• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Contribution of Ambient Air Pollution on Risk Assessment of Type 2 Diabetes Mellitus via Explainable Machine Learning*

    2023-07-13 02:11:38DINGZhongAoZHANGLiYingLIRuiYingNIUMiaoMiaoZHAOBoDONGXiaoKangLIUXiaoTianHOUJianMAOZhenXingandWANGChongJian
    Biomedical and Environmental Sciences 2023年6期

    DING Zhong Ao , ZHANG Li Ying , LI Rui Ying , NIU Miao Miao , ZHAO Bo , DONG Xiao Kang ,LIU Xiao Tian, HOU Jian, MAO Zhen Xing, and WANG Chong Jian,4,#

    1.Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001,Henan, China; 2.Department of Software Engineering, School of Computer and Artificial Intelligence, Zhengzhou University,Zhengzhou 450001, Henan, China; 3.Department of Statistics, University of Illinois at Urbana-Champaign, Champaign,U.S.A; 4.NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou 450001, Henan, China

    Type 2 diabetes mellitus (T2DM) is recognized as a heterogeneous and complicated disease that is able to influence individuals at various life stages[1].Apart from traditional predictors such as age, family history of diabetes, body mass index, and so on,ambient air pollution is also shown to increase the risk of T2DM in previous studies.However, previous T2DM risk assessment models barely included air pollution features as the predictors.Machine learning algorithms are widely used for disease prediction model construction, and demonstrate superior discrimination abilities and greater effectiveness than statistical methods[2].However,the principle of “black box” in machine learning greatly hindered the interpretability of the model,especially for medical decisions[3].The SHapely additive exPlanations (SHAP) based on the game theory was proposed by Lundberg et.al to develop the explainable machine learning, and the SHAP methods were able to display the feature contributions as well as interaction effects in the model[4,5].This study aims to reveal the contribution of air pollutants exposure in the T2DM risk assessment model as well as air pollutants’ effects on traditional predictorsviaSHAP.

    Participants in this study were derived from the Henan Rural Cohort.A detailed description of this cohort study was posted previously[6]and the brief introduction was provided in the supplementary material.A total of 38,258 individuals were finally included in this analysis, and the flow chart of the data processing procedure is shown in Supplementary Figure S1 (available in www.besjournal.com).The air pollutants exposure of an individual was evaluated by a 3-year annual mean concentration of 4 ambient air pollutants, listed as the nitrogen dioxide (NO2) and particulate matter with an aerodynamic diameter ≤ 1.0 μm,≤ 2.5 μm, ≤10.0 μm (PM1, PM2.5, PM10)[7].The definitions of T2DM are listed as follows: (1) FBG ≥ 7.0 mmol/L; (2)T2DM patient diagnosed by doctors previously and used anti-glycemic drugs or insulin in the past two weeks.A detailed description of the exposure,outcome and covariates assessment methods were placed in the supplementary material.

    In this study, we determined the 20 traditional variables and the air pollutants exposure-related variable as the candidate variables[2].After variable selection, the Gradient Boosting Machine (GBM) was applied to model construction with selected variables in the analysis.To explain the effect of air pollutants in T2DM risk assessment models, SHAP was employed to show the contribution of predictors as an additive feature attribution method.A detailed description of the model development was provided in the supplementary material.

    In order to calculate the mixture of air pollutants exposure, the quantile g-computation was employed in this analysis.The calculating equation of this method is shown below; detailed description of the formulas was placed in the supplemental material.

    When describing the characteristics of predictors, numbers (frequencies) were used for categorical variables and mean ± Standard Deviation was used for continuous variables.The chi-square test (or Fisher’s exact test) was used for comparisons between categorical variables, whereas thet-test was used for continuous variables.The area under the curve (AUC) of the receiver operating characteristic curve (ROC) was used to evaluate the discriminative performance and the brier score (BS)was employed for calibration evaluation.For the comparison of AUCs, DeLong test was used.It was considered statistically significant when a doubletailedPvalue was less than 0.05.Statistical tests were performed using R 3.6.2 and SPSS 21.0 (IBM,Chicago, USA).

    A total of 38,258 individuals were included in the analysis, and 3,564 T2DM patients were found in the overall study.Compared with the individuals with non-T2DM, those with T2DM tended to be older,fatter, and their heart rate as well as pulse pressure were higher than healthy individuals (P< 0.05).Detailed characteristics are shown in Supplementary Table S1 and Supplementary Table S2 (available in www.besjournal.com).Coefficients of the quantile gcomputation are shown in Supplementary Table S3(available in www.besjournal.com).After adjusting for covariates, there existed an association of air pollutants mixture with T2DM risk (odds ratio,OR1.22, 95%CI1.16–1.27).After stratifying the QGS by the tertiles, the subgroups all indicated this association in this analysis [OR1.30 (1.18, 1.43), 1.44(1.31, 1.59),P< 0.001], suggesting that higher exposure of air pollutants increased the prevalence risk of T2DM.The detailed information is shown in Table 1.The Principal Component Analysis and the air pollution score also indicated the tendency, and detailed information could be found in Supplementary Table S4 (available in www.besjournal.com).Although previous research confirmed the effects of long-term exposure to ambient air pollution on T2DM, the association of a mixture of air pollutants with T2DM prevalence was still unknown.Consistent with the results of previous studies[8], we employed three mixing approaches to validate that higher air pollutants exposure increased the risk of T2DM in this analysis.

    Table 1. Associations (ORs and 95% CI) of the mixture of ambient air pollutants with T2DM

    After the univariate logistic regression and collinearity diagnosis, nine variables (age, gender,family history of diabetes, more vegetable and fruit intake, physical activity, body mass index, waist-tohip ratio, pulse pressure, and heart rate) were finally chosen as traditional predictors.The GBM model contained air pollutants exposure got good discrimination (AUC 0.787) and acceptable calibration (brier score, BS 0.076), better than the traditional model (AUC 0.764, BS 0.079).The detailed information can be found in Table 2 and Supplementary Table S5 (available in www.besjournal.com).The results showed that air pollution posted as a hazardous factor for T2DM,while ambient air pollution can also improve the prediction performance of traditional models to some contents.

    Table 2. Comparison of the performance metrics with and without air pollutants

    The output of SHAP supplied an approach to explain the complex relationships in the GBM model.In Supplementary Figure S2 (available in www.besjournal.com), waist-to-hip ratio (WHR)ranked first in the SHAP value ranking (SHAP mean value 0.509).However, when adding air pollutants variable into the model, the air pollutants exposure ranked fifth (SHAP mean value 0.238),simultaneously altering the order of traditional predictors in Supplementary Figure S3, (available in www.besjournal.com).Additionally, the summary plot is chosen to indicate the effect direction between predictors and T2DM (Figure 1).Air pollutants exposure performed well in the plot with a long right tail, which indicated that a high concentration of ambient air pollution led to an increased prevalence risk of T2DM.Additionally, the asymmetric distribution of effect magnitudes that air pollutants exposure had on T2DM predicted cases demonstrated non-linear associations between air pollutants exposure and the risk of T2DM[9].The SHAP summary plot exceedingly provided vital evidence on the hazardous effect of air pollution,which was consistent with previous statistical analysis[8].SHAP proposed a rich visualization of feature contributions based on individuals, which indicated that air pollution elevated the risk of T2DM in an intricate way along with other features.The interaction plot was also employed to present the complex effects in the model.An interesting interaction effect can be found between age and air pollutants.In Supplementary Figure S4 (available in www.besjournal.com), a step-by-step increasing tendency was shown in individuals aging from 40 years to 60 years.However, when considering air pollutants exposure of different ages, elder individuals (age > 60) with higher air pollutants exposure seemed to be more dangerous, while younger individuals (age < 40) with higher air pollutants exposure had lower SHAP values (shown in Supplementary Figure S4).The participants aged 27–30 years drag down the SHAP value for nearly 0.2–0.3 points.Similar interaction effects were also observed in other variables (Supplementary Figure S5 and Supplementary Figure S6, available in www.besjournal.com).Wang et al.also employed the deep learning neural networks with SHAP to explain prediction for mental disorders[10].Consistent with that, the results of SHAP analysis visualized the complex interaction effects.

    Figure 1.Feature importance ranking of 9 variables in the model.This summary plot illustrated the entire distribution of impacts each feature has on the model output.WHR,waist-to-hip ratio.

    Previous studies have indicated the hazardous effect of air pollutants.However, no research had explored the role of air pollution in T2DM risk assessment to our best knowledge.Moreover,although SHAP with machine learning models was already applied to the air pollution research, the impacts of air pollution on T2DM were still unclear.To our knowledge, this is the first study that focuses on the effects of ambient air pollutants on T2DM resorting to SHAP.The GBM algorithm also accounts for the non-linear interactions which cannot be adequately modeled in statistical models, and the SHAP richly visualizes the interactions and feature contributions.However, limitations also exist in this study.We conducted this analysis in a crosssectional study with no follow-up data.Moreover,the biological mechanism needs to be further investigated.Future studies can focus on the etiology pathway of air pollutants-caused T2DM.

    In summary, the consideration of personal air pollution exposure elevated the identification performance of T2DM cases in the T2DM risk assessment model.Additionally, the explainable machine learning method (SHAP) also reveals the contributing effects of mixture of ambient air pollution as well as its interaction effects with tradition predictors such as age.The study demonstrates the significance of considering environmental pollution exposure as the risk factor,which facilitates the prevention and management of T2DM.The human health is influenced by the interaction between the environment and the individual’s condition, and it is therefore significant to further investigate the contribution of incorporating the personal environmental exposures in the risk assessment models which for the primary care physicians' ability to assess the risk of developing chronic diseases.

    No potential conflicts of interest were disclosed.

    The authors thank all of the participants,coordinators, and administrators for their support and help during the research.

    DING Zhong Ao took part in the investigation,methodology and writing of the original draft.ZHANG Li Ying took part in the investigation, data curation,formal analysis and writing of the code.LI Rui Ying, NIU Miao Miao, ZHAO Bo, DONG Xiao Kang, LIU Xiao Tian,HOU Jian and MAO Zhen Xing reviewed the manuscript.WANG Chong Jian took part in the conceptualization, methodology, investigation,validation, supervision, funding acquisition, project administration and review of the manuscript.

    &These authors contributed equally to this work.

    #Correspondence should be addressed to WANG Chong Jian, E-mail: tjwcj2008@zzu.edu.cn Tel: 86-371-67781452.

    Biographical notes of the first authors: DING Zhong Ao, male, born in 1999, Postgraduate, majoring in epidemiology and biostatistics; ZHANG Li Ying, female,born in 1988, PhD, Lecturer, majoring in machine learning and medical data mining.

    Received: November 3, 2022;Accepted: April 6, 2023

    亚洲国产看品久久| 热re99久久精品国产66热6| 中文字幕av电影在线播放| 中出人妻视频一区二区| 国产有黄有色有爽视频| av中文乱码字幕在线| 好看av亚洲va欧美ⅴa在| 国产片内射在线| 精品久久久久久电影网| 夜夜爽天天搞| 狠狠婷婷综合久久久久久88av| 国产成人系列免费观看| 91字幕亚洲| 亚洲精品国产区一区二| 在线十欧美十亚洲十日本专区| 淫妇啪啪啪对白视频| 久久午夜亚洲精品久久| 69av精品久久久久久| 精品人妻熟女毛片av久久网站| 自线自在国产av| 亚洲一区二区三区不卡视频| 老司机午夜福利在线观看视频| 精品福利永久在线观看| 亚洲久久久国产精品| 国产高清视频在线播放一区| 女人爽到高潮嗷嗷叫在线视频| 欧美国产精品一级二级三级| 午夜成年电影在线免费观看| 一区二区三区精品91| 亚洲片人在线观看| 飞空精品影院首页| 又黄又粗又硬又大视频| 一级毛片女人18水好多| 大片电影免费在线观看免费| 69精品国产乱码久久久| 中国美女看黄片| 国产成人精品在线电影| 亚洲精品粉嫩美女一区| 国产在线观看jvid| 热re99久久精品国产66热6| 国产免费男女视频| 人人澡人人妻人| 欧美黄色淫秽网站| 欧美日韩成人在线一区二区| 国产av精品麻豆| 黄色女人牲交| 搡老熟女国产l中国老女人| 欧美人与性动交α欧美精品济南到| 亚洲精品粉嫩美女一区| avwww免费| 国产深夜福利视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 精品第一国产精品| 精品欧美一区二区三区在线| 国产av精品麻豆| 男女床上黄色一级片免费看| 涩涩av久久男人的天堂| 九色亚洲精品在线播放| 看免费av毛片| 国产激情久久老熟女| 变态另类成人亚洲欧美熟女 | 女性被躁到高潮视频| av国产精品久久久久影院| 国产精品欧美亚洲77777| 亚洲欧美日韩高清在线视频| 亚洲综合色网址| 欧美日韩视频精品一区| 亚洲七黄色美女视频| 欧美激情极品国产一区二区三区| 亚洲片人在线观看| 日本五十路高清| 999精品在线视频| 午夜激情av网站| av电影中文网址| 精品国产乱子伦一区二区三区| 校园春色视频在线观看| 国产成人一区二区三区免费视频网站| 在线观看日韩欧美| 最近最新免费中文字幕在线| 欧美日韩乱码在线| 中文字幕另类日韩欧美亚洲嫩草| 男女免费视频国产| 男女床上黄色一级片免费看| 在线观看一区二区三区激情| 国产无遮挡羞羞视频在线观看| 国产精品一区二区精品视频观看| 99国产精品一区二区三区| 亚洲中文日韩欧美视频| 伦理电影免费视频| 欧美国产精品一级二级三级| 久久草成人影院| svipshipincom国产片| 国产aⅴ精品一区二区三区波| 黑人欧美特级aaaaaa片| 成人三级做爰电影| 大片电影免费在线观看免费| 久久久国产一区二区| 久久久久视频综合| 亚洲综合色网址| 色尼玛亚洲综合影院| 最新美女视频免费是黄的| 免费久久久久久久精品成人欧美视频| 一级作爱视频免费观看| 在线观看午夜福利视频| 久久99一区二区三区| 91成年电影在线观看| 十八禁网站免费在线| 亚洲av成人不卡在线观看播放网| 久久久久久免费高清国产稀缺| 精品国产亚洲在线| av中文乱码字幕在线| 国产精品99久久99久久久不卡| 亚洲欧美一区二区三区久久| 我的亚洲天堂| 9色porny在线观看| 在线播放国产精品三级| 国产精品欧美亚洲77777| 亚洲第一欧美日韩一区二区三区| 在线av久久热| 亚洲人成伊人成综合网2020| 黄片大片在线免费观看| 高清黄色对白视频在线免费看| 99精国产麻豆久久婷婷| 成年人免费黄色播放视频| 久久中文看片网| 国产蜜桃级精品一区二区三区 | 在线观看日韩欧美| 亚洲欧洲精品一区二区精品久久久| 在线十欧美十亚洲十日本专区| 亚洲精品国产区一区二| 亚洲片人在线观看| 国产不卡一卡二| 巨乳人妻的诱惑在线观看| 欧美精品高潮呻吟av久久| 日本五十路高清| 极品少妇高潮喷水抽搐| 99久久人妻综合| 少妇粗大呻吟视频| 亚洲精品在线美女| 天堂俺去俺来也www色官网| 久久国产精品影院| 亚洲色图av天堂| 999久久久国产精品视频| 在线观看www视频免费| 纯流量卡能插随身wifi吗| 日本五十路高清| www.999成人在线观看| 精品福利永久在线观看| 首页视频小说图片口味搜索| 我的亚洲天堂| 国产99白浆流出| 国产av一区二区精品久久| 亚洲一码二码三码区别大吗| 免费不卡黄色视频| √禁漫天堂资源中文www| 人妻丰满熟妇av一区二区三区 | 超碰成人久久| 免费日韩欧美在线观看| 亚洲va日本ⅴa欧美va伊人久久| 韩国av一区二区三区四区| 女人爽到高潮嗷嗷叫在线视频| 久久久久久免费高清国产稀缺| 亚洲少妇的诱惑av| 亚洲精品在线观看二区| av天堂在线播放| 91成人精品电影| 亚洲成人免费av在线播放| 欧美精品高潮呻吟av久久| 久久国产精品男人的天堂亚洲| 日韩 欧美 亚洲 中文字幕| 亚洲精品久久成人aⅴ小说| 两个人免费观看高清视频| 黄色女人牲交| 黄片小视频在线播放| 亚洲成av片中文字幕在线观看| 亚洲熟妇熟女久久| 女人久久www免费人成看片| 91成年电影在线观看| 叶爱在线成人免费视频播放| 91av网站免费观看| cao死你这个sao货| 中文字幕人妻熟女乱码| 老司机午夜十八禁免费视频| www.精华液| 淫妇啪啪啪对白视频| 亚洲一区二区三区不卡视频| 999精品在线视频| 午夜精品国产一区二区电影| 日韩制服丝袜自拍偷拍| 久久人人97超碰香蕉20202| 91字幕亚洲| 国产精品久久久av美女十八| 精品一品国产午夜福利视频| 亚洲第一青青草原| 亚洲av日韩精品久久久久久密| 性色av乱码一区二区三区2| 日韩大码丰满熟妇| av福利片在线| 操美女的视频在线观看| 美女扒开内裤让男人捅视频| 国精品久久久久久国模美| 亚洲自偷自拍图片 自拍| 一级黄色大片毛片| 亚洲伊人色综图| 久久精品国产a三级三级三级| 天天影视国产精品| 久久中文看片网| 国产精品av久久久久免费| 日本a在线网址| 人成视频在线观看免费观看| 国产精品久久视频播放| 波多野结衣一区麻豆| 国产国语露脸激情在线看| 免费不卡黄色视频| 午夜成年电影在线免费观看| 亚洲在线自拍视频| netflix在线观看网站| 手机成人av网站| 日本黄色视频三级网站网址 | 亚洲av第一区精品v没综合| 亚洲精品自拍成人| 日本一区二区免费在线视频| 久久精品国产99精品国产亚洲性色 | 国产精品自产拍在线观看55亚洲 | 在线国产一区二区在线| 美女国产高潮福利片在线看| 久久婷婷成人综合色麻豆| 国产高清视频在线播放一区| 99re在线观看精品视频| 黄片小视频在线播放| 国产亚洲精品久久久久5区| 18在线观看网站| 午夜精品久久久久久毛片777| 国产亚洲欧美98| 法律面前人人平等表现在哪些方面| 黄色a级毛片大全视频| 国产亚洲精品一区二区www | 91成年电影在线观看| 久久天躁狠狠躁夜夜2o2o| e午夜精品久久久久久久| 久久午夜综合久久蜜桃| 久久精品亚洲熟妇少妇任你| 国产99白浆流出| 欧美精品高潮呻吟av久久| 亚洲男人天堂网一区| 俄罗斯特黄特色一大片| 一边摸一边抽搐一进一小说 | 黑人巨大精品欧美一区二区mp4| 91字幕亚洲| 久久精品国产亚洲av香蕉五月 | 久久影院123| 91在线观看av| 在线观看66精品国产| 国产深夜福利视频在线观看| 亚洲成人国产一区在线观看| 国产一区二区三区在线臀色熟女 | 国产男女超爽视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 99久久99久久久精品蜜桃| 国产精品免费视频内射| 老熟女久久久| 啦啦啦 在线观看视频| 亚洲aⅴ乱码一区二区在线播放 | 黄色成人免费大全| 精品电影一区二区在线| 丁香欧美五月| 亚洲成av片中文字幕在线观看| 亚洲av第一区精品v没综合| e午夜精品久久久久久久| 搡老乐熟女国产| 国产激情欧美一区二区| 又黄又爽又免费观看的视频| 精品亚洲成a人片在线观看| 国产欧美日韩精品亚洲av| 极品教师在线免费播放| 色精品久久人妻99蜜桃| 久久这里只有精品19| 中文字幕最新亚洲高清| 中文字幕精品免费在线观看视频| 悠悠久久av| 国产一卡二卡三卡精品| 满18在线观看网站| 精品无人区乱码1区二区| 国产在线精品亚洲第一网站| 99国产精品一区二区三区| 欧美+亚洲+日韩+国产| 亚洲精品一二三| 久久久久久久久久久久大奶| 老司机午夜福利在线观看视频| 亚洲欧美一区二区三区久久| 动漫黄色视频在线观看| 日韩 欧美 亚洲 中文字幕| 亚洲av第一区精品v没综合| 国产av又大| 亚洲国产中文字幕在线视频| 99国产精品一区二区三区| 日本五十路高清| 在线天堂中文资源库| 久久国产精品大桥未久av| 香蕉国产在线看| 夫妻午夜视频| 搡老熟女国产l中国老女人| 97人妻天天添夜夜摸| 嫩草影视91久久| 亚洲,欧美精品.| cao死你这个sao货| 国产成人免费观看mmmm| 精品国内亚洲2022精品成人 | 悠悠久久av| 精品国产美女av久久久久小说| 亚洲九九香蕉| 美女 人体艺术 gogo| 精品一区二区三区av网在线观看| 美女国产高潮福利片在线看| videos熟女内射| 日韩熟女老妇一区二区性免费视频| 在线观看免费日韩欧美大片| 午夜成年电影在线免费观看| 亚洲一区二区三区不卡视频| 不卡一级毛片| 国产精品免费一区二区三区在线 | 18禁黄网站禁片午夜丰满| 狂野欧美激情性xxxx| 国产精品一区二区免费欧美| 97人妻天天添夜夜摸| 国产精品久久久av美女十八| 久久中文字幕一级| 18禁黄网站禁片午夜丰满| 亚洲 欧美一区二区三区| 丰满饥渴人妻一区二区三| 宅男免费午夜| 国产精华一区二区三区| 久久久久久久久免费视频了| 免费在线观看影片大全网站| 久久狼人影院| 久久人妻福利社区极品人妻图片| 99久久国产精品久久久| 一级毛片女人18水好多| 久久香蕉精品热| 国产高清激情床上av| 高清黄色对白视频在线免费看| 操美女的视频在线观看| 精品高清国产在线一区| 老司机靠b影院| 精品亚洲成a人片在线观看| 精品国产美女av久久久久小说| 99精国产麻豆久久婷婷| 久久久精品国产亚洲av高清涩受| 亚洲 欧美一区二区三区| 精品国产超薄肉色丝袜足j| 亚洲视频免费观看视频| 1024视频免费在线观看| 成人18禁在线播放| 九色亚洲精品在线播放| 亚洲片人在线观看| 母亲3免费完整高清在线观看| 久久久国产一区二区| 色婷婷久久久亚洲欧美| avwww免费| 母亲3免费完整高清在线观看| 欧美另类亚洲清纯唯美| 久久国产精品影院| 日本欧美视频一区| 国产精品久久视频播放| 久久热在线av| 久久久久久久国产电影| 中文字幕人妻丝袜一区二区| 国产色视频综合| 国产日韩一区二区三区精品不卡| 国产一卡二卡三卡精品| 成年人黄色毛片网站| 午夜成年电影在线免费观看| 成年版毛片免费区| 在线观看免费视频网站a站| cao死你这个sao货| 欧美另类亚洲清纯唯美| 成年版毛片免费区| av视频免费观看在线观看| 国产麻豆69| 黑人操中国人逼视频| 亚洲伊人色综图| 一二三四社区在线视频社区8| 后天国语完整版免费观看| 啦啦啦在线免费观看视频4| 自线自在国产av| 日韩欧美免费精品| 午夜成年电影在线免费观看| a级毛片黄视频| 一进一出好大好爽视频| 嫁个100分男人电影在线观看| av天堂久久9| 飞空精品影院首页| 亚洲人成77777在线视频| 少妇的丰满在线观看| 777久久人妻少妇嫩草av网站| 国产精品免费一区二区三区在线 | 久久草成人影院| 亚洲五月色婷婷综合| 亚洲精品国产精品久久久不卡| 国产97色在线日韩免费| 变态另类成人亚洲欧美熟女 | 欧美大码av| 午夜两性在线视频| 久久久久久久午夜电影 | 亚洲色图 男人天堂 中文字幕| 中文字幕av电影在线播放| 国产男靠女视频免费网站| 久久亚洲真实| 亚洲精品av麻豆狂野| 亚洲第一av免费看| 久久精品成人免费网站| 我的亚洲天堂| 嫩草影视91久久| 国产亚洲精品久久久久5区| 国产精品免费大片| 黑人巨大精品欧美一区二区mp4| 国产精品二区激情视频| 日本一区二区免费在线视频| av电影中文网址| 亚洲精品久久成人aⅴ小说| 18在线观看网站| 啦啦啦在线免费观看视频4| 极品少妇高潮喷水抽搐| 免费人成视频x8x8入口观看| av一本久久久久| 亚洲精品国产区一区二| 露出奶头的视频| 成熟少妇高潮喷水视频| 精品少妇一区二区三区视频日本电影| 91精品三级在线观看| 很黄的视频免费| 国产精品国产高清国产av | 成人三级做爰电影| 亚洲熟女毛片儿| 色94色欧美一区二区| 欧美成人免费av一区二区三区 | 99国产极品粉嫩在线观看| 精品国产乱码久久久久久男人| 久久久国产一区二区| 超碰97精品在线观看| 人人妻人人澡人人爽人人夜夜| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲熟妇中文字幕五十中出 | 久久久久国产精品人妻aⅴ院 | 久久久国产一区二区| 日本黄色视频三级网站网址 | 黄色a级毛片大全视频| 欧美日韩亚洲高清精品| 性色av乱码一区二区三区2| 夫妻午夜视频| 日韩成人在线观看一区二区三区| 欧美精品人与动牲交sv欧美| 欧美成人免费av一区二区三区 | 丝瓜视频免费看黄片| 天天添夜夜摸| 亚洲精品国产色婷婷电影| 国产高清视频在线播放一区| 亚洲五月天丁香| 无限看片的www在线观看| 午夜福利一区二区在线看| 国产精品秋霞免费鲁丝片| 欧美日韩精品网址| 国产午夜精品久久久久久| 久久久久视频综合| 黄网站色视频无遮挡免费观看| 午夜福利在线免费观看网站| 99久久综合精品五月天人人| 国产精品久久久久久精品古装| 叶爱在线成人免费视频播放| 成人影院久久| 亚洲av成人不卡在线观看播放网| 亚洲国产欧美一区二区综合| 国产1区2区3区精品| 欧美人与性动交α欧美精品济南到| 日韩免费高清中文字幕av| 18禁国产床啪视频网站| 色婷婷av一区二区三区视频| 亚洲欧美日韩另类电影网站| 国产精品.久久久| 高清av免费在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲av熟女| 欧美日韩国产mv在线观看视频| 女性生殖器流出的白浆| 9色porny在线观看| 欧美av亚洲av综合av国产av| 香蕉国产在线看| 欧美激情久久久久久爽电影 | 亚洲国产中文字幕在线视频| tube8黄色片| 亚洲人成电影免费在线| 九色亚洲精品在线播放| 99国产综合亚洲精品| 啦啦啦在线免费观看视频4| 一进一出好大好爽视频| 最新在线观看一区二区三区| 午夜视频精品福利| 又大又爽又粗| 亚洲国产精品合色在线| 成人免费观看视频高清| 伦理电影免费视频| 无遮挡黄片免费观看| 国产欧美日韩一区二区精品| 下体分泌物呈黄色| 国产一区二区三区在线臀色熟女 | svipshipincom国产片| 国产亚洲精品第一综合不卡| 欧美日韩视频精品一区| 变态另类成人亚洲欧美熟女 | 不卡av一区二区三区| 国产一区二区三区在线臀色熟女 | 亚洲精品国产色婷婷电影| 午夜福利视频在线观看免费| 日本一区二区免费在线视频| 亚洲熟女毛片儿| 国产精品久久久久久人妻精品电影| 亚洲国产欧美网| 成年人免费黄色播放视频| 精品第一国产精品| 一区福利在线观看| 精品久久久久久电影网| 少妇粗大呻吟视频| 国产精品偷伦视频观看了| 亚洲欧美日韩另类电影网站| 在线看a的网站| 搡老熟女国产l中国老女人| 女性生殖器流出的白浆| 成人18禁高潮啪啪吃奶动态图| 亚洲国产毛片av蜜桃av| 免费在线观看黄色视频的| 黄网站色视频无遮挡免费观看| 大型av网站在线播放| 韩国av一区二区三区四区| 在线天堂中文资源库| 欧美大码av| 亚洲精品久久成人aⅴ小说| 久久久久久亚洲精品国产蜜桃av| 悠悠久久av| 嫁个100分男人电影在线观看| 欧美精品亚洲一区二区| 51午夜福利影视在线观看| 亚洲av片天天在线观看| 欧美激情极品国产一区二区三区| 欧美久久黑人一区二区| 久久精品国产亚洲av香蕉五月 | 午夜精品国产一区二区电影| 黄片大片在线免费观看| 成年版毛片免费区| 亚洲国产精品一区二区三区在线| 国产亚洲精品一区二区www | 两个人看的免费小视频| 丰满的人妻完整版| svipshipincom国产片| 精品视频人人做人人爽| 精品久久蜜臀av无| 亚洲国产毛片av蜜桃av| 亚洲一区高清亚洲精品| 91成人精品电影| e午夜精品久久久久久久| 国产在线一区二区三区精| 18禁黄网站禁片午夜丰满| 欧美 日韩 精品 国产| 超色免费av| 亚洲欧美精品综合一区二区三区| cao死你这个sao货| 亚洲午夜精品一区,二区,三区| 51午夜福利影视在线观看| 91九色精品人成在线观看| 90打野战视频偷拍视频| 99国产精品99久久久久| 国产午夜精品久久久久久| 一级毛片女人18水好多| 日本精品一区二区三区蜜桃| 91大片在线观看| 亚洲精品一二三| 亚洲欧洲精品一区二区精品久久久| 一区二区日韩欧美中文字幕| 人妻久久中文字幕网| 欧美在线黄色| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产毛片av蜜桃av| 久久久久视频综合| 无遮挡黄片免费观看| 首页视频小说图片口味搜索| 村上凉子中文字幕在线| 亚洲免费av在线视频| 午夜影院日韩av| 在线av久久热| 天天影视国产精品| 精品午夜福利视频在线观看一区| 丁香欧美五月| av网站在线播放免费| 亚洲欧美色中文字幕在线| 女人被狂操c到高潮| 国产一区有黄有色的免费视频| 亚洲一区高清亚洲精品| tube8黄色片| 亚洲综合色网址| 在线观看免费视频网站a站| 国产精品 欧美亚洲| 另类亚洲欧美激情| 久久午夜综合久久蜜桃| 亚洲av美国av| 精品国产乱子伦一区二区三区| 老汉色av国产亚洲站长工具| 国产精品电影一区二区三区 | 成人18禁高潮啪啪吃奶动态图| 亚洲,欧美精品.| 精品久久久久久久久久免费视频 | 麻豆乱淫一区二区| 亚洲人成电影观看| 美女视频免费永久观看网站| 欧美日韩一级在线毛片| 韩国精品一区二区三区| 免费不卡黄色视频|