• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pyrrole and Pyrimidine Derivatives as Possible Electron Donors for Colored Charge-Transfer Complexes with a Weakly Electrophilic Energetic Material, FOX-7: A Theoretical Study

    2023-06-13 10:17:54SergeyBondarchuk
    火炸藥學報 2023年5期

    Sergey V.Bondarchuk

    (Department of Chemistry and Nanomaterials Science, Bogdan Khmelnitsky Cherkasy National University, blvd.Shevchenko 81, 18031 Cherkasy, Ukraine)

    Abstract:A number of electron-rich heterocycles are studied as potential reagents for visual colorimetric detection of FOX-7 due to colored charge-transfer complexes formation.The obtained results suggest that pyrrole and pyrimidine derivatives can form such complexes playing the role of electron donors despite a low electrophilicity of FOX-7.Density functional theory calculations, as well as quantum theory of atoms in molecules analysis, suggest stacking binding mode as the most preferable one with the binding energy of about 21—36 kJ/mol.All the complexes demonstrate a clear single charge-transfer absorption band in the visible region and the expected colors of the complexes are varying from violet and blue to red and orange.The calculations of the crystalline state of the studied complexes indicate high lattice energies, which are higher than that of pure FOX-7 and are close to the recently reported hydrogen-bonded complex of FOX-7 with 1,10-phenanthroline.Additional analysis of the studied charge-transfer complexes using properties based on density difference grids clearly suggests the acceptor role of FOX-7 in the complexes.This analysis can be effectively applied to identify the nature of other possible complexes of FOX-7, in which its role is unclear because of the specific reactivity, namely, both weak electrophilic and nucleophilic properties at the same time.

    Keywords:FOX-7;charge-transfer; colorimetric analysis; detection of explosives; quantum-chemical calculation

    Introduction

    Scheme 1 Some resonance and tautomeric forms of FOX-7

    Due to such unusual chemical reactivity, the analytical detection of FOX-7 is another challenge.To the best our knowledge, there are no reagents for visual colorimetric on-site detection of FOX-7, unlike nitroaromatics[13-15].Some efforts are done in the area of photoluminescent detection.Thus, a distinct color change of the lanthanide coordination polymer nanosheets in the presence of FOX-7 from red(bis-terpyridine·Eu)and green(bis-terpyridine·Tb)to colorless was witnessed upon UV light irradiation[16].Also,abinitiocalculations of FOX-7 adsorbed on theg-C3N4surface were done to exploit the potential applicability of the latter as explosive sensor[17].A similar charge-transfer adsorption system was calculated for FOX-7-graphene oxide composite[18].

    Indeed, charge-transfer complexes of alkenes are known long ago.For example, tetracyanoethylene(TCE)can form such complexes with aromatics[19], cycloalkanes, alkenes, and alkynes[20]as well as heterocyclic thioamides[21].Such a variety of possible electron donors is due to a high electrophilicity of TCE.At the same time, FOX-7 is much less electrophilic and is expected to form charge-transfer complexes only with strong electron donors, like retinol(vitamin A)[22].In this case, the calculations predict two absorption bands in the visible region withλmaxabout 590 and 460 nm[22].Remarkably, in the presence of weak electron donors, like 1,10-phenantroline, FOX-7 behaves as a hydrogen bond donor itself, forming complexes with absorption in the UV region(λmax=323, 262 and 230 nm, EtOH solution)[23].

    Recent trends in the development of methods for analytical detection of energetic materials, including improvised explosives, indicate a great importance of such investigation in this area[24-29].Consequently, quantum-chemical calculations can be applied as an effective tool for molecular modelling of possible reagents for visual colorimetric detection of FOX-7 that was done in the present work.

    1 Computational details

    The calculations without periodic boundary conditions were performed in terms of Density Functional Theory(DFT)within Generalized Gradient Approximation(GGA)using the Gaussian09 program package[30].Geometry optimizations were done using the hybrid functional B3LYP[31-32]together with a split valence quasi double-ζin the valence shell basis set(6-31 G).The latter was supplemented with both polarization(d, p)and diffuse(+)functions[33-34].Long-range effects were taken into account using dispersion corrections to the total energies obtained in terms of the D3 version of Grimme dispersion with Becke-Johnson damping scheme[35].Solvent effects were simulated using the polarizable continuum model(PCM)within the conductor-like polarizable continuum model(CPCM)formalism[36].Absorption spectra were calculated using Time-Dependent DFT(TD-DFT)with a hybrid functional HSE06[37].Earlier, the HSE06 functional was found to be very successful in prediction of the UV-vis spectra of molecular[38]and ionic[39]solids.The number of TD states was specified to be 4 for all the calculations as a compromise between computational cost and guarantee of including all possible visible-region electron transitions.

    The calculations with periodic boundary conditions were performed using the Materials Studio 2017 program suite[40].Molecular dynamics(MD)simulations were carried out with a novelabinitioforcefield COMPASSII(Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies)[41]using the Forcite module as implemented in the Materials Studio 2017 program suite[40].The simulation was done with the NVT ensemble at 300 K for 50 ps.A mild timestep of 1 fs was specified as it was suggested for MD simulations[42].Modeling of the condensed(crystalline)phase was performed for theP1 space group according to scheme, described in our recent papers[43-44].

    All post-SCF calculations were performed using the Multiwfn 3.8 program package[45].Characterization of the charge-transfer states was done according to the following criteria:

    (1)Charge-transfer length Δr[46]:

    (1)

    (2)TheDCTindex, which is the distance between the two barycenters of positive and negative parts of Δρ(R+andR-)[47]:

    DCT=|R+-R-|

    (2)

    (3)ThetCTindex, which measures separation degree of positive and negative parts of the electron density(ρ+andρ-)[47].

    (4)The transferred chargeqCTcorresponding to the total amount of charge whose distribution is perturbed during electron excitation[47].

    (5)The dipole moment variation caused by electron excitation ΔμCT[47]:

    ΔμCT=

    (3)

    whereX+,Y+,Z+andX-,Y-,Z-are the Cartesian component coordinates ofR+andR-, respectively.

    (6)Interfragment charge transferQR,S[48]:

    QR,S=ΘR,holeΘs,ele

    (4)

    whereΘR,holeandΘS,elestand for contribution of fragmentRto hole and contribution of fragmentSto electron, respectively.

    (7)TheS+-index, which is a measure of separation degree betweenC+andC-[48]:

    (5)

    whereC+andC-are the Gaussian-type functions defined for visualization of the positive and negative parts of the electron density.

    2 Results and discussion

    2.1 Structure and bonding in the charge-transfer complexes

    In order to find potential electron donors for charge-transfer(CT)complexes with FOX-7, we have selected a number of different electron-rich heterocycles, as well as fused carbo-and heterocycles, and acyclic systems.Additionally, we have selected a few acceptor molecules for comparison, which include compounds with known behavior in the CT complex formation.The corresponding chemical structures and labeling is presented in Fig.S1 in the Supporting Information.As the molecular properties for comparison, we have selected general chemical reactivity indexes(in eV)obtained in terms of conceptual DFT[49].These are the following: ionization energy(I), electron affinity(A), electronegativity(χ), chemical hardness(η)and electrophilicity index(ω).

    The calculated indexes for the acceptor(A)and donor(D)molecules are listed in Tables 1 and 2, respectively.

    Table 1 The conceptual DFT indexes calculated for the acceptor molecules

    As it follows from Table 1, FOX-7 is a poorer electron acceptor compared to the typical nitroaromatics and, especially, tetracyanoethylene.Thus, to form CT complexes as an acceptor, FOX-7 needs an effective electron donor, which is stronger than 1,10-phenantroline[23].The latter compound has the highest electronegativity and one on the highest ionization energy and electrophilicity(Table 2).Diagram of the absolute difference in electronegativities between acceptor and donor molecules is presented in Fig.S2 in the Supporting Information.It is clearly seen that significant differences between theχvalues of FOX-7 is observed for various pyrrole and pyrimidine derivatives(D1—D10).

    Thus, we have modeled the CT complexes of FOX-7 with the latter ten compounds.First of all, we have tried to obtain stationary geometries of such complexes.This is not a trivial task, which faces with the problem of the description of spatial orientation of the donor and acceptor, since these are bound only by weak intermolecular bonds.As a result, the global minimum on the potential energy surface of such complexes demonstrates a number of shallower close-lying minima near the global minimum.These correspond to transient configurations of the complex caused by some vibrational displacements at finite temperatures and can be reversibly occupied at ambient temperatures.Therefore, a simple geometry optimization in vacuum at 0 K cannot guarantee that the optimized structure will correspond to the global minimum.

    Similar to our recent paper on the complex of 2,4,6-TNT with 2-(dimethylamino)ethyl methacrylate[50], we have performed molecular dynamics simulations in order to find out the average distance between centroids and the most probable binding mode.For this purpose, we have chosenD1as a donor molecule.Thus, a cubic supercell(a=22.837 ?)containing 50 molecules ofA1andD1was relaxed followed by the MD simulation.The corresponding snapshot of the final geometry, as well as the plot of radial distribution function of the distance between centroids, is illustrated in Fig.S3 in the Supporting Information.As one can see in Fig.S3 B, the value of theg(r)function reaches its maximum at about 4 ?.Moreover, two possible binding modes were detected.The first is stacking interactions and the other one is hydrogen bonding between the NH2…O2N moieties of theD1andA1molecules, respectively.

    Thus, we have performed a series of geometry optimizations starting from the possible intermolecular orientations of the afore-mentioned two types.The obtained results suggest that stacking interaction is predominant binding mode in this case, since the binding energies of such complexes are higher than ones with the hydrogen bonding.The corresponding optimized geometries are illustrated in Fig.1 and S4 in the Supporting Information.As one can see in Fig.1, the distance between centroids inCT1(blue numbers)is very close to one obtained with MD simulations, which indicates the convergence of the results.For the other complexes, this value varies in the range from about 3.3 to 4.0 ?.On the other hand, the closest intermolecular contacts(black numbers)also vary in the range of about 2.2—3.0 ?(Fig.1).These two parameters are the most statistically stable intermolecular degrees of freedom and, knowing them, one can easily optimize any similar complex using a simple freezing of the latter two lengths.Thus, the global search strategy for such CT complexes is the following: determination of the appropriate donor(via theχvalues)→determination of the average distance between centroids and the closest intermolecular contact(using MD simulation)→geometry optimization of the CT model in polar solvent(at the CPCM-DFT(B3LYP-D3)/6-31+g(d,p)level of theory).

    Fig.1 The optimized structures of the charge-transfer complexes with indication on their energies and structural parameters(left); the intermolecular bond critical points and paths with the corresponding labeling(right)

    To find out the nature of intermolecular bonding, we have performed the QTAIM analysis of the electron density distribution.All the found intermolecular bonds and the corresponding critical point(CP)labeling are illustrated in Fig.1.The calculated numerical values of the QTAIM parameters, namely, the electron densityρ(r), its Laplacian2ρ(r), negative of Hamiltonian kinetic energy densityhe(r)and potential energy densityν(r), are listed in Tables 3 and S1 in the Supporting Information.

    The type of intermolecular bonding was distinguished according to the signs of2ρ(r)andhe(r)[51].Both positive values of the latter two parameters indicate the ionic and Van der Waals bonds.This type of bonding is typical for similar CT complexes, for example for the complex between naphthalene andA7, which is known long ago[19].In this case, all the intermolecular interactions demonstrate2ρ(r)>0 andhe(r)>0, as it follows from our present calculations.On the other hand, the complexes illustrated in Fig.S4, as well as the complex betweenA1andD11[23], demonstrate2ρ(r)>0 andhe(r)<0, which indeed corresponds to hydrogen bonds[51].The corresponding calculation results are presented in Fig.S5 and Table S2 in the Supporting Information.Using the Espinosa equationE=1/2ν(r)[52], the intermolecular bond energies(in a.u.)can be estimated using theν(r)value at the corresponding bond CPs.Thus, taking into account the values in Table 3, one can estimate the strongest intermolecular bond energies as ones lying within the range of 5—13 kJ/mol.

    Table 3 The numerical values(in a.u.)of the selected QTAIM properties in the highest electron density CPs among the formed intermolecular bonds

    Also, we have modeled complexesCT1-CT10in the crystalline state to calculate the corresponding lattice energies(Elatt)and the binding modes.The calculations were performed only for theP1 space group, since the possible difference inElattare expected to be small, whereas the search of the most appropriate space group is a very complex and computationally expensive task.The obtained molecular arrangement for theCT8crystal is illustrated in Fig.2 and packing of all the rest crystals is presented in Fig.S6 in the Supporting Information.As one can see, the same two types of binding, stacking and hydrogen bonds, appear in the crystalline state, which should significantly stabilize the latter.Indeed, theElattvalues for the CT complexes lying in the range of 228—316 kJ/mol, which is even higher than that for pure FOX-7 crystal(Table 4).The calculation ofElattfor experimentally observed space group of FOX-7(P21/n)demonstrates only slightly higher value(176.2 kJ/mol).A relatively close result was recently obtained via the calculation of molar heat of vaporization of FOX-7, yielding cohesive energy density 2.667 kJ/cm3[53].Taking into account the change of FOX-7 molar volume in the range 360-80 K[54]and extrapolating the curve to 0 K, theElattvalue can be estimated as 201.0 kJ/mol.Thus, one can conclude thatCT1-CT10are expected to be robust solids close to the recently obtained complex with 1,10-phenanthroline(CT11)[23].

    Fig.2 The two possible bonding modes in the crystalline state of CT8

    Table 4 The numerical values(in a.u.)of the selected QTAIM properties in the highest electron density CPs among the formed intermolecular bonds

    2.2 Absorption spectra and color prediction

    An important property of the studies CT complexes is their color, since these are modeled as possible reagents for visual colorimetric detection of FOX-7.Therefore, the method for absorption spectrum prediction must be well checked for the studied molecular system.Experimental spectrum of FOX-7 in EtOH demonstrates three bands withλmaxat 391, 312 and 280 nm[55].Remarkably, the calculated spectrum provides a relatively close spectral pattern withλmaxat 349, 309 and 272 nm, respectively.These two spectra as well as one for the FOX-7 dimer are overlaid as inset in Fig.3.Thus, one can conclude that the calculation method is applicable for spectra prediction of the FOX-7 charge-transfer complexes.

    Fig.3 Plots of the calculated absorption spectra of the complexes CT1-CT10; inset illustrate the UV-vis spectrum of FOX-7

    Table 5 The calculated wavelengths(in nm)and oscillator strengths(f)of the charge-transfer bands in absorption spectra of the complexes CT1-CT10 and the predicted colors

    The calculated UV-vis spectra ofCT1-CT10are illustrated in Fig.3 and the corresponding numerical data on the CT band along with the orbital assignment are listed in Table 5.As one can see, all CT complexes demonstrate one clear band in the visible region.Orbital assignment revealed a complete charge transfer from the donor to acceptor molecule, on which the highest occupied(H)and the lowest unoccupied(L)molecular orbitals are completely located.The only exception is the spectrum ofCT8, for which the lowest-energy H→L transition is outside the visible region(793 nm).The nature of H and L is the same for all the CT spectra.The corresponding isosurfaces forCT1are illustrated in Fig.4.Thus, the CT band can be assigned as a π-π*electron transition.The complete orbital assignment of the absorption spectra ofCT1-CT10as well asCT1a-CT10ais presented in Tables S3 and S4 in the Supporting Information.

    Fig.4 Some calculated isosurfaces visualizing frontier orbitals, MESP, charge transfer and non-covalent interactions for CT1

    Table 6 The numerical values of the CT properties based on density difference grid data for the complexes CT1-CT11

    Remarkably, each spectrum has its specific color, which varies from violet and blue to red and orange(Table 5).The color reproduction was performed using the following procedure.The obtained wavelengths, which correspond toλmaxwere converted into the absorbed color with a subsequent digitalization and assignment of a hexadecimal color code[56].Thereafter, the absorbed color was transformed into the corresponding complementary color by using the online resource[57].Of course, the calculation errors may be the reason of noticeable color varying, but, nevertheless, the conclusion about the wide variety of theCT1-CT10complexes colors may be considered as reliable.

    2.3 Characteristics of the charge-transfer based on density difference grid data

    In order to perform a deeper analysis of the studied systems,we have carried out a series of post-SCF calculations to build isosurfaces and obtain numerical characteristics of the studied CT complexes based on the density difference grid data.The 3D plots of molecular electrostatic potential(MEP), barycenters of positive and negative charges as well as reduced density gradient function(RDG)[58]forCT1as an example are illustrated in Fig.4.As one can see, RDG function clearly shows that intermolecular bonding does observed and is almost coplanar to the donor and acceptor molecules approving a stacking mode of binding figured out on the basis of the QTAIM analysis(Fig.1).Also, while the barycenter ofC-is located close to the center of mass, theC+is directed towards the donor molecule(Fig.4).Therefore, the totalDCTindex is lower that the corresponding distance between centroids.The corresponding numerical data are gathered in Table 6.

    The separation of theC-andC+functions is significant that is indicated by the corresponding values ofS+-.A similar evidences come from the values of thetCT, which are all positive andQR,Sindexes, which are close to 1 forCT1-CT10(Table 6).Using the calculated CT characteristics, one can easily distinguish true CT states from those formed due to, say, hydrogen bonding, like in the complex ofA1withD11(CT11).This is also followed from the ±qCT, ΔμCTand Δrvalues(Table 6).The parameters obtained of the basis of the density difference grid data are especially useful for identification of the role of FOX-7 in similar complexes with other reagents, in which its role is ambiguous.Indeed, due to simultaneous weak electrophilic and nucleophilic properties and different possible bonding types, FOX-7 can demonstrate both donor and acceptor properties, which is hard to identify only on the basis of conceptual DFT indexes(χ,ω, etc.).

    3 Conclusions

    Summing up, we presented in this paper a theoretical study of the possibility of the charge-transfer complexes formation, in which FOX-7 plays the role of an electron acceptor.The calculations show that FOX-7 is less electrophilic and electronegative than the typical nitroaromatic energetic materials and requires much stronger electron donors to form the complexes of such type.Therefore, as potential donor molecules, ten experimentally available methyl and amino derivatives of pyrrole and pyrimidine are proposed.Formation of the CT complexes was confirmed by the MD simulations, QTAIM analysis and indexes, based on the density difference grid data.

    All these complexes demonstrate a clear single band in the visible region, which correspond to the π-π*electron transition from HOMO(on the donor molecule)to the LUMO(on FOX-7).The expected colors of the CT complexes in EtOH solution vary from violet and blue to red and orange.Though the accurate color of the complex may be questionable due to a possible under/overestimation of theλmax, the conclusion about the wide variety of theCT1-CT10complexes colors may be considered as reliable.Modeling of the studied complexes in crystalline state revealed its good cohesive energies, which allows concluding that these can be stable in the crystalline form.At the same time, absorption spectra of the crystalline state are still unknown and can be different from those in solution.

    Acknowledgments

    This work was supported by the Ministry of Education and Science of Ukraine, Research Fund(Grant No.0122U000760).

    AppendixA.Supplementarydata

    Chemical structures, MD simulation results, QTAIM data, crystal packing, complete assignment of absorption spectra.

    Fordetails,seetheAppendixAintheonlineversion.

    国产精品久久久久久精品电影| 国产免费一级a男人的天堂| 九九爱精品视频在线观看| 我的女老师完整版在线观看| 国产精品综合久久久久久久免费| 韩国av一区二区三区四区| 黄色欧美视频在线观看| 亚洲三级黄色毛片| 欧洲精品卡2卡3卡4卡5卡区| 在线免费十八禁| 午夜老司机福利剧场| 亚洲精品影视一区二区三区av| 午夜亚洲福利在线播放| 天堂动漫精品| 窝窝影院91人妻| 51国产日韩欧美| 桃红色精品国产亚洲av| 天美传媒精品一区二区| 国产一区二区三区av在线 | 2021天堂中文幕一二区在线观| 午夜福利在线在线| 日韩中文字幕欧美一区二区| 中国美白少妇内射xxxbb| 可以在线观看毛片的网站| 中出人妻视频一区二区| 又爽又黄无遮挡网站| 老司机午夜福利在线观看视频| 午夜精品在线福利| 免费搜索国产男女视频| 亚洲精华国产精华精| 淫秽高清视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 成人国产麻豆网| 97碰自拍视频| 婷婷精品国产亚洲av在线| 国产乱人视频| 欧美+亚洲+日韩+国产| 国产三级中文精品| 欧美激情国产日韩精品一区| 日本撒尿小便嘘嘘汇集6| 亚洲av免费高清在线观看| 亚洲国产精品成人综合色| 日本欧美国产在线视频| 久久久久久久精品吃奶| 草草在线视频免费看| 日日啪夜夜撸| 999久久久精品免费观看国产| 国产毛片a区久久久久| 色5月婷婷丁香| 国产伦在线观看视频一区| 国产乱人视频| 国产亚洲精品久久久久久毛片| 看黄色毛片网站| 人人妻人人看人人澡| 久久久久免费精品人妻一区二区| 久久久久国产精品人妻aⅴ院| 伦精品一区二区三区| 国产探花在线观看一区二区| 色视频www国产| 国产亚洲欧美98| 国产精品永久免费网站| 精品久久久久久久久久免费视频| 联通29元200g的流量卡| 熟女人妻精品中文字幕| 日本 欧美在线| 久久亚洲真实| 亚洲四区av| 色精品久久人妻99蜜桃| 少妇的逼好多水| avwww免费| av天堂在线播放| 国产精品久久久久久久电影| 熟妇人妻久久中文字幕3abv| 亚洲av成人精品一区久久| 成年免费大片在线观看| 毛片女人毛片| 女人十人毛片免费观看3o分钟| 亚洲熟妇熟女久久| 草草在线视频免费看| 亚洲乱码一区二区免费版| 不卡一级毛片| 国产免费男女视频| 两性午夜刺激爽爽歪歪视频在线观看| 永久网站在线| 久久国产乱子免费精品| 久久中文看片网| 欧美性感艳星| 性色avwww在线观看| 亚洲熟妇熟女久久| 国产主播在线观看一区二区| 日本免费一区二区三区高清不卡| 国产真实伦视频高清在线观看 | 免费搜索国产男女视频| 18禁裸乳无遮挡免费网站照片| 毛片一级片免费看久久久久 | 级片在线观看| 中文字幕高清在线视频| .国产精品久久| 男女啪啪激烈高潮av片| 日韩精品青青久久久久久| 黄色一级大片看看| 十八禁国产超污无遮挡网站| 黄色丝袜av网址大全| 日日摸夜夜添夜夜添小说| 成人永久免费在线观看视频| a级一级毛片免费在线观看| 国产精品永久免费网站| 久久久精品大字幕| 亚洲精华国产精华液的使用体验 | 性色avwww在线观看| 久久99热6这里只有精品| 男人的好看免费观看在线视频| 毛片女人毛片| 热99re8久久精品国产| 啦啦啦啦在线视频资源| 国产精品久久久久久久久免| 国产精品久久电影中文字幕| 亚洲av电影不卡..在线观看| 日本在线视频免费播放| 天堂网av新在线| 免费在线观看日本一区| 国产aⅴ精品一区二区三区波| 亚洲av五月六月丁香网| 日本免费一区二区三区高清不卡| 国内少妇人妻偷人精品xxx网站| 嫩草影视91久久| 亚洲精品日韩av片在线观看| 国产成年人精品一区二区| 国产一区二区三区在线臀色熟女| 琪琪午夜伦伦电影理论片6080| 国产91精品成人一区二区三区| 久久久久久九九精品二区国产| 五月伊人婷婷丁香| 色哟哟·www| 成人无遮挡网站| 人妻少妇偷人精品九色| 亚洲精品国产成人久久av| 他把我摸到了高潮在线观看| 国内揄拍国产精品人妻在线| АⅤ资源中文在线天堂| 亚洲黑人精品在线| 乱系列少妇在线播放| 中出人妻视频一区二区| 91麻豆av在线| 国产精品久久电影中文字幕| 老司机福利观看| 成人鲁丝片一二三区免费| 赤兔流量卡办理| 内射极品少妇av片p| 国产亚洲精品久久久久久毛片| 亚洲专区国产一区二区| 窝窝影院91人妻| 99久久九九国产精品国产免费| 日本色播在线视频| 亚洲国产欧洲综合997久久,| 制服丝袜大香蕉在线| 狠狠狠狠99中文字幕| 一个人免费在线观看电影| 最近视频中文字幕2019在线8| 免费大片18禁| 麻豆成人午夜福利视频| 免费大片18禁| 国产精品女同一区二区软件 | 久久6这里有精品| 欧美性猛交黑人性爽| 日本五十路高清| 91午夜精品亚洲一区二区三区 | 欧美成人一区二区免费高清观看| 天天躁日日操中文字幕| 男女视频在线观看网站免费| 一个人观看的视频www高清免费观看| 久久6这里有精品| 日本 欧美在线| 午夜老司机福利剧场| 久久午夜亚洲精品久久| 欧美成人性av电影在线观看| 校园人妻丝袜中文字幕| 麻豆成人午夜福利视频| 亚洲男人的天堂狠狠| 午夜视频国产福利| a级一级毛片免费在线观看| 中文字幕av在线有码专区| 国产精品人妻久久久久久| 亚洲第一区二区三区不卡| 午夜a级毛片| 舔av片在线| 简卡轻食公司| 亚洲在线自拍视频| 国产伦在线观看视频一区| 日日摸夜夜添夜夜添av毛片 | 久久久久久久精品吃奶| 麻豆精品久久久久久蜜桃| 精品久久久噜噜| 变态另类成人亚洲欧美熟女| 黄片wwwwww| 一进一出好大好爽视频| 亚洲一级一片aⅴ在线观看| 午夜福利18| 国产伦精品一区二区三区视频9| 俄罗斯特黄特色一大片| 18禁黄网站禁片午夜丰满| xxxwww97欧美| 久久久久性生活片| 亚洲男人的天堂狠狠| 中文字幕高清在线视频| 亚洲成人久久性| 热99在线观看视频| 观看美女的网站| 在线看三级毛片| 内地一区二区视频在线| 日韩欧美在线二视频| 久久久久免费精品人妻一区二区| 国产女主播在线喷水免费视频网站 | 国产精品一区二区三区四区免费观看 | 午夜爱爱视频在线播放| 如何舔出高潮| 国产免费男女视频| 一区二区三区高清视频在线| 亚洲成人精品中文字幕电影| 国产亚洲91精品色在线| 最近最新免费中文字幕在线| 亚洲一区高清亚洲精品| 人妻丰满熟妇av一区二区三区| 亚洲人成网站在线播放欧美日韩| 最好的美女福利视频网| 中文字幕av成人在线电影| 人人妻人人澡欧美一区二区| 成人国产麻豆网| 在线观看美女被高潮喷水网站| 亚洲四区av| 联通29元200g的流量卡| 日本-黄色视频高清免费观看| 少妇高潮的动态图| 变态另类成人亚洲欧美熟女| 国产乱人视频| 少妇丰满av| 亚洲狠狠婷婷综合久久图片| 能在线免费观看的黄片| 成人综合一区亚洲| 成年女人看的毛片在线观看| 欧美日本亚洲视频在线播放| 色吧在线观看| 乱人视频在线观看| 日韩 亚洲 欧美在线| 中文字幕久久专区| 欧美日韩黄片免| 国产白丝娇喘喷水9色精品| 日韩人妻高清精品专区| 国产不卡一卡二| 毛片女人毛片| 亚洲精品456在线播放app | 亚洲精品日韩av片在线观看| 日本a在线网址| 内地一区二区视频在线| 在线观看免费视频日本深夜| 国产精品一区二区三区四区久久| 亚洲人成伊人成综合网2020| 欧美绝顶高潮抽搐喷水| 午夜福利18| 少妇猛男粗大的猛烈进出视频 | 真人做人爱边吃奶动态| 十八禁国产超污无遮挡网站| 亚洲国产高清在线一区二区三| 色哟哟哟哟哟哟| 国产高清视频在线观看网站| 国模一区二区三区四区视频| 精品久久久久久成人av| 精品福利观看| 一a级毛片在线观看| 成年女人永久免费观看视频| 精品欧美国产一区二区三| 国产 一区 欧美 日韩| 夜夜看夜夜爽夜夜摸| 精品午夜福利在线看| 免费观看的影片在线观看| 精品人妻一区二区三区麻豆 | 国产大屁股一区二区在线视频| 欧美激情久久久久久爽电影| 91午夜精品亚洲一区二区三区 | 国产精品永久免费网站| 在线a可以看的网站| 国产精品,欧美在线| 午夜免费激情av| 黄色欧美视频在线观看| 999久久久精品免费观看国产| 亚洲精品色激情综合| 精品欧美国产一区二区三| 国产 一区 欧美 日韩| 亚洲中文字幕日韩| 亚洲美女视频黄频| 亚洲黑人精品在线| 精品久久久久久久久久久久久| 老熟妇乱子伦视频在线观看| 亚洲欧美日韩无卡精品| 嫩草影院新地址| 成熟少妇高潮喷水视频| 黄色配什么色好看| 久久人人精品亚洲av| 亚洲七黄色美女视频| 久久精品国产99精品国产亚洲性色| 熟妇人妻久久中文字幕3abv| 在线观看av片永久免费下载| 国产成人福利小说| 人妻少妇偷人精品九色| 国产精品人妻久久久久久| 精品人妻1区二区| 国产高清有码在线观看视频| 亚洲图色成人| 国产三级中文精品| 啪啪无遮挡十八禁网站| 直男gayav资源| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲美女黄片视频| 岛国在线免费视频观看| 色av中文字幕| 全区人妻精品视频| 亚洲av成人av| 国产精华一区二区三区| 国产精品永久免费网站| 女同久久另类99精品国产91| 波多野结衣高清作品| 国内精品宾馆在线| 国产色爽女视频免费观看| 全区人妻精品视频| 女生性感内裤真人,穿戴方法视频| 国产视频内射| 三级男女做爰猛烈吃奶摸视频| 色吧在线观看| 1024手机看黄色片| 午夜免费男女啪啪视频观看 | 国产在线精品亚洲第一网站| 欧美精品啪啪一区二区三区| 亚洲国产精品sss在线观看| 亚洲精品久久国产高清桃花| 国产欧美日韩精品一区二区| 国产精品无大码| 色精品久久人妻99蜜桃| 成人欧美大片| 成人三级黄色视频| 女生性感内裤真人,穿戴方法视频| 毛片女人毛片| 国产在线精品亚洲第一网站| 国产熟女欧美一区二区| 国产精品一及| 日本一二三区视频观看| 九色国产91popny在线| 国产精品久久久久久久电影| 色吧在线观看| 美女cb高潮喷水在线观看| 尤物成人国产欧美一区二区三区| h日本视频在线播放| 亚洲18禁久久av| 97超级碰碰碰精品色视频在线观看| 亚洲av二区三区四区| 国产成年人精品一区二区| 中国美女看黄片| 午夜福利成人在线免费观看| 国产成人一区二区在线| 日本五十路高清| 亚洲狠狠婷婷综合久久图片| 欧美xxxx性猛交bbbb| 国内精品久久久久精免费| 国产精品亚洲一级av第二区| 日本 av在线| 99久久无色码亚洲精品果冻| 午夜a级毛片| 免费大片18禁| 精品日产1卡2卡| 精品不卡国产一区二区三区| 国产一区二区激情短视频| 老司机午夜福利在线观看视频| 久久精品国产亚洲av涩爱 | 成人特级av手机在线观看| 久久精品国产亚洲网站| 色综合婷婷激情| 日韩精品有码人妻一区| 99精品久久久久人妻精品| 搞女人的毛片| 五月玫瑰六月丁香| 麻豆精品久久久久久蜜桃| av天堂中文字幕网| 国产国拍精品亚洲av在线观看| 亚洲人与动物交配视频| netflix在线观看网站| 精品人妻视频免费看| 春色校园在线视频观看| 波多野结衣巨乳人妻| 深夜a级毛片| 久久国内精品自在自线图片| 国产精品电影一区二区三区| 久久人人精品亚洲av| 俄罗斯特黄特色一大片| 精品人妻熟女av久视频| 亚洲中文日韩欧美视频| 国产女主播在线喷水免费视频网站 | 久久99热6这里只有精品| 小说图片视频综合网站| 精品久久国产蜜桃| 成人性生交大片免费视频hd| 可以在线观看毛片的网站| 此物有八面人人有两片| a级毛片a级免费在线| 成年免费大片在线观看| 婷婷精品国产亚洲av| 久久久久久久久大av| 国产淫片久久久久久久久| 国产精品乱码一区二三区的特点| 国产私拍福利视频在线观看| 精品无人区乱码1区二区| 国产老妇女一区| 国产伦人伦偷精品视频| 亚洲天堂国产精品一区在线| 999久久久精品免费观看国产| 久久精品综合一区二区三区| 91精品国产九色| 国内精品美女久久久久久| 成人午夜高清在线视频| 成人二区视频| 成人高潮视频无遮挡免费网站| 国产成年人精品一区二区| 婷婷丁香在线五月| 日本免费一区二区三区高清不卡| 狠狠狠狠99中文字幕| 日韩一区二区视频免费看| 黄片wwwwww| 1024手机看黄色片| 欧美日本视频| www.色视频.com| 给我免费播放毛片高清在线观看| 啦啦啦观看免费观看视频高清| 欧美日本亚洲视频在线播放| 中亚洲国语对白在线视频| 欧美一级a爱片免费观看看| 一级a爱片免费观看的视频| 1024手机看黄色片| 精品福利观看| 99热网站在线观看| 成年人黄色毛片网站| 亚洲成av人片在线播放无| 日韩中字成人| 男人和女人高潮做爰伦理| 日韩在线高清观看一区二区三区 | 国产一区二区在线av高清观看| 色视频www国产| 日韩国内少妇激情av| 国产不卡一卡二| 日本欧美国产在线视频| 特级一级黄色大片| 99在线人妻在线中文字幕| 非洲黑人性xxxx精品又粗又长| 免费无遮挡裸体视频| 亚洲av免费在线观看| aaaaa片日本免费| 国产黄片美女视频| 变态另类丝袜制服| 久久草成人影院| 亚洲中文字幕日韩| 嫩草影院精品99| 直男gayav资源| 日韩欧美 国产精品| 精品免费久久久久久久清纯| 中文字幕精品亚洲无线码一区| 亚洲成人精品中文字幕电影| 欧美成人性av电影在线观看| 亚洲图色成人| 搡老熟女国产l中国老女人| 国产精品一及| 欧美日韩亚洲国产一区二区在线观看| 又粗又爽又猛毛片免费看| 桃红色精品国产亚洲av| 99久久九九国产精品国产免费| 中文字幕熟女人妻在线| 成人综合一区亚洲| 成人三级黄色视频| www.www免费av| 可以在线观看毛片的网站| 九九久久精品国产亚洲av麻豆| 啦啦啦啦在线视频资源| 神马国产精品三级电影在线观看| 国内精品宾馆在线| 变态另类成人亚洲欧美熟女| 天美传媒精品一区二区| 午夜视频国产福利| 亚洲自偷自拍三级| 如何舔出高潮| 国产高清视频在线播放一区| av视频在线观看入口| 久久久久精品国产欧美久久久| 97碰自拍视频| 99久久无色码亚洲精品果冻| 韩国av一区二区三区四区| 精品久久久久久久久av| 国产又黄又爽又无遮挡在线| 少妇人妻一区二区三区视频| 午夜精品久久久久久毛片777| 国产精品98久久久久久宅男小说| 国产精品一及| 成年免费大片在线观看| 我的老师免费观看完整版| 色播亚洲综合网| 在线国产一区二区在线| 高清日韩中文字幕在线| 人妻久久中文字幕网| 久久热精品热| a在线观看视频网站| 成年版毛片免费区| 狂野欧美激情性xxxx在线观看| 又爽又黄a免费视频| 一级a爱片免费观看的视频| 啦啦啦啦在线视频资源| av在线蜜桃| 丝袜美腿在线中文| 波多野结衣巨乳人妻| 五月玫瑰六月丁香| 男女那种视频在线观看| 免费电影在线观看免费观看| 精品久久久久久成人av| 日韩欧美 国产精品| 欧美xxxx黑人xx丫x性爽| 日韩在线高清观看一区二区三区 | 亚洲狠狠婷婷综合久久图片| 99久久精品一区二区三区| 五月玫瑰六月丁香| 国产综合懂色| 色综合亚洲欧美另类图片| 中文字幕免费在线视频6| 国产不卡一卡二| 免费在线观看成人毛片| 久久热精品热| 午夜福利视频1000在线观看| 亚洲av五月六月丁香网| 国产一区二区三区在线臀色熟女| 国产欧美日韩精品一区二区| 波多野结衣高清作品| 久久久精品大字幕| 亚洲av美国av| 国产色爽女视频免费观看| 久久久久久伊人网av| 最近最新中文字幕大全电影3| 日日撸夜夜添| 中文字幕免费在线视频6| 久久欧美精品欧美久久欧美| 真人一进一出gif抽搐免费| 又紧又爽又黄一区二区| 99国产精品一区二区蜜桃av| 欧美日韩国产亚洲二区| 琪琪午夜伦伦电影理论片6080| 久久国产精品人妻蜜桃| 精品国产三级普通话版| 成年免费大片在线观看| 欧美又色又爽又黄视频| 国产淫片久久久久久久久| 亚洲人成网站在线播放欧美日韩| 日韩欧美免费精品| 中文资源天堂在线| 欧美黑人欧美精品刺激| 校园春色视频在线观看| 亚洲乱码一区二区免费版| 国产精品伦人一区二区| 日韩欧美精品v在线| 一级黄片播放器| 亚洲一区二区三区色噜噜| 在线观看午夜福利视频| 亚洲色图av天堂| 两个人视频免费观看高清| 国产伦在线观看视频一区| 亚洲国产欧洲综合997久久,| 日韩欧美国产在线观看| 久久婷婷人人爽人人干人人爱| 国产精品久久久久久久久免| 欧美又色又爽又黄视频| 熟女人妻精品中文字幕| 悠悠久久av| 欧美色视频一区免费| 国产午夜福利久久久久久| 性色avwww在线观看| 变态另类成人亚洲欧美熟女| 一个人观看的视频www高清免费观看| 日本熟妇午夜| 国产精品三级大全| 99精品在免费线老司机午夜| 亚洲国产欧洲综合997久久,| 十八禁国产超污无遮挡网站| 国产91精品成人一区二区三区| 国产av一区在线观看免费| 黄色女人牲交| 直男gayav资源| 丰满的人妻完整版| 日本三级黄在线观看| 久久亚洲精品不卡| 亚洲久久久久久中文字幕| 男人舔女人下体高潮全视频| 老司机福利观看| 最好的美女福利视频网| 欧美色视频一区免费| 国产午夜福利久久久久久| 久久午夜亚洲精品久久| 免费在线观看影片大全网站| 成人性生交大片免费视频hd| 此物有八面人人有两片| 麻豆av噜噜一区二区三区| 亚洲成人中文字幕在线播放| 欧洲精品卡2卡3卡4卡5卡区| 日日撸夜夜添| 十八禁国产超污无遮挡网站| 国产成年人精品一区二区| 精品久久久久久久久久免费视频| 亚洲国产欧洲综合997久久,| 人妻丰满熟妇av一区二区三区| 精品久久久久久久久av| 赤兔流量卡办理| 亚洲av一区综合| 白带黄色成豆腐渣| 给我免费播放毛片高清在线观看| 久久热精品热|