were generated and reported previously (Heet al.2018a). The pGhHB12::GUS(GhHB12promoter drivesGUS) and DR5::GUS (a monitor for auxin response level) transgenic cotton lines were generated and reported previously (Liu Net al.2017;Heet al.2018b).OE37×DR5::GUS (OE37-DR5) and WT×DR5::GUS (WTDR5) were F1plants generated by DR5::GUS transgenic line crossed withGhHB12-overexpressing (OE37) and WT cotton lines,respectively. WT and transgenic lines were planted in the plant growth chamber maintained at 25°C under 16 h light/8 h dark conditions. They were then planted in a greenhouse and experimental field at Huazhong Agricultural University (Wuhan,China;30.4°N,114.2°E).

    2.2.lAA treatment and expression analysis

    Two-week-old YZ1 seedlings were planted in the plant growth chamber (25°C under 16 h light/8 h dark conditions) and sprayed 25 μmol L-1IAA. The leaves were harvested at different time points after treatment for RNA extraction. Total RNAs were extracted using the TIANGEN Total RNA Extraction Kit (DP441,TIANGEN,Beijing,China). The cDNA was synthesized using Superscript III Reverse Transcriptase (Invitrogen,San Diego,USA). TheGhUBQ7(GenBank: DQ116441) gene fromG.hirsutumwas used as the endogenous reference gene in RT-PCR and qRT-PCR analysis. qRT-PCR was performed using the 7500 Real-Time PCR System (ABI,Foster City,USA) with SYBR Green (Bio-Rad,USA). The relative transcript level was determined and normalized using the reference level and averaged over the three technical replicates.The primers used in this study are listed in Appendix A.

    2.3.Quantification of endogenous lAA

    The first leaves from the top and the axillary buds of 60-day-old WT andGhHB12transgenic cotton lines growing in the greenhouse were pulverized by liquid nitrogen,and about 100 mg fresh weight per sample was used to extract IAA. The extraction and quantification of endogenous IAA were performed according to a previous report (Liuet al.2012).

    2.4.Sensitivity analysis of GhHB12 transgenic cotton lines to lAA treatment

    Seeds of WT andGhHB12transgenic cotton lines were sterilized and geminated on 1/2 MS medium for 3 days,then transplanted on 1/2 MS medium either with or without IAA (10 μmol L-1) addition for 7 days and photographed.

    2.5.Histochemical assay of β-glucuronidase (GUS)activity

    For IAA-induced expression assay,the pGhHB12::GUStransgenic cotton seeds were geminated in doubledistilled water (ddH2O) for 3 days,treated with or without 10 μmol L-1IAA for 6 h,and then infiltrated with GUS staining solution at 37°C for 12 h. The GUS staining solution was composed of 0.9 g L-15-bromo-4-chloro-3-indolylglucuronide,50 mmol L-1sodium phosphate buffer (pH 7.0),20% (v/v) methanol,and 100 mg L-1chloromycetin. The stained seedlings were rinsed three times with 75% ethanol and then photographed with a camera (Nikon,Tokyo,Japan).

    For attenuating auxin signaling assay,seeds of WT,OE37×DR5::GUS,and WT×DR5::GUS were sterilized and geminated on 1/2 MS medium for 3 days,transplanted on 1/2 MS medium either with or without IAA (10 μmol L-1) addition for 7 days under dark condition,and then infiltrated with GUS staining solution.

    For attenuating auxin polar transport assay,the segments of hypocotyls of OE37×DR5::GUS and WT×DR5::GUS were positioned horizontally,vertically (the basal side of segments were inserted in the medium),and inversely (the apical side of segments were inserted in the medium) on the 1/2 MS medium with 0.5 mg L-1IBA for 24 h,and then infiltrated with GUS staining solution.

    2.6.Analysis of RNA-sequence data

    The first leaves from the top and shoot apices of three-leaf stage seedlings of YZ1 (WT) andGhHB12-overexpression cotton lines growing in the greenhouse were sampled for RNA extraction. RNA libraries were generated and sequencedviaIllumina HiSeqTM2000 at Beijing Genomics Institution. Then the raw reads were filtered into clean reads and mapped to the reference genome ofG.hirsutumL.acc.TM-1 (Zhanget al.2015).Gene expression levels (RPKM: reads per kb per million reads) were quantified. Differentially expressed genes between the WT andGhHB12-overexpression lines were screened (FDR≤0.001 and |log2Ratio|≥1).

    3.Results

    3.1.Overexpression of GhHB12 in cotton reduces plant height

    Previously,the cotton HD-ZIP I subfamily transcription factor geneGh_A11G0906(namedGhHB12) was identified,which promotes the outgrowth of vegetative branches and delays reproductive developmentviathe GhmiR157-GhSPL pathway in cotton (Heet al.2018a).In this study,we found that over-expression ofGhHB12in cotton significantly reduces the hypocotyl length of seedlings (Fig.1-A and G) in the plant growth chamber and the height of plants in the greenhouse (Fig.1-B and H)and field (Fig.1-C,D and I). By contrast,RNAi-mediated suppression ofGhHB12significantly increases the height of seedlings and plants. Further analysis showed that there is no difference among the internode numbers of WT,GhHB12overexpression,and RNAi cotton lines,while shorter internodes of the main stem were observed inGhHB12-overexpression lines than in WT and RNAi lines(Fig.1-D and E). These results suggested thatGhHB12is a negative regulator in plant height by repressing the elongation of internodes of the main stem in cotton.

    3.2.lnduction of GhHB12 by exogenous lAA

    Fig. 1 Over-expression of GhHB12 represses plant height in cotton. A-C,photographs of WT (wild type) and GhHB12 transgenic cotton lines growing in the plant growth chamber,greenhouse,and field in Wuhan,China. D and E,plant architecture and main stem of WT and GhHB12 transgenic cotton lines growing in the field. Red arrow showed the notes (5th,10th,15th,and 20th)of the main stem of plants. Bars indicate 2 cm in A and 10 cm in B-E. F,relative expression level (R.E.L.) of GhHB12 in WT and GhHB12 transgenic cotton lines. The GhUBQ7 gene was used as the endogenous reference gene. The data represent the mean±SD of three technical replicates. G-I,comparison of the hypocotyl length and plant height among WT and GhHB12 transgenic cotton lines growing in the plant growth chamber,greenhouse,and field. Error bars represent the SD of 12-49 plants,and different letters indicate significant differences at P<0.05 (Duncan’s multiple range test).

    Fig. 2 Induction of GhHB12 by exogenous indole-3-acetic acid(IAA). A-D,GUS staining in the germinated pGhHB12::GUS transgenic cotton seedlings treated with (B and D) or without IAA (A and C). Bars indicate 1 cm in A and B. The size of C and D is 1.5 cm×1.5 cm. E,RT-PCR analysis of GhHB12 in YZ1 leaves treated with or without IAA. The GhUBQ7 gene was used as the endogenous reference gene.

    Fig. 3 Heat maps of differentially expressed genes (DEGs)involved in auxin signaling,shade avoidance,and cell wall expansion between wild type (WT) and GhHB12-overexpressing lines. ARF,auxin response factor;IAA,Aux/IAA protein;PIN,auxin efflux carrier family protein;SAUR,small auxin up RNA;EXPA,expansin A;PLY,pectate lyase;PGLR,polygalacturonase;CSLE,cellulose synthase-like protein E;XTH,xyloglucan endotransglycosylase;HY5,ELONGATED HYPOCOTYL 5;ATH1,Arabidopsis thaliana homeobox 1;HAT4,class II homeodomain-leucine zipper transcription factor ATHB2.

    Fig. 4 GhHB12 represses the auxin signaling response. A and B,GUS staining in WT (wild type),WT-DR5 (hybrid plants of WT and DR5::GUS transgenic cotton lines),OE37-DR5 (hybrid plants of GhHB12-overexpressing lines and DR5::GUS transgenic cotton lines) treated without indole-3-acetic acid (IAA) (A) or with IAA (B). C and D,photographs of WT and GhHB12 transgenic cotton lines treated with IAA or without IAA. Bars indicate 2 cm in A-C;bars indicate 1 cm in D.

    Fig. 5 GhHB12 attenuates the distribution of auxin. A and B,indole-3-acetic acid (IAA) contents in the top first leaf of the main stem (A) and axillary bud (B) of wild type (WT) and GhHB12 transgenic cotton lines. The data represent the mean±SE of three independent biological replications,and different letters indicate significant differences at P<0.05 (Duncan’s multiple range test).

    Fig. 6 GhHB12 represses the auxin signaling response. A-C,histochemical localization of GUS activity in the hypocotyl segments of three WT-DR5 (-1,-2,-3) and three OE37-DR5 (-1,-2,-3) seedlings horizontally (A),inversely (B,the apical side of segments insert in the medium) and vertically (C,the basal side of segments insert in the medium) on the 1/2 MS medium with indole-3-butyric acid (IBA) for 24 h.

    To investigate whetherGhHB12was regulated by auxin,we performed theGhHB12expression level assays in cotton leaves after exogenous IAA treatments and analyzed the GUS expression inpGhHB12::GUStransgenic cotton geminated seeds treated with IAA. As shown in Fig.2,GhHB12was induced by exogenous IAA treatment.

    3.3.Over-expression of GhHB12 attenuates the expression of genes involved in light signaling,auxin signaling,and cell wall expansion

    To explore how over-expressingGhHB12reduces plant height,we performed RNA sequencing to identify differentially expressed genes between the over-expression line (OE37 and OE42) and WT. A total of 665 differentially expressed genes (DEGs) were identified,of which 442 and 223 genes were up-regulated and down-regulated in over-expression lines,respectively (Appendix B). Among the DEGs,there are a series of genes involved in auxin signaling,shade avoidance,and cell wall expansion,such as auxin response factor 6 (ARF6),Aux/IAA protein 4/16(IAA4/16),auxin efflux carrier family protein 7 (PIN7),small auxin up RNA 42 (SAUR42),ELONGATED HYPOCOTYL 5(HY5),Arabidopsisthalianahomeobox 1 (ATH1),class II homeodomain-leucine zipper transcription factor 2(HAT4/ATHB2),expansin-A8/10/15 (EXPA8/10/15),pectate lyase 5 (PLY5),polygalacturonase 4/5 (PGLR4/5),cellulose synthase-like E1 (CSLE1),and xyloglucan endotransglycosylase 6/22/23 (XTH6/22/23) (Fig.3). All the results suggested thatGhHB12may attenuate auxinmediated cell expansion signaling in cotton.

    3.4.GhHB12 represses auxin signaling response

    To verify the auxin signal difference between WT andGhHB12-overexpression cotton lines,we first used the plants transfected with the DR5::GUS vector (a monitor for auxin response level) to crossGhHB12-overexpressing(OE37) and WT cotton lines,respectively. GUS staining in cotyledons was weaker in OE37×DR5::GUS (OE37-DR5) than that in WT×DR5::GUS (WT-DR5),with or without IAA treatments (Fig.4-A and B).

    To further determine whetherGhHB12attenuates the sensitivity to auxin,auxin-mediated inhibition of root growth was compared betweenGhHB12transgenic and WT cotton lines. The results showed that overexpression ofGhHB12significantly promoted root growth under 10 μmol L-1IAA treatment conditions compared with WT plants (Fig.4-C and D). All the results indicated that the auxin signaling response was repressed byGhHB12in cotton.

    3.5.GhHB12 attenuates the distribution of auxin

    To further verify the auxin concentrations difference between WT andGhHB12transgenic cotton lines,we first determined the content of free IAA in the top first leaf on the main stem and axillary bud.GhHB12-overexpressing cotton lines showed lower IAA content compared with WT lines,whileGhHB12-RNAi lines showed higher IAA content than the WT plants in the top first leaf on the main stem (Fig.5-A).On the contrary,GhHB12-overexpressing cotton lines showed higher IAA content compared with WT lines in the axillary bud (Fig.5-B). It indicated thatGhHB12attenuates the spatial-temporal distribution of auxin in cotton.

    3.6.GhHB12 attenuates the polar transport of auxin

    To investigate whether the polar transport of auxin was affected byGhHB12,we positioned the hypocotyl segments of WT-DR5 and OE37-DR5 horizontally,vertically (the basal side of segment insert in the medium) and inversely(the apical side of segment insert in the medium) on the 1/2 MS medium with IBA for 24 h. GUS staining was only observed in the basal side of the hypocotyl segment when positioned on 1/2 MS medium horizontally and inversely,while it is lesser in the hypocotyl segments of OE37-DR5 than in WT-DR5 (Fig.6-A and B). Nevertheless,little or no GUS staining was observed in both the basal and apical sides of the hypocotyl segment when positioned on 1/2 MS medium vertically (Fig.6-C). It indicated thatGhHB12inhibited the polar transport of auxin.

    4.Discussion

    4.1.GhHB12 negatively regulates cotton plant height by repressing the auxin signal transduction

    Plant height (PH) is an important agronomic trait affectingcrop yield and mechanical harvesting (Maet al.2019;Yanet al.2019). Therefore,developing compact-type cultivars with semi-dwarf plant height is critical in cotton breeding.To date,a good few QTLs controlling plant height have been identified in cotton (Song and Zhang 2009;Shanget al.2015;Maet al.2019),but only a few genes were identified and verified their function in cotton plant height(Yanget al.2014;Qanmberet al.2019;Jiet al.2021).In previous studies,an HD-Zip gene (GhHB12),which regulates the abiotic and biotic stress responses,growth and development processes,was isolated and identified in cotton (Zhuet al.2011;Heet al.2018a,b;He Xet al.2020). In this study,we confirmed the role ofGhHB12in regulating cotton plant height,which could be achieved by

    affecting the auxin signaling and cell wall expansion.

    Plant height is controlled by multiple phytohormones(such as auxin,BRs,GAs,and SLs) and associated complex regulatory networks (Silverstone and Sun 2000;Breweret al.2013;Gallavotti 2013;Wanget al.2018;Castorina and Consonni 2020). A large number of studies have shown that auxin promotes cell elongation by increasing cell wall extensibility (Perrot-Rechenmann 2010;Majda and Robert 2018) and the defect of auxin biosynthesis,perception,transport,and signaling transduction usually leads to dwarf and semi-dwarf phenotype in plants (Nagpalet al.2000;Dharmasiriet al.2005;Chaeet al.2012). In the present study,overexpression ofGhHB12in cotton resulted in a shorter hypocotyl and main stem than the WT (Fig.1);in contrast,down-regulation ofGhHB12by RNAi resulted in opposite effects (Fig.1),indicating thatGhHB12had a negative effect on the elongation of hypocotyl and main stem in cotton. RNA sequencing analysis showed that the key genes involved in auxin signaling and cell wall expansion were altered inGhHB12-overexpression cotton lines,includingARF6,IAA4/16,PIN7,SAUR42,EXPA8/10/15,PLY5,PGLR4/5,CSLE1,andXTH6/22/23(Fig.3;Appendix B). Additionally,the reduction of auxin signaling response (Fig.4) and polar transport (Fig.6)inGhHB12-overexpression cotton lines were visualized by a DR5::GUS reporter. Therefore,it is reasonable to hypothesize thatGhHB12negatively regulates cotton cell expansion and internode elongation by repressing the auxin signal transduction.

    4.2.The auxin-mediated dwarf architecture in GhHB12-overexpression lines is independent of miR157-SPL signaling in cotton

    A previous study found thatGhHB12directly interacted withGhSPL10 andGhSPL13(Heet al.2018a).MiR156/157-SPL is one of the most conserved regulating pathways and modulates auxin signaling in the plant kingdom. Over expression of miR156/157 usually causes bushy and dwarf architecture in many plants (Wanget al.2009;Jiaoet al.2010;Miuraet al.2010;Fuet al.2012;Wanget al.2015;Liu Jet al.2017;Daiet al.2018;Sunet al.2019). Like most miR156/157s of high plant species,ectopic expressionGhmiR157inArabidopsiscause a bushy and dwarf architecture,delaying flowering time and causing smaller floral organ size (Liu Net al.2017). Unexpectedly,the overexpression of GhmiR157 slightly delayed the flowering time and increased plant height in cotton,though it caused bushy architecture(only increased the number of vegetative branches)and smaller floral organ size (Liu Net al.2017;Heet al.2018a). This indicates that GhmiR157 promotes the outgrowth of vegetative branches independent of the reduction of apical dominance. Co-expression ofGhHB12and GhmiR157 dramatically increases the vegetative branches,decreases the fruit branches,and delays the flowering time (Heet al.2018a),indicating that the promotion of vegetative branches inGhHB12-overexpression lines is dependent on miR157-SPL signaling. But,the auxin-mediated dwarf architecture inGhHB12-overexpression lines is independent of miR157-SPL signaling in cotton.

    4.3.The auxin-mediated dwarf architecture in Gh-HB12-overexpression lines maybe dependent of HY5,ATH1,and HAT4 in cotton

    Among the DEGs between WT andGhHB12-overexpression cotton lines,the key transcriptional factors(TFs) involved light signaling and shade avoidance (HY5,ATH1,andHAT4/ATHB2) were induced inGhHB12-overexpression lines (Fig.3). HY5 is a basic leucine zipper (bZIP) transcription factor that inhibits hypocotyl growth and promotes photomorphogenesis in light,while COP1 (CONSTITUTIVELY PHOTOMORPHOGENIC1)mediates the degradation of HY5viathe 26S proteasome system to promote skotomorphogenesis in darkness (Anget al.1998).hy5mutant exhibits longer hypocotyl than WTArabidopsisseedlings under light conditions (Anget al.1998;Chattopadhyayet al.1998).ATH1is a lightregulated homeobox gene and is repressed by COP1 in etiolated seedlings,overexpressing ofATH1inhibits stem length inArabidopsis(Quaedvlieget al.1995;Gomez-Mena and Sablowski 2008).HAT4/ATHB2is an early auxin-responsive and light-regulated HD-Zip II subfamily gene that repressesArabidopsisplant height (He Get al.2020). We suspect thatGhHB12directly or indirectly inducesHY5,ATH1,andHAT4to affect auxin signaling,cell wall formation,or cell wall extension to repress the cotton height. Hence,further investigation of the possible relationships betweenGhHB12and HY5,ATH1,and HAT4 will expand our understanding of the biological functions ofGhHB12in cotton plant height.

    5.Conclusion

    This study demonstrated that the cotton HD-Zip geneGhHB12was induced by auxin,and overexpression ofGhHB12induces the expression ofHY5,ATH1,andHAT4,represses the spatial-temporal distribution,polar transport,and signaling of auxin,alters the expression of genes involved in cell wall expansion,and restrains the plant height in cotton. Taken together,our findings revealed thatGhHB12is an essential negative regulator in cotton plant height and provide novel insight into the regulatory network for plant architecture in cotton.

    Acknowledgements

    This work was supported by the Science and Technology Innovation Program of Hunan Province,China(2020RC2057). We thank Prof.Xu Jian (Department of Biological Science,National University of Singapore)for kindly providing the DR5 promoter. We also thank Liu Hongbo and Li Dongqin (National Key Laboratory of Crop Genetic Improvement,Huazhong Agricultural University) for their assistance with the determination of IAA content.

    Declaration of competing interest

    The authors declare that they have no conflict of interest.

    Appendicesassociated with this paper are available on https://doi.org/10.1016/j.jia.2022.09.022

    精品国产超薄肉色丝袜足j| 老司机深夜福利视频在线观看| 99re在线观看精品视频| 欧美又色又爽又黄视频| 久久国产乱子伦精品免费另类| 日本与韩国留学比较| 丁香欧美五月| 国产真人三级小视频在线观看| 国产主播在线观看一区二区| 欧美黄色片欧美黄色片| 亚洲精品美女久久久久99蜜臀| 亚洲无线在线观看| 亚洲欧美一区二区三区黑人| 日本 欧美在线| 国产亚洲精品久久久com| 成人av在线播放网站| 国产视频内射| 欧美另类亚洲清纯唯美| 久久人妻av系列| 天堂av国产一区二区熟女人妻| 国产伦在线观看视频一区| 欧美绝顶高潮抽搐喷水| av福利片在线观看| 国内精品美女久久久久久| 老熟妇仑乱视频hdxx| 亚洲国产精品sss在线观看| 国产精品av视频在线免费观看| 黄片小视频在线播放| 五月玫瑰六月丁香| 国内毛片毛片毛片毛片毛片| 精品国产乱码久久久久久男人| 亚洲中文av在线| 久久久国产精品麻豆| 国内毛片毛片毛片毛片毛片| 欧美激情在线99| 久久久久九九精品影院| 国产在线精品亚洲第一网站| 999精品在线视频| 久久天堂一区二区三区四区| 这个男人来自地球电影免费观看| 国内久久婷婷六月综合欲色啪| 国产精品国产高清国产av| 嫩草影视91久久| 国产成人福利小说| 狂野欧美白嫩少妇大欣赏| 欧美最黄视频在线播放免费| 亚洲一区二区三区色噜噜| 国产私拍福利视频在线观看| 夜夜爽天天搞| 丝袜人妻中文字幕| 色尼玛亚洲综合影院| 婷婷亚洲欧美| 国产精品久久久久久精品电影| 最近最新免费中文字幕在线| 久久午夜综合久久蜜桃| 精品一区二区三区视频在线观看免费| 午夜免费观看网址| 91av网站免费观看| 日本 欧美在线| 亚洲九九香蕉| 亚洲中文av在线| 日韩av在线大香蕉| 男插女下体视频免费在线播放| 亚洲成av人片免费观看| 色视频www国产| www.精华液| 久久久久免费精品人妻一区二区| 日韩中文字幕欧美一区二区| 黄色 视频免费看| 免费看a级黄色片| 久久这里只有精品中国| 免费高清视频大片| 一个人免费在线观看的高清视频| 99国产精品一区二区蜜桃av| 亚洲五月天丁香| 成人av在线播放网站| svipshipincom国产片| 岛国在线观看网站| 在线视频色国产色| 91av网站免费观看| 老司机午夜福利在线观看视频| 日本熟妇午夜| 精华霜和精华液先用哪个| 成人午夜高清在线视频| 日韩欧美国产在线观看| 一进一出抽搐gif免费好疼| 国产黄a三级三级三级人| 午夜精品久久久久久毛片777| 看免费av毛片| 男人舔奶头视频| 嫩草影院精品99| e午夜精品久久久久久久| 香蕉久久夜色| 国产又色又爽无遮挡免费看| a在线观看视频网站| 亚洲天堂国产精品一区在线| 欧美一区二区精品小视频在线| 国产午夜精品久久久久久| 一进一出抽搐动态| 99国产精品99久久久久| 精品人妻1区二区| 国内揄拍国产精品人妻在线| 啪啪无遮挡十八禁网站| 观看免费一级毛片| 亚洲专区中文字幕在线| 一个人免费在线观看电影 | 99国产精品99久久久久| 中文亚洲av片在线观看爽| 亚洲18禁久久av| 久久久久久人人人人人| 日韩欧美 国产精品| 大型黄色视频在线免费观看| 黄片小视频在线播放| 午夜福利在线观看吧| www国产在线视频色| 搡老熟女国产l中国老女人| 国产亚洲av高清不卡| 亚洲精品一卡2卡三卡4卡5卡| 国产男靠女视频免费网站| 成人特级av手机在线观看| 99久久无色码亚洲精品果冻| 最近视频中文字幕2019在线8| 日日干狠狠操夜夜爽| 桃红色精品国产亚洲av| 成人鲁丝片一二三区免费| 亚洲天堂国产精品一区在线| 韩国av一区二区三区四区| 在线观看免费视频日本深夜| 无遮挡黄片免费观看| 国产精品一区二区三区四区久久| av片东京热男人的天堂| 国产毛片a区久久久久| 国产免费av片在线观看野外av| 国产成人影院久久av| 99热精品在线国产| 欧美av亚洲av综合av国产av| 欧美xxxx黑人xx丫x性爽| 久久人妻av系列| 18禁观看日本| 黄频高清免费视频| 国产成人av激情在线播放| 少妇熟女aⅴ在线视频| 999精品在线视频| 国产乱人视频| 全区人妻精品视频| 午夜福利18| 精品乱码久久久久久99久播| 黄色视频,在线免费观看| 免费搜索国产男女视频| 午夜精品久久久久久毛片777| 法律面前人人平等表现在哪些方面| 国产精品电影一区二区三区| 白带黄色成豆腐渣| 嫩草影视91久久| 美女高潮喷水抽搐中文字幕| 搡老妇女老女人老熟妇| 日韩有码中文字幕| 欧美最黄视频在线播放免费| 大型黄色视频在线免费观看| 国产成人系列免费观看| 成年女人永久免费观看视频| 日韩欧美免费精品| 99精品久久久久人妻精品| 熟女少妇亚洲综合色aaa.| 国产精品亚洲美女久久久| 精品国产亚洲在线| 999久久久精品免费观看国产| 亚洲成人精品中文字幕电影| 亚洲狠狠婷婷综合久久图片| 久久精品国产99精品国产亚洲性色| av黄色大香蕉| 特级一级黄色大片| 精品不卡国产一区二区三区| 18禁观看日本| 精品乱码久久久久久99久播| 舔av片在线| 国产成人aa在线观看| 级片在线观看| 91九色精品人成在线观看| av在线蜜桃| 精品乱码久久久久久99久播| 最近最新中文字幕大全电影3| 精品久久久久久久久久免费视频| 国产精品一区二区三区四区免费观看 | 国产av在哪里看| 视频区欧美日本亚洲| 欧美成狂野欧美在线观看| 中文字幕久久专区| 在线观看一区二区三区| 国产成人av教育| 亚洲午夜精品一区,二区,三区| 日韩成人在线观看一区二区三区| 日韩免费av在线播放| 99久久99久久久精品蜜桃| 老司机深夜福利视频在线观看| 欧美+亚洲+日韩+国产| 久久精品国产清高在天天线| 亚洲无线在线观看| 亚洲欧美日韩高清专用| 免费在线观看成人毛片| 成人欧美大片| 亚洲精品在线美女| 午夜免费观看网址| 亚洲精品久久国产高清桃花| 在线国产一区二区在线| 18禁国产床啪视频网站| 免费看日本二区| 成人特级黄色片久久久久久久| 淫秽高清视频在线观看| 亚洲国产中文字幕在线视频| 最好的美女福利视频网| 十八禁人妻一区二区| 在线国产一区二区在线| 男女床上黄色一级片免费看| www.精华液| 国产三级中文精品| 欧美xxxx黑人xx丫x性爽| 久久久久久久久中文| 久久婷婷人人爽人人干人人爱| 操出白浆在线播放| 黄色成人免费大全| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美国产在线观看| 午夜福利欧美成人| 精品无人区乱码1区二区| 欧美日韩综合久久久久久 | 久久久国产成人精品二区| 熟女电影av网| 91久久精品国产一区二区成人 | 国产精品99久久久久久久久| 丰满人妻一区二区三区视频av | 成人18禁在线播放| 国产成人系列免费观看| 免费在线观看成人毛片| 一进一出抽搐gif免费好疼| 男女视频在线观看网站免费| 国产熟女xx| 亚洲精品色激情综合| 国产成人欧美在线观看| 久久精品人妻少妇| 久久午夜亚洲精品久久| av福利片在线观看| 91在线精品国自产拍蜜月 | 91字幕亚洲| 在线观看午夜福利视频| 99国产精品一区二区三区| 长腿黑丝高跟| av黄色大香蕉| 国产爱豆传媒在线观看| 噜噜噜噜噜久久久久久91| 在线观看日韩欧美| 一本一本综合久久| 国产综合懂色| 一本综合久久免费| 亚洲精品在线观看二区| 久久久水蜜桃国产精品网| 成人无遮挡网站| 一本精品99久久精品77| 三级国产精品欧美在线观看 | 日日摸夜夜添夜夜添小说| 日本免费一区二区三区高清不卡| 视频区欧美日本亚洲| 亚洲第一欧美日韩一区二区三区| 久久香蕉精品热| 搡老妇女老女人老熟妇| 中文资源天堂在线| 国产亚洲欧美在线一区二区| 免费在线观看日本一区| 美女高潮喷水抽搐中文字幕| 天堂影院成人在线观看| 热99在线观看视频| 特大巨黑吊av在线直播| 天天躁狠狠躁夜夜躁狠狠躁| 99热6这里只有精品| 久久精品91蜜桃| 亚洲七黄色美女视频| 国产1区2区3区精品| 久久天堂一区二区三区四区| 国产久久久一区二区三区| 亚洲乱码一区二区免费版| 真人一进一出gif抽搐免费| 亚洲av五月六月丁香网| 国产高清有码在线观看视频| 香蕉久久夜色| 黄色视频,在线免费观看| 99热精品在线国产| 免费高清视频大片| 中文在线观看免费www的网站| 精华霜和精华液先用哪个| 99热6这里只有精品| 欧美日韩黄片免| 91久久精品国产一区二区成人 | 三级男女做爰猛烈吃奶摸视频| 免费观看人在逋| 精品久久久久久久人妻蜜臀av| 久久精品国产清高在天天线| 国产高清videossex| 美女大奶头视频| 亚洲成人久久爱视频| 午夜福利在线观看免费完整高清在 | 久久欧美精品欧美久久欧美| 成人性生交大片免费视频hd| 国产一级毛片七仙女欲春2| 少妇人妻一区二区三区视频| 国产麻豆成人av免费视频| 精品一区二区三区视频在线观看免费| 桃红色精品国产亚洲av| 午夜两性在线视频| 嫁个100分男人电影在线观看| 成人国产综合亚洲| 99国产精品一区二区蜜桃av| 超碰成人久久| 在线观看美女被高潮喷水网站 | 老司机午夜十八禁免费视频| 日韩精品青青久久久久久| 欧美乱妇无乱码| 中文字幕高清在线视频| 少妇丰满av| 波多野结衣巨乳人妻| 国产极品精品免费视频能看的| 色吧在线观看| 欧美成狂野欧美在线观看| 99久久精品一区二区三区| 亚洲欧美日韩无卡精品| 欧美xxxx黑人xx丫x性爽| 亚洲av中文字字幕乱码综合| 男女午夜视频在线观看| 麻豆成人午夜福利视频| 久久久久久人人人人人| 女警被强在线播放| 日本免费一区二区三区高清不卡| 操出白浆在线播放| 伊人久久大香线蕉亚洲五| 麻豆成人午夜福利视频| 国产爱豆传媒在线观看| 99久久国产精品久久久| 欧美又色又爽又黄视频| 国产麻豆成人av免费视频| 免费在线观看影片大全网站| 在线观看日韩欧美| 又粗又爽又猛毛片免费看| 午夜精品久久久久久毛片777| 国产极品精品免费视频能看的| 99国产精品一区二区蜜桃av| 一级毛片精品| 久久久久免费精品人妻一区二区| 少妇的逼水好多| 中文亚洲av片在线观看爽| 宅男免费午夜| 久久九九热精品免费| 国产精品一区二区免费欧美| 久久欧美精品欧美久久欧美| 性色av乱码一区二区三区2| 久99久视频精品免费| 两性午夜刺激爽爽歪歪视频在线观看| 最好的美女福利视频网| 亚洲精品久久国产高清桃花| 波多野结衣巨乳人妻| 精品国产三级普通话版| 亚洲人成电影免费在线| 欧美不卡视频在线免费观看| 岛国视频午夜一区免费看| 国产精品永久免费网站| 色吧在线观看| 高潮久久久久久久久久久不卡| 91麻豆精品激情在线观看国产| 国产精品永久免费网站| 色吧在线观看| 成人18禁在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 老司机午夜十八禁免费视频| 少妇人妻一区二区三区视频| 校园春色视频在线观看| 丰满的人妻完整版| 国产精品一区二区免费欧美| 日韩三级视频一区二区三区| 国产激情偷乱视频一区二区| 国产精品精品国产色婷婷| 搡老熟女国产l中国老女人| 俄罗斯特黄特色一大片| 国产精品99久久久久久久久| 亚洲国产精品成人综合色| 欧美不卡视频在线免费观看| 日韩高清综合在线| 中文亚洲av片在线观看爽| 午夜福利视频1000在线观看| 一进一出抽搐gif免费好疼| 亚洲成人久久爱视频| 欧美+亚洲+日韩+国产| 美女 人体艺术 gogo| 男人舔奶头视频| 日本撒尿小便嘘嘘汇集6| 久久人人精品亚洲av| 欧美中文日本在线观看视频| 国产又色又爽无遮挡免费看| 级片在线观看| 久久久水蜜桃国产精品网| 精品久久久久久久人妻蜜臀av| 淫秽高清视频在线观看| 不卡av一区二区三区| 99国产精品一区二区蜜桃av| 久久香蕉精品热| 欧美成狂野欧美在线观看| 99久久久亚洲精品蜜臀av| 可以在线观看的亚洲视频| 国内少妇人妻偷人精品xxx网站 | 午夜福利高清视频| 国产97色在线日韩免费| 男女下面进入的视频免费午夜| 欧美国产日韩亚洲一区| 久久久久久久久久黄片| 99国产精品99久久久久| 黄频高清免费视频| 在线观看66精品国产| 黄片大片在线免费观看| 国产高清视频在线播放一区| 国产日本99.免费观看| 亚洲国产精品999在线| 成人亚洲精品av一区二区| av欧美777| 亚洲第一电影网av| АⅤ资源中文在线天堂| 亚洲国产欧美网| 我要搜黄色片| 欧美日韩精品网址| 桃红色精品国产亚洲av| 91字幕亚洲| 欧美黄色淫秽网站| 国产蜜桃级精品一区二区三区| 国产人伦9x9x在线观看| 亚洲av成人av| 欧美乱码精品一区二区三区| 免费人成视频x8x8入口观看| 日本黄色视频三级网站网址| 亚洲人与动物交配视频| 美女免费视频网站| 最近最新中文字幕大全电影3| 亚洲熟妇熟女久久| 欧美乱色亚洲激情| 夜夜爽天天搞| 国产午夜福利久久久久久| 亚洲人与动物交配视频| 欧美在线黄色| 国产高清三级在线| ponron亚洲| 亚洲国产欧美一区二区综合| 久久精品91蜜桃| bbb黄色大片| 久久人人精品亚洲av| 精品99又大又爽又粗少妇毛片 | 国产熟女xx| 99国产精品一区二区蜜桃av| 精品国产超薄肉色丝袜足j| bbb黄色大片| 亚洲国产精品sss在线观看| 久久伊人香网站| 岛国视频午夜一区免费看| 欧美一级a爱片免费观看看| 丰满人妻一区二区三区视频av | 国产精品综合久久久久久久免费| 黄频高清免费视频| 亚洲专区字幕在线| or卡值多少钱| 国产69精品久久久久777片 | www.精华液| 男人舔奶头视频| 1024手机看黄色片| 午夜福利在线观看免费完整高清在 | 1024手机看黄色片| 精品电影一区二区在线| 精品一区二区三区视频在线 | 婷婷精品国产亚洲av在线| 黄色片一级片一级黄色片| 999精品在线视频| 国产淫片久久久久久久久 | 国产成人一区二区三区免费视频网站| 两个人的视频大全免费| 亚洲欧美日韩高清专用| 国产免费男女视频| 一个人免费在线观看的高清视频| 国产精品电影一区二区三区| 色吧在线观看| www.www免费av| 午夜激情福利司机影院| 欧美日韩黄片免| 禁无遮挡网站| 欧美日韩综合久久久久久 | 一边摸一边抽搐一进一小说| 亚洲精品一卡2卡三卡4卡5卡| 色精品久久人妻99蜜桃| 国产亚洲精品一区二区www| 日韩欧美免费精品| 在线十欧美十亚洲十日本专区| 亚洲av日韩精品久久久久久密| 午夜日韩欧美国产| 最近视频中文字幕2019在线8| 好看av亚洲va欧美ⅴa在| 国产精品女同一区二区软件 | 嫩草影视91久久| 男人的好看免费观看在线视频| 夜夜看夜夜爽夜夜摸| 99riav亚洲国产免费| 久久午夜亚洲精品久久| 小说图片视频综合网站| 午夜免费激情av| 精品国产超薄肉色丝袜足j| 亚洲国产欧美人成| 波多野结衣巨乳人妻| 十八禁网站免费在线| 人妻丰满熟妇av一区二区三区| 亚洲av成人av| 啦啦啦韩国在线观看视频| 亚洲精品国产精品久久久不卡| 中文在线观看免费www的网站| 亚洲国产欧洲综合997久久,| 美女被艹到高潮喷水动态| 中文字幕熟女人妻在线| 亚洲自偷自拍图片 自拍| 18禁国产床啪视频网站| 亚洲av电影不卡..在线观看| 亚洲乱码一区二区免费版| 午夜激情欧美在线| 伊人久久大香线蕉亚洲五| 久久午夜亚洲精品久久| 亚洲欧美精品综合一区二区三区| 天天添夜夜摸| 看片在线看免费视频| 色吧在线观看| 亚洲第一欧美日韩一区二区三区| 日本黄大片高清| 久久久久国内视频| 日本熟妇午夜| 国内毛片毛片毛片毛片毛片| 精品国产乱子伦一区二区三区| 国产蜜桃级精品一区二区三区| 又爽又黄无遮挡网站| 男人舔女人的私密视频| 欧美成狂野欧美在线观看| 网址你懂的国产日韩在线| 免费观看人在逋| 一级毛片精品| 精品久久久久久久毛片微露脸| 看免费av毛片| 99热只有精品国产| 欧美最黄视频在线播放免费| 久久久久久大精品| 国产av麻豆久久久久久久| 90打野战视频偷拍视频| 亚洲成av人片在线播放无| 舔av片在线| 国产亚洲精品一区二区www| 亚洲七黄色美女视频| 亚洲精品456在线播放app | 窝窝影院91人妻| 视频区欧美日本亚洲| 99久久精品一区二区三区| 国产精品女同一区二区软件 | 18禁黄网站禁片免费观看直播| 欧美性猛交黑人性爽| 欧美日韩乱码在线| 三级男女做爰猛烈吃奶摸视频| 国产淫片久久久久久久久 | 国产亚洲精品久久久com| 老熟妇仑乱视频hdxx| av片东京热男人的天堂| 最新中文字幕久久久久 | 不卡一级毛片| 日韩有码中文字幕| 久久久精品大字幕| 免费av毛片视频| 首页视频小说图片口味搜索| 精品人妻1区二区| 免费在线观看成人毛片| 国产男靠女视频免费网站| 午夜福利成人在线免费观看| 黄片小视频在线播放| 国产欧美日韩精品一区二区| 男女之事视频高清在线观看| 网址你懂的国产日韩在线| 久久久色成人| 日韩精品青青久久久久久| 18禁黄网站禁片午夜丰满| 伊人久久大香线蕉亚洲五| 久久这里只有精品19| 免费看a级黄色片| 亚洲精品456在线播放app | 亚洲精品一区av在线观看| e午夜精品久久久久久久| 午夜福利18| 欧美一级毛片孕妇| 最新中文字幕久久久久 | 国产精品1区2区在线观看.| 日韩高清综合在线| 午夜福利高清视频| 成人亚洲精品av一区二区| 国产伦精品一区二区三区视频9 | 欧美成狂野欧美在线观看| 国产一区二区三区视频了| 精品熟女少妇八av免费久了| 亚洲专区中文字幕在线| 夜夜夜夜夜久久久久| 搡老岳熟女国产| 亚洲欧美精品综合久久99| 亚洲片人在线观看| 国产人伦9x9x在线观看| 1024香蕉在线观看| 久久国产精品人妻蜜桃| 亚洲熟妇中文字幕五十中出| 久久精品国产综合久久久| 日本a在线网址| 变态另类成人亚洲欧美熟女| 久久午夜亚洲精品久久| 日韩人妻高清精品专区| xxxwww97欧美| 午夜福利欧美成人|