• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Correspondence:Wideband circular-polarized transmitarray for generating a high-purity vortex beam?

    2023-07-06 08:08:54LiangjieQIUXiupingLIZihangQIWenyuZHAOYuhanHUANG

    Liangjie QIU ,Xiuping LI ,Zihang QI ,Wenyu ZHAO ,Yuhan HUANG

    1State Key Laboratory of Information Photonics and Optical Communications,Beijing 100876,China

    2MOE Key Laboratory of Universal Wireless Communications,Beijing 100876,China

    3Beijing Key Laboratory of Work Safety Intelligent Monitoring,Beijing 100876,China

    4School of Electronic Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China

    5Beijing Institute of Spacecraft System Engineering,Beijing 100094,China

    In this correspondence,a wideband circularpolarized(CP)transmitarray(TA)in the Ka-band is presented for generating a high-purity vortex beam.The proposed element is composed of two identical combinations separated by an air layer.The subwavelength structure and double-resonance characteristics ensure the stable phase shift of the element within the 1-dB transmission bandwidth of 28.4%.A square aperture TA fed by a horn antenna is fabricated and measured.Owing to the honeycomb arrangement of elements,the mode purity ofl=?1 is >0.93 in a wide band from 28.5 to 38 GHz.The measured peak gain is 22.3 dBic,and the 3-dB axial ratio bandwidth is 27.6%.The performance of the proposed antenna demonstrates its potential for high-capacity wireless communication and highquality radar imaging.

    1 Introduction

    With the development of wireless communication,the demand for wider bandwidth and higher data rates has significantly increased.The vortex beam carrying orbital angular momentum (OAM)is helically distributed,and was first proved in the field of optics (Allen et al.,1992).Theoretically,different OAM modes are orthogonal to each other,which enables multichannel wireless communication(Tamburini et al.,2012;Yan et al.,2014) and highresolution radar imaging(Liu K et al.,2015;Liu HY et al.,2020).

    Various approaches for generating vortex beams in microwave fields have been reported,including the patch antenna,uniform circular array,metasurface,and so on.The OAM patch antenna operating in high-order mode is good at obtaining high-purity characteristics.Nevertheless,the single-feed patch antenna (Li et al.,2020) faces the shortcomings of low gain and narrow bandwidth,whereas the feed network of the multiple-feed patch(Huang YH et al.,2019)is complex.A uniform circular array is a conventional method for generating vortex beams.However,the limited space between the elements dramatically increases the complexity of the feed network,especially for high-purity vortex beams (Ma et al.,2021).In contrast to the above antennas,the OAM metasurface is fed by other source antennas and relies on adjusting the phase of each element.Thus,the metasurface has several advantages including simple feed and high degree of design freedom.

    The metasurface falls into two main classifications,i.e.,reflectarray(RA) and TA.In comparison to RA,the effect of feed-blockage is reduced in TA(Wu Z et al.,2005).So far,many TA elements have been proposed (Jiang et al.,2018;Ran et al.,2020;Veljovic and Skrivervik,2020;Zhang FH et al.,2020;Zhang XL et al.,2020;Shahmirzadi et al.,2021).In Ran et al.(2020),the 1-dB transmission bandwidth was 25%,but the high profile was not suitable for wireless communication systems.In Jiang et al.(2018),Zhang FH et al.(2020),and Zhang XL et al.(2020),the elements consisted of fewer dielectric layers,but the transmission loss was >1 dB within the operating band.In Veljovic and Skrivervik (2020)and Shahmirzadi et al.(2021),the element achieved a low profile and high transmission simultaneously,but the 1-dB transmission bandwidth was<7%and limited the TA’s bandwidth.

    To generate the desired vortex beam,the phase shift of the element should meet the 360?requirement.So far,there are two main phase modulation methods commonly used in TA elements,i.e.,the size-varying method (Akram MR et al.,2019) and the element rotation method(Zhang FH et al.,2019).The latter method is based on the Pancharatnam–Berry phase mechanism,which is also used to generate optical OAM beams (Wang et al.,2020;Wu YH et al.,2022).Notably,phase curve linearity is key to generating high-purity vortex beams.de Cos et al.(2011) revealed that the hexagonal element is smaller than the square element under the same operating bandwidth,and the phase linearity is also better.Huang YH et al.(2021) also verified this performance on size-varying elements.In addition,using the subwavelength element (Zhang FH et al.,2019)instead of the conventional half-wavelength or larger element (Bi et al.,2018;Lin et al.,2020;Wu GB et al.,2020) is beneficial for mode purity.In Huang HF and Li(2019),the period of elements was 0.38λ0(λ0is the free-space wavelength at the center frequency),and the mode purity achieved 0.93 at the center frequency.Unfortunately,although the element was quarter wavelength(Akram Z et al.,2019),the mode purity suffered a significant decrease from 0.96 at the center frequency to 0.72 at the edge of the operating band.So,maintaining high purity in a wide band is still challenging.

    The objective of this correspondence is to propose a wideband TA element for generating a highpurity vortex beam.The TA element achieves a good balance between the bandwidth and profile.The subwavelength elements are arranged in a honeycomb shape to provide more accurate phase compensation,thereby obtaining higher mode purity.As proof of the theoretical analysis,a CP TA in the Kaband is fabricated and measured.

    2 Wideband circular-polarized element design

    2.1 Element rotation principle

    The element rotation principle is based on the Pancharatnam–Berry phase mechanism.Assume that there is a left-handed circularly polarized(LHCP) wave traveling in the +z-direction illuminating the element,and that the CP transmission and reflection coefficients are expressed as(Xu et al.,2017;Akram MR et al.,2020)

    where“L” and“R” stand for LHCP and right-handed circularly polarized(RHCP)waves respectively,ψis the azimuthal rotation angle of the element,tLRis the transmission coefficient from the LHCP wave to the RHCP wave,rLLis the reflection coefficient from the LHCP wave to the LHCP wave,tLLis the transmission coefficient from the LHCP wave to the LHCP wave,andrLRis the reflection coefficient from the LHCP wave to the RHCP wave.Because there is a polarization conversion in the transmission process,the co-polarization of the transmitted wave is RHCP.As can be seen from Eq.(1),when rotating the element in the same direction,the phase oftLRis twice of the rotation angleψ.The expressions for the linearly transmitted and reflected waves in relation to the linear-polarized component of the incident wave can be described as

    wherexandyare linear polarizations,EtandErare the vectors representing the transmitted and reflected waves respectively,andEiis the vector of the incident wave.

    2.2 Configuration and performance

    The geometry of the TA element is shown in Fig.1.The TA element consists of two identical combinations separated by an air layer.A combined metal layer form comtains an X-shaped patch,a hexagonal patch etched cross slot,and a rectangular patch.All of the dielectric layers use F4BM220 (dielectric constantεr=2.2,loss tangent tanδ=0.001)with a thickness ofH2=0.5 mm.The period of the element is 3.6 mm (corresponding to 0.40λ0,whereλ0is the free-space wavelength at 33.5 GHz).To achieve a wide band and a phase shift curve with good linearity,the influence of structure parameters on the transmission coefficient is investigated,as shown in Fig.2.Finally,the angleθof the Xshaped patch is 35?.Other detailed parameters are set as follows(unit: mm):L1=2.5,L2=2.5,L3=2.9,L4=2.7,W1=0.7,W2=1.5,H1=0.5.In addition,the proposed element has a relatively low profile and the total thickness of the element is only 2.5 mm(corresponding to 0.28λ0).

    Fig.1 Geometry of the proposed transmitarray(TA)element: (a) exploded view;(b) front view;(c) top view of the X-shaped patch;(d)top view of the hexagonal patch;(e)top view of the rectangular patch.Yellow denotes the dielectric layers and orange denotes the metal layers.References to color refer to the online version of this figure

    Fig.2 Magnitude and phase of co-polarized transmission coefficients versus frequency and rotation angle with different θ (a,d), L1 (b,e),and L4 (c,f)

    The magnitudes of transmission and reflection coefficients are shown in Fig.3.It can be seen that the magnitude oftLRis maintained above?1 dB from 29 to 38.5 GHz.Within this frequency range,the magnitude of the cross-polarized transmission coefficient is below?15 dB,indicating the high purity of the handedness-preserved CP transmission.Moreover,the magnitude of the reflection coefficient is below?10 dB,which avoids a high back lobe level.Based on these results and the comparison from Table 1,it follows that the proposed element achieves a good balance between low profile and wide band.

    Table 1 Comparison with other reported transmitarray(TA) elements based on the element rotation principle

    Fig.3 Magnitude of transmission and reflection coefficients versus frequency under the normal incidence

    The stability of the transmitted phase shift is also an important index and affects the phase compensation accuracy of TA.From Fig.4a,a full 360?phase range can be covered in a wide band,and the magnitude of the co-polarized transmission coeffi-cient is simultaneously higher than?1 dB.In addition,when the rotation angle is gradually increased from 0?to 180?with an interval of 30?,the corresponding transmission phase responses are approximately double of the rotation angles,which agrees with the aforementioned theory.As shown in Fig.4b,when the oblique incidence angle is <30?,the phase curve is almost linear and the high transmission is maintained in the rotation process.Comparing Fig.4a with Fig.4c,the phase linearity of the honeycomb element is significantly better than that of the square element.

    Fig.4 Magnitude and phase of co-polarized transmission coefficient versus rotation angle of the element at different frequencies: (a)under normal incidence;(b) oblique incidence angle=30?;(c) under normal incidence

    3 Vortex beam transmitarray design

    Based on the phase characteristics of a vortex beam carrying OAM(Allen et al.,1992),the required phase shiftΨmnof each element for the desired beam can be determined as

    wherek0is the wave number in the free space corresponding to the operating frequency,rmnis the position vector of the element on themthrow andnthcolumn,rfis the vector from the phase center of the feed to the TA’s center,uis the direction vector of the desired beam,lrepresents the OAM mode,and (Xmn,Ymn)is the coordinate of the element on themthrow andnthcolumn on the beam’s normal plane.

    The influence of the arrangement method on OAM mode purity is analyzed.Based on the phase compensation in Eq.(5),two square aperture TAs arranged in square and honeycomb shapes are designed separately.The OAM mode purity is calculated using the numerical Fourier transform of the aperture phase function.The relationship between the OAM spectrumAlnand the sampling phaseΨ(ψ) is given by Yao et al.(2006)as follows:

    As shown in Fig.5 and Table 2,when the effective radiation areas are both 10λ0×10λ0and the periods of the elements are both 0.4λ0,the honeycomb TA can accommodate more elements compared with the square TA.Moreover,the phase linearity of the honeycomb elements is better.Thus,the phase compensation accuracy is improved and higher mode purity is obtained.

    Table 2 Comparison with other transmitarrays (TAs) based on different arrangement methods

    Fig.5 Schematic of transmitarray (TA) using different arrangement methods: (a)honeycomb;(b)square

    Therefore,the honeycomb arrangement method is chosen.The effective radiation area of the honeycomb TA is 90 mm×90 mm.An LHCP horn antenna with a maximum gain of 15.2 dBic is used as a feeding source.The radiation pattern of the horn is approximately represented as a cosqf(θ) function (feed pattern factorqf=13.5),and the axial ratio is<3 dB in the whole Ka-band.To achieve a good trade-offbetween the spillover loss and the amplitude tapering across the TA,theF/D(focal-diameter ratio)is set as 1.0.Consequently,the maximum oblique incidence angle is 26.6?,and the proposed TA elements can be applied.The phase distribution forl=?1 is shown in Fig.6a.

    Fig.6 Phase distribution of transmitarray (TA) (a)and configuration of the planar near-field measurement system (b)

    4 Results and discussion

    A TA for generating a vortex beam is simulated,fabricated,and measured by a planar near-field measurement system (Fig.6b).A 90 mm×90 mm scanning plane is set 300 mm away from the TA with a measuring step of 5 mm.The simulation and measurement results in the near field are provided in Fig.7.It is clear that the electric field (E-field)phase is a standard anticlockwise spiral withl=?1,and the magnitude has a central hole from 28.5 to 38 GHz.Moreover,as depicted in Fig.8,the OAM mode purity ofl=?1 is >0.93 in the range of 28.5–38 GHz,and is still high at the edge of the operating band,which illustrates the good quality of the generated vortex beam.In other words,the mode purity bandwidth is 28.4%.

    Fig.7 Results of E-field phase and magnitude distributions in the near field for l=?1 at different frequencies: (a) simulated phase;(b) simulated magnitude;(c) measured phase;(d) measured magnitude

    Fig.8 Mode purity of the vortex beam versus frequency (OAM: orbital angular momentum)

    The results of gain and axial ratio are plotted in Fig.9.The measured peak gain of the proposed antenna is 22.3 dBic at 37.5 GHz and the 1-dB gain bandwidth is 17.1%.The 3-dB axial ratio bandwidth is 27.6% from 28 to 37 GHz.A slight discrepancy between the simulation and measurement results is mainly due to the increase in the air gap between the dielectric layers caused by the fabrication tolerance.

    Fig.9 Simulation and measurement results of gain and axial ratio (AR)

    The structural characteristics and performance of different OAM antennas are listed in Table 3.Compared with Bi et al.(2018),Lin et al.(2020),and Wu GB et al.(2020),the proposed TA using subwavelength elements achieves more accurate phase compensation and higher mode purity.Although the size of elements used in Zhang FH et al.(2019)is smaller,the proposed element arranged in the honeycomb shape shows more stable performance at the edge of the operating band.For this reason,the proposed TA has a wider bandwidth and higher mode purity compared with the antennas in Zhang FH et al.(2019).

    Table 3 Comparison with other reported orbital angular momentum (OAM) antennas

    5 Conclusions

    This correspondence describes a wideband element and a TA for generating a high-purity vortex beam.As validated by fabrication and measurement,the radiated beam maintains typical vortex characteristics in a wide band from 28.5 to 38 GHz.Specifically,OAM mode purity is>0.93 within 28.4%mode purity bandwidth.Due to the wideband and high purity properties,the proposed TA antenna will find several applications,such as large-capacity wireless communication and high-quality radar imaging.

    Contributors

    Liangjie QIU designed the research and performed the simulations.Liangjie QIU,Zihang QI,and Yuhan HUANG processed the data.Liangjie QIU drafted the paper.Xiuping LI and Wenyu ZHAO helped organize the paper.Liangjie QIU,Xiuping LI,Zihang QI,and Wenyu ZHAO revised and finalized the paper.

    Acknowledgements

    The authors would like to thank the Beijing Engineering Research Center of Electro Magnetic Compatibility (EMC)and Antenna Test Technology for the measurement support.

    Compliance with ethics guidelines

    Liangjie QIU,Xiuping LI,Zihang QI,Wenyu ZHAO,and Yuhan HUANG declare that they have no conflict of interest.

    Data availability

    The data that support the findings of this study are available from the corresponding author upon reasonable request.

    少妇裸体淫交视频免费看高清| 午夜精品国产一区二区电影| 亚洲无线观看免费| 亚洲精品,欧美精品| 免费久久久久久久精品成人欧美视频 | 又大又黄又爽视频免费| 欧美日韩视频高清一区二区三区二| 久久久久精品性色| 秋霞伦理黄片| 日韩人妻高清精品专区| 久久ye,这里只有精品| 久久久久精品性色| 久久毛片免费看一区二区三区| 我的老师免费观看完整版| av免费在线看不卡| 欧美成人一区二区免费高清观看| 老师上课跳d突然被开到最大视频| 伦理电影大哥的女人| av国产免费在线观看| 一级毛片久久久久久久久女| 国产精品一二三区在线看| 人人妻人人看人人澡| 在线观看av片永久免费下载| 国产精品爽爽va在线观看网站| 黄色视频在线播放观看不卡| 另类亚洲欧美激情| 欧美亚洲 丝袜 人妻 在线| 精品久久久久久久久av| 秋霞在线观看毛片| 蜜桃在线观看..| 亚洲精品aⅴ在线观看| 日韩三级伦理在线观看| 亚洲精品日本国产第一区| 老司机影院成人| 久热久热在线精品观看| 三级经典国产精品| 菩萨蛮人人尽说江南好唐韦庄| 女人十人毛片免费观看3o分钟| 国产精品久久久久久精品古装| 亚洲精品一二三| 男人舔奶头视频| 国产成人精品婷婷| 97精品久久久久久久久久精品| 成人综合一区亚洲| 午夜福利高清视频| 成人特级av手机在线观看| 国产成人aa在线观看| 男人添女人高潮全过程视频| 亚洲一区二区三区欧美精品| 久久99热这里只频精品6学生| 蜜桃亚洲精品一区二区三区| 久久久久国产网址| 国产成人免费观看mmmm| 毛片女人毛片| 国产在线男女| 欧美日韩在线观看h| 久久ye,这里只有精品| 少妇熟女欧美另类| 日韩成人伦理影院| av在线观看视频网站免费| 我要看日韩黄色一级片| 中文字幕亚洲精品专区| 久久久久久久久久人人人人人人| 中文精品一卡2卡3卡4更新| 国产精品熟女久久久久浪| 国产一区有黄有色的免费视频| 肉色欧美久久久久久久蜜桃| 精品久久久久久久久av| 欧美丝袜亚洲另类| 国产成人freesex在线| 成人黄色视频免费在线看| 亚洲欧美日韩卡通动漫| 中文字幕人妻熟人妻熟丝袜美| 欧美区成人在线视频| 99热网站在线观看| 国产精品久久久久成人av| 亚洲第一av免费看| 亚洲一区二区三区欧美精品| 久久青草综合色| 香蕉精品网在线| 国产在线免费精品| 国产精品一及| 下体分泌物呈黄色| 久久久久久久久久成人| 亚洲综合色惰| 国产美女午夜福利| 国产探花极品一区二区| 色吧在线观看| 97精品久久久久久久久久精品| 亚洲欧美成人精品一区二区| 亚洲美女黄色视频免费看| 视频中文字幕在线观看| 亚洲美女搞黄在线观看| 亚洲欧美一区二区三区黑人 | 大香蕉97超碰在线| 久久亚洲国产成人精品v| 国产精品福利在线免费观看| 国产高清有码在线观看视频| 免费黄网站久久成人精品| 亚洲经典国产精华液单| av又黄又爽大尺度在线免费看| 女性被躁到高潮视频| 成人午夜精彩视频在线观看| 免费观看a级毛片全部| 亚洲欧美日韩卡通动漫| 精品一区二区三卡| 亚洲精品,欧美精品| 亚洲精品久久午夜乱码| 国产久久久一区二区三区| 人体艺术视频欧美日本| 黑人猛操日本美女一级片| 韩国av在线不卡| 91狼人影院| 免费观看a级毛片全部| 天天躁日日操中文字幕| 国产日韩欧美在线精品| 国产精品无大码| 卡戴珊不雅视频在线播放| 精品亚洲乱码少妇综合久久| 国内少妇人妻偷人精品xxx网站| 国产精品精品国产色婷婷| 亚洲精品456在线播放app| 国产精品一区二区三区四区免费观看| 亚洲精品色激情综合| av女优亚洲男人天堂| 亚洲精品一二三| 观看av在线不卡| 亚洲,一卡二卡三卡| 亚洲国产精品国产精品| 天天躁夜夜躁狠狠久久av| 一级二级三级毛片免费看| 三级国产精品片| 日韩,欧美,国产一区二区三区| 亚洲怡红院男人天堂| 国内精品宾馆在线| 亚洲欧美成人精品一区二区| 我的女老师完整版在线观看| 麻豆乱淫一区二区| 欧美日韩综合久久久久久| 777米奇影视久久| 少妇熟女欧美另类| 在线天堂最新版资源| 亚洲国产欧美人成| 中文字幕制服av| 亚洲成人av在线免费| 又粗又硬又长又爽又黄的视频| 水蜜桃什么品种好| 国产成人精品福利久久| 2018国产大陆天天弄谢| 精品99又大又爽又粗少妇毛片| 在线天堂最新版资源| 色哟哟·www| 久久99热6这里只有精品| 伦理电影大哥的女人| xxx大片免费视频| 久久精品国产亚洲网站| 国产精品久久久久久久电影| 人人妻人人添人人爽欧美一区卜 | 欧美精品一区二区免费开放| 好男人视频免费观看在线| 日韩电影二区| 国产午夜精品久久久久久一区二区三区| 日本av手机在线免费观看| 亚洲精品一区蜜桃| freevideosex欧美| 中文字幕精品免费在线观看视频 | 久久国产亚洲av麻豆专区| 国产色爽女视频免费观看| 亚洲精品日韩在线中文字幕| 欧美日韩国产mv在线观看视频 | 高清不卡的av网站| 人妻 亚洲 视频| 欧美日韩精品成人综合77777| 亚洲精品成人av观看孕妇| 熟女av电影| 精品国产三级普通话版| 日韩 亚洲 欧美在线| 99国产精品免费福利视频| 久久久久久伊人网av| 最近的中文字幕免费完整| 欧美激情极品国产一区二区三区 | 熟女av电影| 国产伦精品一区二区三区视频9| 中文乱码字字幕精品一区二区三区| 国产在线男女| 国产成人免费观看mmmm| 国产v大片淫在线免费观看| 国产av码专区亚洲av| 伦理电影免费视频| 观看免费一级毛片| av免费观看日本| 夜夜骑夜夜射夜夜干| 久久亚洲国产成人精品v| 草草在线视频免费看| 简卡轻食公司| av福利片在线观看| 一级毛片久久久久久久久女| 在线观看免费视频网站a站| 国产 一区精品| 欧美xxxx黑人xx丫x性爽| a级一级毛片免费在线观看| 男女下面进入的视频免费午夜| av女优亚洲男人天堂| 亚洲最大成人中文| 男女边吃奶边做爰视频| 伊人久久国产一区二区| 亚洲精品乱码久久久久久按摩| 高清不卡的av网站| 成人午夜精彩视频在线观看| 十分钟在线观看高清视频www | 久久久久久人妻| 边亲边吃奶的免费视频| 能在线免费看毛片的网站| 人人妻人人看人人澡| 国产成人91sexporn| 亚洲精品成人av观看孕妇| 国产高清不卡午夜福利| 国产综合精华液| 国产一区有黄有色的免费视频| 91aial.com中文字幕在线观看| 性色avwww在线观看| 尾随美女入室| 国产成人精品婷婷| 老熟女久久久| 亚洲欧美日韩无卡精品| 国产黄色视频一区二区在线观看| 国产精品.久久久| 一级a做视频免费观看| 欧美极品一区二区三区四区| 街头女战士在线观看网站| 亚洲四区av| 内射极品少妇av片p| 精品午夜福利在线看| 国产精品蜜桃在线观看| 蜜臀久久99精品久久宅男| 一级毛片我不卡| 亚洲国产精品999| 色吧在线观看| 国产深夜福利视频在线观看| av在线观看视频网站免费| 国产精品久久久久成人av| 国产一区二区三区综合在线观看 | 日韩国内少妇激情av| 九色成人免费人妻av| 亚洲图色成人| 最黄视频免费看| 精品人妻熟女av久视频| 大话2 男鬼变身卡| 亚洲精品国产av成人精品| 一个人看视频在线观看www免费| 午夜激情久久久久久久| 久久久a久久爽久久v久久| 观看av在线不卡| 狂野欧美白嫩少妇大欣赏| 99视频精品全部免费 在线| 天美传媒精品一区二区| 久久精品熟女亚洲av麻豆精品| 日韩精品有码人妻一区| 免费看日本二区| 午夜福利网站1000一区二区三区| 午夜福利影视在线免费观看| 久久久久国产网址| 天美传媒精品一区二区| 国产毛片在线视频| 激情五月婷婷亚洲| 国产伦精品一区二区三区四那| 菩萨蛮人人尽说江南好唐韦庄| 热re99久久精品国产66热6| 国产精品一区二区性色av| 亚洲成人手机| 黄色一级大片看看| 国产精品爽爽va在线观看网站| 国产高清三级在线| 日日撸夜夜添| 在线亚洲精品国产二区图片欧美 | 国产成人精品久久久久久| 国产高清有码在线观看视频| 内射极品少妇av片p| 多毛熟女@视频| tube8黄色片| 精品国产三级普通话版| 极品教师在线视频| 国产一区二区三区av在线| 精品人妻熟女av久视频| 交换朋友夫妻互换小说| 中文乱码字字幕精品一区二区三区| 夫妻性生交免费视频一级片| 美女福利国产在线 | 亚洲欧洲日产国产| 夜夜爽夜夜爽视频| 大码成人一级视频| 国产成人精品一,二区| 最新中文字幕久久久久| 在线亚洲精品国产二区图片欧美 | 中文天堂在线官网| av女优亚洲男人天堂| 日本免费在线观看一区| 国产在视频线精品| 黑丝袜美女国产一区| 天美传媒精品一区二区| 亚洲在久久综合| 欧美另类一区| 日韩一区二区视频免费看| 七月丁香在线播放| 伊人久久国产一区二区| 国产成人91sexporn| 久久久久久久大尺度免费视频| 久久久午夜欧美精品| 亚洲av免费高清在线观看| 三级经典国产精品| 嫩草影院入口| av福利片在线观看| 97热精品久久久久久| 黄色一级大片看看| 91精品国产国语对白视频| 在线精品无人区一区二区三 | 精品酒店卫生间| 青青草视频在线视频观看| 国产在线男女| 91久久精品国产一区二区三区| 欧美一级a爱片免费观看看| 亚洲av.av天堂| 丝瓜视频免费看黄片| 精华霜和精华液先用哪个| 秋霞在线观看毛片| av在线观看视频网站免费| 亚洲人与动物交配视频| 91午夜精品亚洲一区二区三区| 亚洲av免费高清在线观看| 人体艺术视频欧美日本| 国语对白做爰xxxⅹ性视频网站| 大香蕉久久网| 高清不卡的av网站| 国产黄片美女视频| 国模一区二区三区四区视频| 插逼视频在线观看| 夜夜骑夜夜射夜夜干| 欧美日韩综合久久久久久| 男男h啪啪无遮挡| 午夜福利在线观看免费完整高清在| av在线播放精品| 内射极品少妇av片p| 18禁在线播放成人免费| 精品少妇黑人巨大在线播放| 精品少妇久久久久久888优播| 亚洲无线观看免费| 天美传媒精品一区二区| www.av在线官网国产| 午夜免费鲁丝| 人妻制服诱惑在线中文字幕| 少妇猛男粗大的猛烈进出视频| 久久精品国产亚洲av涩爱| 欧美性感艳星| 亚洲精华国产精华液的使用体验| 深爱激情五月婷婷| 99国产精品免费福利视频| 一级毛片久久久久久久久女| 国产精品99久久久久久久久| 亚洲色图综合在线观看| 国产精品一区二区三区四区免费观看| 亚洲成人手机| 国产有黄有色有爽视频| 2021少妇久久久久久久久久久| 全区人妻精品视频| 亚洲av免费高清在线观看| 亚洲国产高清在线一区二区三| 亚洲精品国产av成人精品| 夜夜看夜夜爽夜夜摸| 日韩欧美精品免费久久| 欧美日韩一区二区视频在线观看视频在线| 男人和女人高潮做爰伦理| 永久网站在线| 男人爽女人下面视频在线观看| 我的老师免费观看完整版| 中文乱码字字幕精品一区二区三区| 男女免费视频国产| 亚洲欧美中文字幕日韩二区| 国产永久视频网站| 亚洲av免费高清在线观看| 男女免费视频国产| 熟女人妻精品中文字幕| 国内少妇人妻偷人精品xxx网站| 国产精品99久久99久久久不卡 | 精品国产露脸久久av麻豆| 午夜福利影视在线免费观看| 两个人的视频大全免费| 97精品久久久久久久久久精品| 亚洲av国产av综合av卡| 色视频www国产| 亚洲美女黄色视频免费看| 91精品国产九色| 欧美日韩精品成人综合77777| 18禁动态无遮挡网站| 看非洲黑人一级黄片| 一级av片app| 日本色播在线视频| 亚洲美女搞黄在线观看| 一本色道久久久久久精品综合| 在线观看一区二区三区激情| 2018国产大陆天天弄谢| 91精品一卡2卡3卡4卡| 青青草视频在线视频观看| 国产一区二区三区综合在线观看 | 三级国产精品欧美在线观看| 国产精品一区www在线观看| 国产爱豆传媒在线观看| 99热6这里只有精品| av播播在线观看一区| 国产精品伦人一区二区| 久久精品久久久久久噜噜老黄| 国产在线一区二区三区精| 久久久久久久久大av| 丝袜喷水一区| 夫妻午夜视频| 欧美激情国产日韩精品一区| 嫩草影院入口| 男女免费视频国产| 免费在线观看成人毛片| 3wmmmm亚洲av在线观看| 乱码一卡2卡4卡精品| 亚洲av福利一区| 久久久精品免费免费高清| 一级毛片电影观看| 不卡视频在线观看欧美| 丰满少妇做爰视频| 三级国产精品欧美在线观看| 日韩一区二区三区影片| 在线观看一区二区三区| 中文在线观看免费www的网站| 国产精品人妻久久久影院| 久久这里有精品视频免费| 日韩强制内射视频| 人妻制服诱惑在线中文字幕| 国语对白做爰xxxⅹ性视频网站| 三级国产精品欧美在线观看| 久久久久性生活片| 26uuu在线亚洲综合色| 久久精品国产a三级三级三级| 各种免费的搞黄视频| 久久这里有精品视频免费| 一级二级三级毛片免费看| 黄色配什么色好看| 中文字幕精品免费在线观看视频 | 中文字幕制服av| 亚洲av男天堂| 久久婷婷青草| 日本av手机在线免费观看| 一个人看的www免费观看视频| 美女cb高潮喷水在线观看| 天天躁夜夜躁狠狠久久av| 妹子高潮喷水视频| 草草在线视频免费看| 在线观看一区二区三区激情| 国产精品一区二区在线不卡| 国产精品一区二区三区四区免费观看| 中文字幕精品免费在线观看视频 | 国产精品久久久久久久久免| 99热国产这里只有精品6| 新久久久久国产一级毛片| 国产精品免费大片| 欧美激情国产日韩精品一区| 日韩欧美精品免费久久| 天天躁夜夜躁狠狠久久av| 国产无遮挡羞羞视频在线观看| 在线观看一区二区三区| 夜夜爽夜夜爽视频| 国产综合精华液| av福利片在线观看| 人妻少妇偷人精品九色| 91aial.com中文字幕在线观看| av线在线观看网站| 国产精品三级大全| 九草在线视频观看| 色婷婷久久久亚洲欧美| 日本与韩国留学比较| 九九爱精品视频在线观看| 亚洲国产欧美在线一区| 中国美白少妇内射xxxbb| 久久韩国三级中文字幕| 寂寞人妻少妇视频99o| 在线免费观看不下载黄p国产| 观看av在线不卡| 最近最新中文字幕大全电影3| 欧美国产精品一级二级三级 | 黄片wwwwww| 老女人水多毛片| 亚洲精品国产成人久久av| 欧美激情极品国产一区二区三区 | 免费人妻精品一区二区三区视频| 亚洲不卡免费看| 一边亲一边摸免费视频| 国产探花极品一区二区| 2021少妇久久久久久久久久久| 国产精品国产三级专区第一集| 午夜精品国产一区二区电影| 一级片'在线观看视频| 亚洲久久久国产精品| 国语对白做爰xxxⅹ性视频网站| 男女啪啪激烈高潮av片| 中文字幕亚洲精品专区| 国产亚洲欧美精品永久| 久久鲁丝午夜福利片| 国产在视频线精品| 在线观看免费日韩欧美大片 | 久久久久久久大尺度免费视频| 各种免费的搞黄视频| 久久亚洲国产成人精品v| 亚洲婷婷狠狠爱综合网| 亚洲精品自拍成人| 直男gayav资源| 国产精品免费大片| 国产精品一区二区三区四区免费观看| 国产片特级美女逼逼视频| 亚洲熟女精品中文字幕| 欧美一级a爱片免费观看看| 国产综合精华液| 高清午夜精品一区二区三区| 久久99热6这里只有精品| 99热网站在线观看| 中国美白少妇内射xxxbb| 午夜老司机福利剧场| 这个男人来自地球电影免费观看 | 亚洲精品久久午夜乱码| 亚洲色图av天堂| 欧美成人一区二区免费高清观看| 国产大屁股一区二区在线视频| 激情五月婷婷亚洲| av天堂中文字幕网| 99热6这里只有精品| 日韩制服骚丝袜av| 日韩在线高清观看一区二区三区| 午夜老司机福利剧场| 蜜臀久久99精品久久宅男| av在线app专区| 国产视频首页在线观看| 夫妻性生交免费视频一级片| 久久人人爽人人片av| 亚洲综合色惰| 国产伦理片在线播放av一区| 美女福利国产在线 | 大香蕉97超碰在线| 哪个播放器可以免费观看大片| 日本欧美视频一区| 国精品久久久久久国模美| 国产女主播在线喷水免费视频网站| 国产精品久久久久久久久免| 2018国产大陆天天弄谢| 国产精品.久久久| 最近2019中文字幕mv第一页| 国产精品av视频在线免费观看| 久久久精品免费免费高清| 大片免费播放器 马上看| 国产黄色免费在线视频| 最近最新中文字幕大全电影3| 免费大片18禁| 国产精品一区二区性色av| 性色av一级| 爱豆传媒免费全集在线观看| 国产成人freesex在线| 麻豆成人午夜福利视频| 亚洲美女视频黄频| 欧美高清成人免费视频www| 一级毛片我不卡| 91aial.com中文字幕在线观看| 精品久久久噜噜| 日日摸夜夜添夜夜爱| 22中文网久久字幕| 高清在线视频一区二区三区| 久久综合国产亚洲精品| 我的老师免费观看完整版| 成年av动漫网址| 丰满乱子伦码专区| 国产高清不卡午夜福利| 欧美丝袜亚洲另类| 自拍欧美九色日韩亚洲蝌蚪91 | 日本wwww免费看| 18+在线观看网站| 我要看黄色一级片免费的| 欧美日韩视频精品一区| h视频一区二区三区| 美女内射精品一级片tv| 国产精品成人在线| 男女无遮挡免费网站观看| 大片免费播放器 马上看| 久久99精品国语久久久| 亚洲av成人精品一区久久| av在线播放精品| 亚洲一区二区三区欧美精品| 丝袜喷水一区| 久久6这里有精品| 午夜日本视频在线| 亚洲av成人精品一区久久| 啦啦啦视频在线资源免费观看| 91午夜精品亚洲一区二区三区| videos熟女内射| 人人妻人人添人人爽欧美一区卜 | 亚洲欧美清纯卡通| 3wmmmm亚洲av在线观看| 国产又色又爽无遮挡免| 大香蕉97超碰在线| 亚洲欧美成人综合另类久久久| 日韩成人伦理影院| 精品一区二区三区视频在线| www.色视频.com| 伊人久久精品亚洲午夜| 少妇人妻精品综合一区二区| 国产欧美另类精品又又久久亚洲欧美| 色综合色国产| a级毛色黄片| 日韩av免费高清视频| 久久国产精品大桥未久av | 亚洲欧美日韩东京热| 少妇人妻精品综合一区二区| 国产一区亚洲一区在线观看| 成人亚洲精品一区在线观看 |