• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular Dynamics Simulation of CL-20/DNDAP Cocrystal Morphology at Different Temperatures

    2023-07-14 09:12:02LIXingLIWeiJUXuehai
    火炸藥學(xué)報(bào) 2023年6期

    LI Xing, LI Wei, JU Xue-hai

    (1.School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; 2.Third Oil Refinery, Petro China Huabei Oilfield Company, Hejian Hebei 062450, China)

    Abstract:The cocrystallization of hexanitrohexaazoisowuzane (CL-20) with other energetic materials alongside the spheroidization of cocrystal morphology can reduce its sensitivity. The attachment energy (AE) model and molecular dynamics (MD) method were used to predict the morphologies of CL-20 and 2,4-dinitro-2,4-diazapentane (DNDAP) cocrystal in methyl acetate solvent at different temperatures. Meanwhile, the interaction energy between the solvent and the crystal surface was calculated to derive the attachment energy of the crystal surface, and the crystal morphologies at different temperatures were simulated. The results show that there are five morphologically dominant crystal faces of CL-20/DNDAP cocrystal under vacuum. The (1 0 0) face occupies a relative large area accounting for 37.44%, which has a significant influence on the crystal morphology. The attachment energy of CL-20/DNDAP cocrystal decreases with the increasing of temperature. The higher temperature leads to an increase in the aspect ratios, which are 1.80 and 3.93 at 280 and 360K, respectively. The lower temperature is beneficial to obtain a nearly spherical morphology. The theoretical predicted morphology of tilted prisms agrees with the experimental result.

    Keywords:physical chemistry; hexanitrohexaazaisowurtzitane; CL-20; cocrystallization; 2,4-dinitro-2,4-diazapentane; crystal morphology; molecular dynamics simulation

    Introduction

    CL-20 is a high energy material[1]with great potential for military and civilian applications, but the problem of high susceptibility severely limits the practical applications. Some methods are needed to reduce the susceptibility without affecting the energy performance. Cocrystal is a crystal with a fixed ratio and specific structure formed by two or more components under intermolecular non-covalent bonding[2-3]. Cocrystal can change the arrangement of molecules of energetic materials to increase the energy density while reducing the sensibility and improving the safety[4-6]. There have been many studies on the ability of surface CL-20 to reduce its susceptibility by forming cocrystal crystals with other insensitive explosives. For example, 1,3-dinitrobenzene (DNB), 2,5-dinitrotoluene (DNT), benzotrifuroxan (BTF), 2-mercapto-1-methylimidazole (MMI), and 2,4-dinitro-2,4-diazapentane (DNDAP)[7-12].

    The morphology of crystals is the result of a combination of internal structural factors and external conditions, and crystals exhibit different morphologies because of the differences in the growth rates of individual crystal faces. The growth rate of crystal faces is related to the type of solvent, temperature, and other factors[13-14]. Crystal morphology affects the energy and safety of energetic materials[15]. Crystals of the same size that exhibit a spherical morphology have lower impact strength and frictional susceptibility and better safety than those that exhibit a needle or plate morphology[16-20].

    With the development of computer technology, computational simulation has become an important method to study the crystal morphology formation mechanism. Wang[21]found that the attachment energy of crystal faces in different solvents and the predicted crystal morphology are determined by the hydrogen bonding sites of the surfaces and are closely related to the solvent polarity through molecular dynamics simulations and modified attachment energy models. The authors gave a general mechanism to control the morphology of low-sensitivity high-energy materials with polar solvents. Song[22]simulated the effect of temperature on the crystallographic faces of 1,1-diamino-2,2-dinitroethylene (FOX-7) crystals and successfully predicted the FOX-7 crystal morphology at different temperatures, providing a new understanding of the growth and morphology of FOX-7 crystals. Cheng[23]explored the effect of solvent on the crystal morphology ofβ-HMX by simulating the crystal morphology ofβ-HMX in binary and ternary solvent systems through molecular dynamics and used radial distribution function analysis to investigate the interaction between solvent andβ-HMX. There are also many studies on the simulation of the cocrystal morphology of CL-20. Zhang[24]investigated the effect of different molar ratios of dimethyl sulfoxide-acetonitrile co-solvents on the formation of CL-20/HMX cocrystal. The results showed that the molar ratio of 1∶3 dimethyl sulfoxide/acetonitrile was favorable to the formation of CL-20/HMX cocrystal. Wang[25]simulated the formation of CL-20/ DNDA5 (2,4-dinitro-2,4-dinitropentane) at different temperatures and showed that the main driving force for the formation of CL-20/DNDA5 cocrystals is mainly the hydrogen bonding formed by H provided by CL-20 and O provided by DNDA5, and the low temperature is favorable for hydrogen bonding formation.

    In this paper, molecular dynamics simulations will be used to calculate the interaction energy between each crystal face of CL-20/DNDAP cocrystal and the solvent, and the modified attachment energy model (MAE) will be combined to predict the crystal morphology of CL-20/DNDAP cocrystal at different temperatures, and analyze the effect of temperature on different crystal faces, so as to provide theoretical guidance for experimentally obtaining the spherical morphology of CL-20/DNDAP cocrystal.

    1 Theory and MD Simulation Details

    1.1 Theory

    The attachment energy (AE) model was proposed by Hartman and Bennema. It used the Periodic Bond Chain theory[26-27]. The attachment energy (Eatt) is defined as the energy released when a crystal face with a thickness ofdhklattaches to the crystal face, and can be expressed as formula (1):

    Eatt=Elatt-Eslice

    (1)

    whereElattis the lattice energy of the crystal;Esliceis the energy released by growing a wafer with a thickness ofdhkl.

    According to the AE model[28], the relative growth rate of the crystal face (Rhkl) is positively correlated with the absolute value of the corresponding attachment energy (Eatt), see formula (2). The lower the attachment energy of the crystal face, the slower the growth rate. Slow-growing crystal face will show up in the morphology.

    Rhkl∝|Eatt|

    (2)

    Based on the crystal structure, the growth morphology under vacuum conditions can be predicted. Important growth crystal planes are obtained. The crystal growth under solvent must overcome the resistance of the solvent layer. For this purpose, a correction of the attachment energy is required.

    (3)

    whereEsis an energy correction term introduced by solvent adsorption, indicating the inhibition of crystal surface growth by the solvent.Sis a correction factor reflecting the roughness of the growing crystal face, and is defined as:

    (4)

    whereAaccis the solvent accessible surface area of the crystal face unit (hkl).Ahklis the cross-sectional area of the crystal face unit. Obviously, the larger theSvalue, the rougher the crystal face.Escan be obtained from the interaction energy (Eint) of the solvent with the crystal face:

    (5)

    whereAboxis the cross-sectional area in the simulation box.Eintis the difference between the total energy (Etot) of the crystal face-solvent system, the crystal face energy (Ecry) and the solvent energy (Esol), namely:

    Eint=Etot-(Ecry+Esol)

    (6)

    In the revised AE model, the modified adhesion energy is proportional to the growth rate of the crystal face, see equation (7):

    (7)

    1.2 MD simulation details

    The lattice parameters of the initial cell structure of CL-20/DNDAP area=13.022?,b=22.619?,c=12.962?,α=γ=90°,β=104.648°, belonging to the monoclinic crystal system. The space group isP21/c[12]. The cell structure of CL-20/DNDAP is shown in Fig.1.

    Fig.1 Molecular structures and unit cell structure of CL-20, DNDAP and CL-20/DNDAP

    The COMPASS force field is the most widely used in the field of energetic materials and is suitable for the simulation of energetic compound molecules[29]. The CL-20/DNDAP unit cell structure was geometrically optimized, and the experimental lattice parameters were compared with the optimized values (Table 1). The optimized value of the crystal density at room temperature is also shown in Table 1. The relative error between the optimized lattice parameters and the experimental parameters is within 5%, indicating that the COMPASS force field is suitable for the simulation of CL-20/DNDAP.

    Table 1 Comparison of experimental and optimized lattice parameters of CL-20/DNDAP

    Then the AE model was used to predict the morphology of CL-20/DNDAP under vacuum, resulting in the most morphologically important growth faces. Then, the important growth crystal faces are cut, and the supercell is used to construct a periodic structure with a length and width of about 40?. Methyl acetate was selected as the solvent system, and a solvent box composed of randomly distributed solvent molecules was constructed. The length and width of the solvent box is the same as the value of the crystal box. The number of solvent molecules is 500.

    2 Results and Discussion

    2.1 Crystal morphology in vacuum

    The morphology of CL-20/DNDAP in vacuum was simulated with the AE model, and the main crystallographic parameters are shown in Table 2. Fig.3 shows the morphology of CL-20/DNDAP in vacuum is an angular block structure with five main growth crystallographic faces: (1 0 0), (1 1 0), (0 2 0), (0 1 1), and (1 1 -1). The morphology of CL-20/DNDAP was predicted under vacuum, and the obtained length-to-diameter ratio is 2.17, with the largest percentage of crystal face area of (1 0 0) at 37.44%. The fast-growing crystal faces disappear, while the slow-growing crystal faces appear on the final morphology. The attachment energy affects the growth rate of crystal face. The higher the attachment energy, the faster the growth rate of crystal faces and the smaller the corresponding crystal faces. On the contrary, the smaller the attachment energy of the crystal face, the larger the crystal face, and the (1 0 0) face has the smallest attachment energy and the slowest growth rate of the crystal face, so the crystal face is the largest, which is consistent with the results of other scholars[33-34].

    Fig.3 Crystal morphology of CL-20/DNDAP in vacuum

    Table 2 The morphologically dominant crystal faces and related parameters of CL-20/DNDAP in vacuum

    The Connolly surface of CL-20/DNDAP cocrystal is shown in Fig.4. The blue area above represents the accessible solvent surface, and it can be seen that the (1 0 0) crystal face is relatively flat, and the faces of (1 1 0), (0 2 0), (0 1 1) and (1 1 -1) have many bumps and depressions and are relatively rough, and these voids favor the adsorption of solvent molecules and thus affect the crystal face growth.

    Fig.4 Connolly surfaces of each morphologically dominant crystal faces of CL-20/DNDAP

    The solvent accessible area (Aacc), surface area (Ahkl) and the correspondingS(Aacc/Ahkl) values for different CL-20/DNDAP faces are presented in Table 3. The larger theSvalue, the rougher the crystal face[35], and the rough crystal face is favorable for solvent molecule adsorption. The largerSvalues for (1 1 0), (0 2 0) and (1 1 -1) crystal faces (Table 3) indicate that these faces are relatively rough and have a larger contact area with solvent molecules, and (1 0 0) crystal faces have the smallestSvalues, the flattest crystal faces, and fewer adsorption sites with solvent molecules, and the adsorption of solvent molecules with (1 0 0) crystal faces is relatively difficult. The roughness results obtained through Table 3 are consistent with the conclusions obtained in Fig.4.

    Table 3 The parameter values for the crystal habit faces of CL-20/DNDAP in solvent

    2.2 Effect of temperature on morphology of CL-20/DNDAP cocrystal

    Fig.5 shows the adsorption equilibrium structure of the crystal faces and the solvent after molecular dynamics calculations. Table 4 lists the CL-20/DNDAP cocrystal data calculated by molecular dynamics simulations using the modified attachment energy model with methyl acetate as the solvent and at different temperatures.

    Fig.5 Adsorption equilibrium structures of the crystal faces and the solvent after molecular dynamics calculation

    Fig.6 Comparison of the predicted crystal morphologies at different temperatures and the experimental crystal morphology at 298K from Ref[12]

    Fig.7 of each crystal face at different temperatures

    By comparing the crystal morphology of CL-20/DNDAP cocrystal at different temperatures and calculating the aspect ratio, it was found that the aspect ratio increased with the increase of temperature, and the aspect ratio is related to the morphology of the crystal, and the closer the aspect ratio was to 1, the closer the crystal morphology was to spherical. From Fig.8, it can be seen that the aspect ratio is the smallest at 280K, and the aspect ratio is 1.80. This result indicates that crystallization at a lower temperature is beneficial to obtain a spherical shape.

    Fig.8 Predicted aspect ratio of crystal morphologies at different temperatures

    3 Conclusions

    (1) The simulated crystal morphologies are tilted prisms with five important growth crystal face. (1 0 0) and (0 1 1) occupy a relatively large area and are the main crystallographic faces affecting the crystal morphology.

    (2) The absolute values of the attachment energy of the major crystal faces decreased with increasing temperature, indicating that the increase in temperature inhibits the growth of these crystal faces.

    (3) The crystal at lower temperature is favorable to generate near-spherical morphology.

    亚洲一区中文字幕在线| 亚洲中文日韩欧美视频| 人人妻人人澡人人看| av在线天堂中文字幕| av中文乱码字幕在线| 老司机在亚洲福利影院| 人妻丰满熟妇av一区二区三区| 国产极品粉嫩免费观看在线| 久久精品国产亚洲av高清一级| 他把我摸到了高潮在线观看| 欧美性长视频在线观看| 黄片播放在线免费| 久久伊人香网站| 日本vs欧美在线观看视频| 麻豆国产av国片精品| 电影成人av| av网站免费在线观看视频| 性色av乱码一区二区三区2| 国产精品二区激情视频| 久久精品aⅴ一区二区三区四区| 成人av一区二区三区在线看| 少妇粗大呻吟视频| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩瑟瑟在线播放| 国产免费男女视频| 91在线观看av| 国产日韩一区二区三区精品不卡| 欧美中文日本在线观看视频| 可以在线观看的亚洲视频| 高清毛片免费观看视频网站| 电影成人av| 一级片免费观看大全| 男女下面插进去视频免费观看| 色播亚洲综合网| 亚洲性夜色夜夜综合| 色综合站精品国产| 精品电影一区二区在线| 日本免费一区二区三区高清不卡 | 18禁国产床啪视频网站| 国产又爽黄色视频| 亚洲成人精品中文字幕电影| 乱人伦中国视频| 波多野结衣av一区二区av| 精品人妻1区二区| 每晚都被弄得嗷嗷叫到高潮| 老司机靠b影院| 亚洲中文字幕一区二区三区有码在线看 | 美女午夜性视频免费| 午夜影院日韩av| 韩国精品一区二区三区| 少妇粗大呻吟视频| 伊人久久大香线蕉亚洲五| 人人妻,人人澡人人爽秒播| 国产男靠女视频免费网站| 日韩欧美国产一区二区入口| 成人三级黄色视频| 乱人伦中国视频| 一级a爱片免费观看的视频| av天堂在线播放| 午夜福利18| 国产成人系列免费观看| 91成人精品电影| 亚洲成人精品中文字幕电影| 亚洲精品在线观看二区| 99国产极品粉嫩在线观看| 人人妻,人人澡人人爽秒播| 国产精品影院久久| 婷婷精品国产亚洲av在线| 午夜福利高清视频| 亚洲精品中文字幕在线视频| 身体一侧抽搐| 老熟妇仑乱视频hdxx| 黑人巨大精品欧美一区二区mp4| 色婷婷久久久亚洲欧美| 丁香六月欧美| 多毛熟女@视频| 日韩欧美在线二视频| www.熟女人妻精品国产| 久久国产精品人妻蜜桃| 色综合欧美亚洲国产小说| 少妇的丰满在线观看| 成人国语在线视频| 桃色一区二区三区在线观看| 中出人妻视频一区二区| 成年女人毛片免费观看观看9| 久久久国产成人免费| 亚洲七黄色美女视频| or卡值多少钱| 欧美激情极品国产一区二区三区| 亚洲第一av免费看| 亚洲中文字幕日韩| 亚洲自偷自拍图片 自拍| 一区二区三区国产精品乱码| 国产1区2区3区精品| 国内精品久久久久精免费| 啦啦啦观看免费观看视频高清 | 久热这里只有精品99| 久久久国产欧美日韩av| 免费在线观看影片大全网站| 纯流量卡能插随身wifi吗| 大型黄色视频在线免费观看| 久久人人97超碰香蕉20202| 人人妻,人人澡人人爽秒播| 啦啦啦免费观看视频1| 欧美av亚洲av综合av国产av| 久久国产精品男人的天堂亚洲| 啦啦啦免费观看视频1| 欧美激情 高清一区二区三区| 亚洲第一青青草原| 中文字幕人妻丝袜一区二区| 99精品欧美一区二区三区四区| 91成年电影在线观看| 国产精品自产拍在线观看55亚洲| 亚洲av日韩精品久久久久久密| 香蕉丝袜av| 最近最新免费中文字幕在线| 亚洲五月婷婷丁香| 在线观看日韩欧美| 99在线视频只有这里精品首页| 99精品久久久久人妻精品| 欧美丝袜亚洲另类 | 久久人人97超碰香蕉20202| 嫩草影视91久久| 99国产极品粉嫩在线观看| 国产在线观看jvid| 亚洲熟妇中文字幕五十中出| 国产精品自产拍在线观看55亚洲| 国产精品久久久久久人妻精品电影| 亚洲精华国产精华精| 母亲3免费完整高清在线观看| 午夜免费激情av| 午夜老司机福利片| 精品久久久久久成人av| 色av中文字幕| 午夜免费鲁丝| www日本在线高清视频| 国产99白浆流出| 嫩草影视91久久| 国产成人系列免费观看| 久久精品国产清高在天天线| 在线天堂中文资源库| 欧美黑人欧美精品刺激| 老汉色av国产亚洲站长工具| 叶爱在线成人免费视频播放| 亚洲国产欧美一区二区综合| 久久久国产成人免费| 制服诱惑二区| 很黄的视频免费| 婷婷丁香在线五月| 黄色a级毛片大全视频| 国产亚洲精品av在线| 国产精品1区2区在线观看.| 9热在线视频观看99| 国产精品亚洲一级av第二区| ponron亚洲| 日本 av在线| 亚洲av日韩精品久久久久久密| 叶爱在线成人免费视频播放| 久久亚洲真实| 在线观看日韩欧美| 欧洲精品卡2卡3卡4卡5卡区| 男男h啪啪无遮挡| 欧美国产精品va在线观看不卡| 激情视频va一区二区三区| 美女免费视频网站| 中文字幕人妻丝袜一区二区| 变态另类丝袜制服| 色播亚洲综合网| 亚洲人成伊人成综合网2020| 级片在线观看| 丝袜美足系列| av免费在线观看网站| 韩国精品一区二区三区| 午夜a级毛片| 黄色视频不卡| 久久精品国产亚洲av高清一级| 给我免费播放毛片高清在线观看| 成年女人毛片免费观看观看9| 黑人欧美特级aaaaaa片| 韩国av一区二区三区四区| 精品国产亚洲在线| 婷婷精品国产亚洲av在线| 国产高清激情床上av| 国产午夜精品久久久久久| 一区二区三区国产精品乱码| 国产精品久久电影中文字幕| 国产片内射在线| 一本综合久久免费| 午夜视频精品福利| 在线观看一区二区三区| 91精品三级在线观看| 亚洲国产欧美一区二区综合| 精品国产一区二区久久| 伦理电影免费视频| 91九色精品人成在线观看| 久热爱精品视频在线9| 伊人久久大香线蕉亚洲五| 岛国视频午夜一区免费看| 久久中文看片网| 一区二区三区激情视频| 后天国语完整版免费观看| 好男人电影高清在线观看| 国产成人欧美在线观看| 欧美激情久久久久久爽电影 | 波多野结衣av一区二区av| 国产成年人精品一区二区| 亚洲性夜色夜夜综合| 男人操女人黄网站| 国产精品一区二区在线不卡| av电影中文网址| 一区二区三区高清视频在线| 国产av一区二区精品久久| 免费高清在线观看日韩| 成年人黄色毛片网站| 成年女人毛片免费观看观看9| 久久青草综合色| 777久久人妻少妇嫩草av网站| 亚洲自拍偷在线| 国产精品九九99| 国产成人影院久久av| 91麻豆av在线| 真人做人爱边吃奶动态| 手机成人av网站| 丝袜在线中文字幕| 亚洲精品久久成人aⅴ小说| 亚洲av第一区精品v没综合| 国产av又大| 级片在线观看| 欧美激情久久久久久爽电影 | 亚洲国产欧美一区二区综合| 午夜老司机福利片| 夜夜躁狠狠躁天天躁| 亚洲专区国产一区二区| 午夜福利18| 色综合站精品国产| 国产欧美日韩一区二区精品| 日本在线视频免费播放| 9191精品国产免费久久| 亚洲成人久久性| 1024香蕉在线观看| 色精品久久人妻99蜜桃| 人妻久久中文字幕网| 精品久久久精品久久久| 亚洲成人久久性| 中文字幕人妻丝袜一区二区| 一级,二级,三级黄色视频| 欧美丝袜亚洲另类 | 99国产精品一区二区蜜桃av| 在线观看免费午夜福利视频| 精品久久久久久久久久免费视频| 国语自产精品视频在线第100页| 亚洲自拍偷在线| or卡值多少钱| 操美女的视频在线观看| 看免费av毛片| 777久久人妻少妇嫩草av网站| 在线观看一区二区三区| 国产av精品麻豆| 好男人在线观看高清免费视频 | 国内久久婷婷六月综合欲色啪| 欧美 亚洲 国产 日韩一| 欧美日本亚洲视频在线播放| 免费看美女性在线毛片视频| 欧美丝袜亚洲另类 | 一本久久中文字幕| 午夜成年电影在线免费观看| 757午夜福利合集在线观看| 亚洲国产毛片av蜜桃av| 亚洲七黄色美女视频| 少妇的丰满在线观看| 日韩国内少妇激情av| 人人妻人人澡欧美一区二区 | 中文字幕最新亚洲高清| 亚洲专区国产一区二区| 黄色女人牲交| www.www免费av| 久久影院123| 亚洲欧美日韩另类电影网站| 日本 av在线| 免费搜索国产男女视频| 精品午夜福利视频在线观看一区| 搞女人的毛片| 亚洲美女黄片视频| 免费观看人在逋| 亚洲欧美激情综合另类| 精品久久久久久久人妻蜜臀av | 国产高清激情床上av| 18美女黄网站色大片免费观看| 午夜久久久在线观看| 国产精品98久久久久久宅男小说| 精品一品国产午夜福利视频| a级毛片在线看网站| 中文字幕人妻熟女乱码| 中文字幕高清在线视频| 自线自在国产av| 久久中文字幕人妻熟女| 最新在线观看一区二区三区| 一本综合久久免费| 97人妻精品一区二区三区麻豆 | 一级a爱片免费观看的视频| 制服丝袜大香蕉在线| 女人精品久久久久毛片| 亚洲专区字幕在线| 国产xxxxx性猛交| 69av精品久久久久久| 亚洲第一电影网av| 亚洲午夜精品一区,二区,三区| 亚洲 国产 在线| 久久精品人人爽人人爽视色| aaaaa片日本免费| 国产精品亚洲美女久久久| 国产男靠女视频免费网站| 亚洲狠狠婷婷综合久久图片| 精品欧美一区二区三区在线| 97人妻天天添夜夜摸| 他把我摸到了高潮在线观看| 青草久久国产| 91老司机精品| 亚洲中文字幕一区二区三区有码在线看 | 久久国产精品人妻蜜桃| 91字幕亚洲| 国产亚洲精品久久久久5区| 日本在线视频免费播放| 妹子高潮喷水视频| 欧美午夜高清在线| 桃红色精品国产亚洲av| 精品国内亚洲2022精品成人| 久久久久久人人人人人| 一个人免费在线观看的高清视频| 精品一区二区三区四区五区乱码| 无限看片的www在线观看| 亚洲精品久久成人aⅴ小说| 久久久久九九精品影院| 亚洲在线自拍视频| 亚洲一区二区三区色噜噜| 亚洲av美国av| 精品熟女少妇八av免费久了| 国产免费男女视频| 午夜免费观看网址| 制服诱惑二区| 欧美日本视频| 美女午夜性视频免费| 男女下面插进去视频免费观看| 高清在线国产一区| 夜夜看夜夜爽夜夜摸| 国产精品九九99| 欧美色欧美亚洲另类二区 | 久久香蕉国产精品| 狂野欧美激情性xxxx| 国语自产精品视频在线第100页| 1024香蕉在线观看| 国产亚洲av嫩草精品影院| 精品第一国产精品| 身体一侧抽搐| 欧美日韩亚洲综合一区二区三区_| 老司机午夜十八禁免费视频| 国产aⅴ精品一区二区三区波| 国产av在哪里看| 亚洲aⅴ乱码一区二区在线播放 | 国产不卡一卡二| 亚洲aⅴ乱码一区二区在线播放 | 亚洲国产毛片av蜜桃av| 日本 欧美在线| 窝窝影院91人妻| 男女午夜视频在线观看| 51午夜福利影视在线观看| 亚洲国产精品久久男人天堂| 变态另类成人亚洲欧美熟女 | 最近最新免费中文字幕在线| 国产日韩一区二区三区精品不卡| 动漫黄色视频在线观看| 久久久久久国产a免费观看| 91麻豆av在线| 欧美日韩黄片免| 黄频高清免费视频| 日本在线视频免费播放| 男人舔女人的私密视频| 51午夜福利影视在线观看| 淫妇啪啪啪对白视频| 国产亚洲精品第一综合不卡| 中亚洲国语对白在线视频| 怎么达到女性高潮| 午夜福利18| 中国美女看黄片| 看片在线看免费视频| 国产精品香港三级国产av潘金莲| 十八禁人妻一区二区| 午夜日韩欧美国产| 亚洲片人在线观看| 欧美人与性动交α欧美精品济南到| 国产成人精品久久二区二区免费| 国产精品久久久av美女十八| 18禁裸乳无遮挡免费网站照片 | cao死你这个sao货| 久久午夜综合久久蜜桃| 波多野结衣高清无吗| 国产精品久久久久久人妻精品电影| 欧美一级a爱片免费观看看 | 老司机午夜十八禁免费视频| 国产精品98久久久久久宅男小说| 免费高清视频大片| 少妇的丰满在线观看| 一边摸一边做爽爽视频免费| 国产精品日韩av在线免费观看 | 女人高潮潮喷娇喘18禁视频| 最近最新中文字幕大全免费视频| 亚洲天堂国产精品一区在线| 自线自在国产av| 欧美在线一区亚洲| 午夜免费鲁丝| 国产xxxxx性猛交| 两性夫妻黄色片| 亚洲最大成人中文| 亚洲成av片中文字幕在线观看| 女人被狂操c到高潮| 动漫黄色视频在线观看| 国产一区二区三区在线臀色熟女| 亚洲第一电影网av| 亚洲 国产 在线| 午夜福利欧美成人| 亚洲欧美一区二区三区黑人| 日本在线视频免费播放| 日韩欧美国产一区二区入口| 国产伦人伦偷精品视频| 久久午夜综合久久蜜桃| av天堂在线播放| 两性夫妻黄色片| 在线十欧美十亚洲十日本专区| 黄片小视频在线播放| 国产97色在线日韩免费| 精品国产超薄肉色丝袜足j| 午夜亚洲福利在线播放| 淫妇啪啪啪对白视频| 欧美在线黄色| 99久久国产精品久久久| 美女国产高潮福利片在线看| 深夜精品福利| 最新在线观看一区二区三区| 激情在线观看视频在线高清| 国产一区二区激情短视频| 精品久久久久久成人av| 成人av一区二区三区在线看| 免费搜索国产男女视频| 久久精品国产综合久久久| 深夜精品福利| 99久久综合精品五月天人人| 老汉色∧v一级毛片| 亚洲九九香蕉| 国产亚洲欧美精品永久| ponron亚洲| 视频在线观看一区二区三区| 无限看片的www在线观看| 欧美日本中文国产一区发布| 精品欧美一区二区三区在线| 久久久久久免费高清国产稀缺| 午夜亚洲福利在线播放| 日日摸夜夜添夜夜添小说| 免费av毛片视频| x7x7x7水蜜桃| 国产成人欧美| 最近最新免费中文字幕在线| 午夜福利影视在线免费观看| 日韩欧美三级三区| 久久久久国产一级毛片高清牌| 成人特级黄色片久久久久久久| 欧美不卡视频在线免费观看 | 日日摸夜夜添夜夜添小说| 伊人久久大香线蕉亚洲五| 男人的好看免费观看在线视频 | 好男人在线观看高清免费视频 | 国产精品亚洲一级av第二区| 黄色视频,在线免费观看| 夜夜躁狠狠躁天天躁| 日韩欧美一区二区三区在线观看| 国产成人欧美在线观看| 久久婷婷成人综合色麻豆| 夜夜爽天天搞| 一本大道久久a久久精品| 久久精品影院6| 欧美日韩亚洲国产一区二区在线观看| 嫩草影视91久久| 午夜福利视频1000在线观看 | 免费女性裸体啪啪无遮挡网站| 黄色毛片三级朝国网站| 免费高清视频大片| 国产精品 欧美亚洲| 亚洲精品一区av在线观看| 给我免费播放毛片高清在线观看| 一边摸一边抽搐一进一出视频| 叶爱在线成人免费视频播放| 国产人伦9x9x在线观看| 在线观看免费视频网站a站| 国产成人欧美在线观看| 天天躁夜夜躁狠狠躁躁| 成年人黄色毛片网站| 变态另类成人亚洲欧美熟女 | 波多野结衣巨乳人妻| 中文字幕人妻丝袜一区二区| 在线播放国产精品三级| 国产三级在线视频| 久久九九热精品免费| 欧美精品啪啪一区二区三区| 欧美日韩乱码在线| 啦啦啦观看免费观看视频高清 | 亚洲第一电影网av| 日韩精品免费视频一区二区三区| 国产欧美日韩一区二区精品| 精品一区二区三区视频在线观看免费| 母亲3免费完整高清在线观看| 老熟妇乱子伦视频在线观看| 国产伦人伦偷精品视频| 欧美乱色亚洲激情| 90打野战视频偷拍视频| 亚洲欧美日韩高清在线视频| 国产私拍福利视频在线观看| 老司机福利观看| 色在线成人网| 午夜老司机福利片| 亚洲全国av大片| 在线观看免费午夜福利视频| 成人特级黄色片久久久久久久| 久久精品国产亚洲av高清一级| av电影中文网址| av在线天堂中文字幕| www.熟女人妻精品国产| 中文字幕人成人乱码亚洲影| 日本撒尿小便嘘嘘汇集6| 久久欧美精品欧美久久欧美| 一进一出抽搐动态| 亚洲 国产 在线| 国产欧美日韩综合在线一区二区| 亚洲一区二区三区色噜噜| 国产色视频综合| 亚洲精品国产区一区二| 欧美乱妇无乱码| 亚洲中文字幕一区二区三区有码在线看 | 国产在线观看jvid| 自拍欧美九色日韩亚洲蝌蚪91| 美女大奶头视频| 欧美丝袜亚洲另类 | xxx96com| 亚洲av美国av| 91大片在线观看| 巨乳人妻的诱惑在线观看| 欧美黄色淫秽网站| 欧美av亚洲av综合av国产av| 国产麻豆成人av免费视频| 女人被躁到高潮嗷嗷叫费观| 好男人在线观看高清免费视频 | 中文亚洲av片在线观看爽| 久久久久久久久久久久大奶| 熟妇人妻久久中文字幕3abv| 满18在线观看网站| 又黄又爽又免费观看的视频| 视频在线观看一区二区三区| 999久久久精品免费观看国产| 久99久视频精品免费| 99国产极品粉嫩在线观看| 在线av久久热| 国产亚洲精品第一综合不卡| 亚洲第一欧美日韩一区二区三区| 女人高潮潮喷娇喘18禁视频| 欧美日韩福利视频一区二区| 亚洲中文字幕一区二区三区有码在线看 | 午夜福利,免费看| 夜夜躁狠狠躁天天躁| 在线天堂中文资源库| 麻豆一二三区av精品| 欧美黑人欧美精品刺激| 伦理电影免费视频| 日韩欧美三级三区| 亚洲 欧美一区二区三区| 视频区欧美日本亚洲| 香蕉久久夜色| av视频在线观看入口| 一二三四在线观看免费中文在| 日韩大码丰满熟妇| 欧美日韩黄片免| 国产精品美女特级片免费视频播放器 | 欧美 亚洲 国产 日韩一| 亚洲国产精品成人综合色| 亚洲国产精品合色在线| 色播亚洲综合网| 午夜激情av网站| 男人的好看免费观看在线视频 | 国产麻豆69| 久久国产乱子伦精品免费另类| 久久久久久亚洲精品国产蜜桃av| 一a级毛片在线观看| 国产av一区在线观看免费| 午夜福利,免费看| 波多野结衣巨乳人妻| 亚洲av电影在线进入| 两性午夜刺激爽爽歪歪视频在线观看 | 日本三级黄在线观看| 宅男免费午夜| 99精品在免费线老司机午夜| 亚洲无线在线观看| 亚洲自偷自拍图片 自拍| 亚洲aⅴ乱码一区二区在线播放 | 一边摸一边抽搐一进一小说| 欧美日韩黄片免| 波多野结衣一区麻豆| 精品人妻1区二区| 国产激情久久老熟女| 色综合亚洲欧美另类图片| 精品久久久久久久久久免费视频| 国产一区二区激情短视频| 欧美乱色亚洲激情| 欧美成人一区二区免费高清观看 | 亚洲国产毛片av蜜桃av| 午夜久久久在线观看| 午夜福利,免费看| 国产成人精品久久二区二区免费| 亚洲av第一区精品v没综合|