摘 要:結(jié)合中國抗生素菌渣(AMR)的現(xiàn)狀,對AMR的類別、性質(zhì)和危害進(jìn)行簡要介紹,綜述焚燒、水熱和熱解等各類熱化學(xué)處置利用技術(shù),并對各項技術(shù)的研究進(jìn)展進(jìn)行分析討論,重點對水熱和熱解技術(shù)的反應(yīng)過程進(jìn)行概述,對未來發(fā)展提供一些建議和展望。指出采用兩種或多種技術(shù)聯(lián)合的方式對實現(xiàn)AMR的減量化、無害化處置和資源化利用具有較好的應(yīng)用前景。
關(guān)鍵詞:熱解;水熱;焚燒;抗生素菌渣;熱化學(xué)處理;資源化利用
中圖分類號:TK513.5 文獻(xiàn)標(biāo)志碼:A
0 引 言
隨著現(xiàn)代醫(yī)療和生活水平的不斷提高,人們越來越關(guān)注健康問題。醫(yī)療保健成為當(dāng)今的一種社會時尚,抗生素由于其在醫(yī)療干預(yù)和治療方面的重要作用,被廣泛生產(chǎn)和使用[1]。中國已成為最大的抗生素生產(chǎn)國,產(chǎn)量約占全球市場的70%[2],約有80%的頭孢菌素類抗生素、75%的青霉素工業(yè)鹽和90%的鏈霉素類抗生素是由中國生產(chǎn)的[3]??股鼐╝ntibiotic mycelial residue, AMR)是制藥行業(yè)中經(jīng)微生物發(fā)酵后產(chǎn)生的廢棄物,據(jù)估算每生產(chǎn)1 t的抗生素有8~10 t的AMR產(chǎn)生[4]。AMR中存在殘余抗生素和代謝產(chǎn)物,處理不當(dāng)會造成嚴(yán)重的環(huán)境問題,如水污染、異味,特別是抗性基因的產(chǎn)生等[5]。自2008年起,中國已將AMR列入中國國家危險廢物名錄(HW02-276-001-02)[6]。研究發(fā)現(xiàn)AMR暴露在自然環(huán)境中會導(dǎo)致耐抗生素細(xì)菌的產(chǎn)生[7-8],世界衛(wèi)生組織(WHO)也指出耐抗生素細(xì)菌已出現(xiàn)并在人類和動物中傳播[9]。因此,如何安全有效地處置AMR顯得尤為重要。
AMR是一種典型的有機物含量高、富含木質(zhì)素和纖維素的生物質(zhì)資源[10],因此AMR的資源化利用已成為人們?nèi)找骊P(guān)注的課題。目前,AMR處置方式可分為熱化學(xué)轉(zhuǎn)化技術(shù)和非熱化學(xué)轉(zhuǎn)化技術(shù)兩大類。其中熱化學(xué)轉(zhuǎn)化技術(shù)主要包括焚燒[11]、水熱技術(shù)[12]和熱解氣化[13]等,而非熱化學(xué)轉(zhuǎn)化技術(shù)主要包括填埋[14]、堆肥化[15-16]和厭氧消化[17]等。相比之下,熱化學(xué)處置技術(shù)具有徹底滅菌、減容率高、處理速度快和資源利用率高等優(yōu)勢[18],具有良好的應(yīng)用前景,也是目前研究的熱點課題。
基于此,本文介紹AMR的類別、性質(zhì)和危害,綜述焚燒、水熱和熱解氣化等各類熱化學(xué)處置利用技術(shù),對各項技術(shù)的研究進(jìn)展進(jìn)行對比分析,并結(jié)合現(xiàn)階段對AMR的處置研究,重點對水熱和熱解技術(shù)的反應(yīng)過程進(jìn)行概述,對其未來發(fā)展提供一些建議和展望,以期為AMR的安全處置和資源化利用提供理論參考。
1 AMR的分類及性質(zhì)
中國每年生產(chǎn)的抗生素約有120種,常見的抗生素有以下4大類:β-內(nèi)酰胺類(如青霉素和頭孢菌素等)、大環(huán)內(nèi)酯類(如林可霉素和紅霉素等)、氨基糖苷類(包括鏈霉素和慶大霉素等)、四環(huán)素類(包括四環(huán)素和土霉素等)[19]。由于不同抗生素的功能及合成方式的不同,產(chǎn)生了不同種類的AMR。AMR主要由菌絲、殘留的底物、中間代謝物以及由于目標(biāo)藥物提取不完全而產(chǎn)生的殘留抗生素組成[20]。表1列舉了6種具有代表性的AMR的基礎(chǔ)特性分析[21-23]。由表1可知,AMR具有氮和硫含量高的特點,這導(dǎo)致在AMR處置過程中會增加NOx和SOx排放的可能性。因此,在AMR處置過程中應(yīng)嚴(yán)格控制其污染物的排放。除慶大霉素和鏈霉素菌渣外,其余AMR的揮發(fā)分含量較高,這在一定程度上決定了其在熱化學(xué)處理技術(shù)中產(chǎn)品的含量及質(zhì)量。
AMR中有機質(zhì)及殘留的抗生素含量如表2所示[24-28]。AMR中具有豐富的粗蛋白和一定含量的粗脂肪與粗纖維,表明其適合作為制造有機肥和飼料的原料,但AMR中殘留的抗生素會通過食物鏈的方式進(jìn)入人體產(chǎn)生極大危害,因此國家已出臺相關(guān)政策明令禁止AMR飼料化技術(shù)的應(yīng)用。而在其他技術(shù)處置AMR的過程中,應(yīng)重點關(guān)注殘留抗生素的降解問題。
官能團對有機物性質(zhì)起決定作用,且各基團之間相互影響。AMR的表面官能團如表3所示[21,28-31]。AMR中基團主要以含碳官能團為主,代表脂肪族、脂類、醚類和酚類等多種化合物,這些化合物在熱化學(xué)反應(yīng)過程中相互作用,經(jīng)過氧化、取代、酯化和縮聚等一系列反應(yīng)過程,生成更加穩(wěn)定且具有更高利用價值的產(chǎn)品。因此,熱化學(xué)處置技術(shù)是實現(xiàn)AMR減量化、無害化處置和資源化利用的較好途徑。
2 抗生素菌渣的影響及危害
AMR污染引起的影響和危害越來越受重視,已被國際社會視為抗生素生產(chǎn)的主要公害之一。AMR的危害主要是殘留抗生素對生態(tài)環(huán)境和人類健康的毒性影響。雖然大多數(shù)抗生素的半衰期并不長[32],但由于抗生素的頻繁和廣泛使用以及不間斷的排放,殘留在環(huán)境中的抗生素可被視為“持久性”有機污染物[33]。文獻(xiàn)[34]研究了土霉素和恩諾沙星對油菜的生態(tài)毒性效應(yīng),發(fā)現(xiàn)相對于芽長而言,各種抗生素對根長的抑制作用更加明顯。劉鵬霄等[35]指出抗生素不僅對某些水生藻類具有較強的毒性,還可能誘導(dǎo)抗藥菌或抗藥基因的產(chǎn)生,嚴(yán)重威脅用水安全。文獻(xiàn)[36]報道了上海市黃浦江郊區(qū)或附近農(nóng)村地區(qū)的一些原始飲用水源出現(xiàn)被抗生素抗性基因污染的現(xiàn)象??股乜赏ㄟ^多種途徑進(jìn)入水和陸地環(huán)境,如城市污水排放、制造業(yè)、畜牧業(yè)、抗生素處理的垃圾填埋場滲濾液等[37-38]。
除殘留抗生素的危害外,AMR的危害還來自于其含有較高含量的有機質(zhì)和水分,這將導(dǎo)致AMR在堆放過程中極易發(fā)酵并產(chǎn)生含吡啶和吡咯等化合物的惡臭氣體[39],造成嚴(yán)重的環(huán)境污染,甚至危害人類健康。因此,在AMR處置過程中應(yīng)首先考慮并重點關(guān)注殘留抗生素的降解和臭氣的凈化。
3 AMR的熱化學(xué)處置方式
3.1 焚 燒
焚燒是AMR的處理方法之一,可實現(xiàn)殘留抗生素的完全消除,減少AMR堆積。AMR的焚燒大致經(jīng)過干燥、揮發(fā)分析出、揮發(fā)分的燃燒、炭的燃燒與燃盡和灰的熔融與團聚等過程。由于其揮發(fā)物含量高、固定碳含量低,AMR的焚燒產(chǎn)熱主要以揮發(fā)物燃燒為主,但由于菌渣中含水量高(79%~92%)[3],在焚燒處理過程中,AMR的干燥和有機物的去除等工藝不僅會消耗大量能源,而且會釋放出二噁英和苯并芘等有毒氣體,對生態(tài)環(huán)境及身體健康造成極大危害。目前,對于AMR焚燒技術(shù)的研究主要集中在焚燒過程中的NOx和SO2等污染物的排放控制。文獻(xiàn)[40]報道了AMR燃燒過程中NO和SO2的排放和灰分特性,溫度為750~950 ℃、過量空氣比為1.3~1.9時,煙氣中NO和SO2的濃度隨燃燒溫度和過量空氣比的升高而增加,水蒸氣的加入促進(jìn)了灰中有機質(zhì)的挖掘,降低了灰中C和N的含量。葛亞昕等[41]在AMR直接燃燒過程中,考察了過量空氣系數(shù)、溫度和燃料含水率等因素對NOx和SO2排放的影響。文獻(xiàn)[11]描述了3種AMR在燃燒過程含N氣態(tài)產(chǎn)物(NH3、HCNO、HCN和NO)的變化規(guī)律。
雖然焚燒技術(shù)相對成熟,可實現(xiàn)快速減量化、無害化處理,但同時存在處理成本高、污染嚴(yán)重和資源回用率低等瓶頸問題。隨著環(huán)境和能源問題日益受到關(guān)注,針對焚燒過程,未來應(yīng)不斷探究控制污染物排放的相應(yīng)技術(shù),重點關(guān)注AMR新型有機燃料,即可將AMR、污泥和廢棄農(nóng)作物等物質(zhì)混合成型,制造新型復(fù)合有機燃料,可有效提高產(chǎn)品熱值并能提高廢棄生物質(zhì)的利用價值,為AMR工業(yè)化焚燒處理奠定基礎(chǔ)。
3.2 水熱技術(shù)
水熱技術(shù)是指在一個密閉的容器中,以水為反應(yīng)媒介,在一定溫度和壓力下,原料經(jīng)過一系列復(fù)雜反應(yīng)而轉(zhuǎn)化成碳材料和生物油的過程[42],可提高原料中碳含量和熱值,是一種綠色、可持續(xù)的固廢處置方式。以往許多研究已證明了水熱技術(shù)處置污水污泥、城市生活垃圾等高水分廢棄物生產(chǎn)清潔固體生物燃料的有效性[43-45]。水熱技術(shù)處置AMR,可使菌絲細(xì)胞外的黏性有機物發(fā)生水解或熱分解,將大部分的結(jié)合水轉(zhuǎn)化為游離水,從而顯著提高材料的機械脫水能力[46-47]。此外,水熱技術(shù)具有較好的固氮和固硫的作用,可降低NOx和SOx的釋放[24],具有明顯的應(yīng)用優(yōu)勢,已成為廣大學(xué)者研究的熱點課題。水熱處置AMR的反應(yīng)過程如圖1所示[48]。
水熱反應(yīng)是一個放熱過程,其產(chǎn)物的分布和特征在很大程度上受溫度的限制[49-50]。水熱過程的主要反應(yīng)包括樣品的解聚(水解、脫水和脫羧)和縮聚(縮合、聚合和芳構(gòu)化)[51],且隨溫度的升高,兩種反應(yīng)之間存在相互競爭。在低溫初始階段,反應(yīng)物解聚分解為有機大分子碎片,隨著溫度的升高,高活性化學(xué)鍵重新結(jié)合形成水熱炭和生物油[49]。文獻(xiàn)[52]表明水熱溫度對水熱產(chǎn)物有顯著影響,蛋白質(zhì)類聚合物向液相的釋放增強,水熱溫度的升高加劇營養(yǎng)物質(zhì)的破壞。文獻(xiàn)[12]描述了AMR經(jīng)水熱處理后的燃料特性,結(jié)果表明在水熱反應(yīng)過程中,燃料中H/C和O/C的原子比均隨水熱溫度的升高而降低,表明AMR發(fā)生了脫水、脫羧和水解反應(yīng),另外高溫可破壞菌渣中殘留抗生素的細(xì)胞結(jié)構(gòu),實現(xiàn)AMR的無害化處理。除溫度外,停留時間對水熱產(chǎn)物性質(zhì)的影響非常重要。有研究指出水熱反應(yīng)過程主要發(fā)生在0.5~12.0 h[53],且隨停留時間的延長,水熱過程中各項反應(yīng)加劇,炭化程度加深[54]。文獻(xiàn)[55]指出在270 ℃條件下,停留時間由30 min增至90 min時水熱炭中的O/C降低,固定碳升高,表明延長反應(yīng)時間有助于提升水熱炭品質(zhì)。筆者將青霉素菌渣在260 ℃下水熱處置45 min后進(jìn)行熱解處理,結(jié)果表明水熱處置可明顯降低菌渣中的含氮量,提高熱解生物炭的芳香性和升級熱解液體產(chǎn)物[56]。
筆者根據(jù)AMR的主要成分并結(jié)合廚余垃圾、污泥等有機廢物的水熱過程[57-61],總結(jié)并推測AMR水熱過程中可能存在的反應(yīng)機理,如圖2所示。在反應(yīng)初始階段,混合物物理溶解,將AMR的主要成分(蛋白質(zhì)、纖維和脂質(zhì)等)整合到水熱反應(yīng)體系中,分解成中間體,隨著溫度的升高和停留時間的延長,這些中間體經(jīng)過水解、脫水、脫酸、縮聚和芳構(gòu)化等一系列反應(yīng)形成生物油和水熱炭。液相和氣相主要是脫羧、脫羥基和脫甲烷作用[62]。在水熱過程中不會分解的小分子與自由基碰撞,進(jìn)行重組、聚合和芳構(gòu)化等反應(yīng)后碳化,并與一些無機物相結(jié)合,形成水熱炭[63]。各種類型的中間體通過脫水、脫羧和水解等方式生產(chǎn)有機酸、呋喃、糠醛和雜環(huán)化合物,這些化合物在高溫高壓作用下通過芳構(gòu)化和縮聚反應(yīng)形成芳香族化合物。此外,在水熱過程中,液相、有機酸中會發(fā)生許多副反應(yīng),如脫水環(huán)化、熱解、中間產(chǎn)物斷裂等[64]。
水熱技術(shù)不僅可有效實現(xiàn)AMR中殘留抗生素的降解,而且可提高AMR燃料品質(zhì),為AMR的熱解氣化提供高品質(zhì)原料,是一種較好的預(yù)處理手段。水熱炭是一種很好的炭前驅(qū)體,可用于燃料生產(chǎn),制備活性炭、土壤改良劑和污水凈化劑等功能材料,液相產(chǎn)物中含有大量有機酸、糠醛、酚類和含氮、磷無機物等物質(zhì),廢液的處置及進(jìn)一步利用對于提高AMR水熱產(chǎn)品的再利用率具有重要意義。
3.3 熱 解
熱解技術(shù)是在無氧或缺氧氣氛下,一定溫度范圍內(nèi)將生物質(zhì)轉(zhuǎn)化為生物油、生物炭和氣態(tài)組分的一種熱化學(xué)過程,是處理固廢最受關(guān)注的方式之一[65]。該技術(shù)不僅可減少污染物儲存量,而且能分解有機污染物和病原體,濃縮、穩(wěn)定重金屬,回收高價值產(chǎn)品[66],一直是廣大學(xué)者的研究熱點。近年來,熱解技術(shù)應(yīng)用于AMR的處置引起廣泛關(guān)注。文獻(xiàn)[13]描述了青霉素菌渣熱解后N和P的轉(zhuǎn)移過程,結(jié)果表明液態(tài)產(chǎn)物具有豐富的含氧和含氮化合物,而生物炭具有豐富的含氮和無機磷酸鹽基團。文獻(xiàn)[67]也對3種AMR熱解過程中N的遷移過程進(jìn)行了報道,結(jié)果表明吡咯氮和吡啶氮被保留在熱解炭中,AMR熱解的氣態(tài)產(chǎn)物中N的主要形態(tài)是NH3和HCN,其含量與AMR中的胺氮、蛋白質(zhì)氮、吡咯氮和吡啶氮含量密切相關(guān)。在AMR熱解反應(yīng)過程中N的遷移過程如圖3所示,無機季氮以NH3和HCN(路徑1)的形式釋放,或以更穩(wěn)定的氮化合物的形式轉(zhuǎn)移到固體和液體中[68]。蛋白質(zhì)的分解是熱解過程中主要的化學(xué)反應(yīng)。AMR中蛋白質(zhì)的熱裂解產(chǎn)生3種重要的化合物,包括腈氮、胺氮和含氮雜環(huán)化合物。首先蛋白質(zhì)被解聚形成氨基酸分子,然后氨基酸分子經(jīng)過不同的化學(xué)反應(yīng)形成3種不同的含氮化合物:1)脫氫、脫水和脫酸氨基酸分子導(dǎo)致腈氮化合物的形成(路徑2);2)氨基酸分子的脫水縮合形成的胺氮化合物(路徑3);3)含氮雜環(huán)化合物(如吡啶、吡咯)產(chǎn)品主要通過Diels-Alder反應(yīng)(路徑4)對含氮裂解餾分進(jìn)行環(huán)化反應(yīng)[69]。此外,吡啶和吡咯也可通過裂解去除側(cè)烴官能團,或通過自由基聚合生成分子量較大的縮合物(路徑5),如吲哚[68]。
其他學(xué)者對AMR熱解制備活性炭也進(jìn)行了相關(guān)研究,如表4所示。此外,筆者通過水熱和低溫碳化對青霉素菌渣進(jìn)行預(yù)處理,然后以KOH活化制備活性炭,得到活性炭的最高比表面積(BET)值為1983.26 m2/g,其微孔孔徑百分比約為45%,碘和亞甲基藍(lán)吸附值分別為2234.18 mg/g和614.85 mg/g。AMR經(jīng)活化后,具有較為理想的BET值和碘吸附值,表明其具有制備高性能活性炭的潛力,是很好的活性炭前驅(qū)體。未來可致力于AMR制備活性炭的技術(shù)研究,不斷優(yōu)化制備工藝,提高其熱解固態(tài)產(chǎn)物的高效利用。
熱解技術(shù)具有較好的抗生素脫除能力,不僅可實現(xiàn)AMR的減量化和無害化處理,而且其熱解產(chǎn)品可資源化利用,具有較好的應(yīng)用前景。但目前AMR的熱解氣化應(yīng)用較少,其產(chǎn)物利用途徑較為單一,且其反應(yīng)過程存在一定的污染物排放風(fēng)險,需進(jìn)一步開發(fā)研究。
3.4 技術(shù)比較
AMR處置技術(shù)復(fù)雜多樣,本文從反應(yīng)機理、產(chǎn)物及利用和環(huán)境影響3個方面對熱化學(xué)處置技術(shù)進(jìn)行對比分析,結(jié)果如表5所示。3種熱化學(xué)處置技術(shù)都是基于AMR自身儲存能量再利用的方法,因此具有良好的發(fā)展前景[73]。3種技術(shù)均可有效實現(xiàn)AMR的減量化和無害化處置,相比之下,水熱和熱解技術(shù)處置AMR的資源化利用優(yōu)勢明顯且對環(huán)境污染較小,可作為未來AMR處置技術(shù)的重點關(guān)注對象。
4 結(jié)論與展望
本文介紹了AMR的性質(zhì)與危害,綜述了現(xiàn)有的AMR的熱化學(xué)處置利用方式,并對各項技術(shù)的特點、研究現(xiàn)狀進(jìn)行了簡要分析,對各項技術(shù)處置AMR的未來發(fā)展方向提供了一些建議,為消除AMR污染和能源化轉(zhuǎn)化利用提供借鑒,以期給AMR減量化、無害化處置和資源化利用提供新思路。
結(jié)合各項技術(shù)的反應(yīng)機理、產(chǎn)物及利用和環(huán)境污染等多項因素考慮,未來可考慮采用兩種或多種技術(shù)結(jié)合的方式處置AMR,可實現(xiàn)AMR資源化的高效利用。例如,水熱預(yù)處理可為熱解氣化提供較好的原材料,熱解氣化產(chǎn)生的中低熱值的燃?xì)饪蛇M(jìn)入鍋爐,耦合燃煤發(fā)電,降低煤炭資源的消耗,另外水熱/熱解氣化產(chǎn)生的水熱炭/生物炭可用來堆肥或制備活性炭等高質(zhì)量產(chǎn)品,具有較高的利用價值。
AMR的處理方式復(fù)雜多樣,應(yīng)結(jié)合燃料性質(zhì)、環(huán)境要求、技術(shù)工藝等多方面因素綜合考慮,目前熱化學(xué)轉(zhuǎn)化技術(shù)既可滿足大規(guī)模的處理要求,又可實現(xiàn)AMR的能源化轉(zhuǎn)化利用,具有較大的處理優(yōu)勢和應(yīng)用前景。未來建議不斷優(yōu)化熱化學(xué)處理方式,提高能源化轉(zhuǎn)化效率,從而更好地實現(xiàn)AMR減量化、無害化處置和資源化利用。
[參考文獻(xiàn)]
[1] YAN C X, YANG Y, ZHOU J L, et al. Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution" "and" "risk" "assessment[J]." "Environmental pollution, 2013, 175: 22-29.
[2] CHEN W, GENG Y, HONG J L, et al. Life cycle assessment of antibiotic mycelial residues management in China[J]." Renewable" and" sustainable" energy" reviews, 2017, 79: 830-838.
[3] HONG C, WANG Z Q, XING Y, et al. Investigation of free radicals and carbon structures in chars generated from pyrolysis" "of" "antibiotic" "fermentation" "residue[J]." RSC advances, 2016, 6(112): 111226-111232.
[4] 郭斌, 貢麗鵬, 劉仁平, 等. 土霉素菌渣的熱解特性及動力學(xué)研究[J]. 太陽能學(xué)報, 2013, 34(9): 1504-1508.
GUO B, GONG L P, LIU R P, et al. Study on pyrolysis haracteristics and kinetics of terramycin bacterial residue[J]. Acta energiae solaris sinica, 2013, 34(9): 1504-1508.
[5] ZHANG S H, CHEN Z Q, WEN Q X, et al. Assessment of maturity during co-composting of penicillin mycelial dreg via fluorescence excitation-emission matrix spectra: characteristics of chemical and fluorescent parameters of water-extractable organic matter[J]. Chemosphere, 2016, 155: 358-366.
[6] JIANG X G, FENG Y H, LYU G J, et al. Bioferment residue:" TG-FTIR" study" and" cocombustion" in" a" MSW incineration" " plant[J]." " Environmental" " science" " amp; technology, 2012, 46(24): 13539-13544.
[7] PRUDEN A, LARSSON D G J, AEMZQUITA A, et al. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment[J]. Environmental health perspectives, 2013, 121(8): 878-885.
[8] XU W H, ZHANG G, LI X D, et al. Occurrence and elimination of antibiotics at four sewage treatment plants in the" Pearl" River" Delta(PRD)," South" China[J]." Water research, 2007, 41(19): 4526-4534.
[9] World Health Organization. Antimicrobial resistance: global report on surveillance[R], 2014.
[10] WANG C A, ZHOU L, FAN G F, et al. Experimental study on ash morphology, fusibility, and mineral transformation" during" co-combustion" of" antibiotic" filter residue and biomass[J]. Energy, 2021, 217: 119345.
[11] YANG S J, ZHU X D, WANG J S, et al. Combustion of hazardous biological waste derived from the fermentation of antibiotics using TG-FTIR and Py-GC/MS techniques[J]. Bioresource technology, 2015, 193: 156-163.
[12] MA D C, ZHANG G Y, ZHAO P T, et al. Hydrothermal treatment of antibiotic mycelial dreg: more understanding from" " fuel" " characteristics[J]." " Chemical" " engineering journal, 2015, 273: 147-155.
[13] CHEN Y, DU L, LI S G, et al. Pyrolysis of antibiotic mycelial dreg and characterization of obtained gas, liquid and biochar[J]." Journal of hazardous materials, 2021, 402: 123826.
[14] 邊炳鑫, 趙由才, 喬艷云. 農(nóng)業(yè)固體廢物的處理與綜合利用[M]. 2版. 北京: 化學(xué)工業(yè)出版社, 2018.
BIAN B X, ZHAO Y C, QIAO Y Y. Treatment and comprehensive utilization of agricultural solid waste[M]. 2nd edition. Beijing: Chemical Industry Press, 2018.
[15] 李妍, 劉蕾, 柳新偉, 等. 抗生素菌渣有機肥對潮土土壤養(yǎng)分及酶活性的影響[J]. 山東農(nóng)業(yè)科學(xué), 2020, 52(3): 78-83.
LI Y, LIU L, LIU X W, et al. Effects of antibiotic residue organic fertilizer on nutrients and soil enzyme activities of moisture soil[J]. Shandong agricultural sciences, 2020, 52(3): 78-83.
[16] 彭小武, 丁麗, 張琳, 等. 抗生素菌渣有機肥對玉米土壤真菌群落結(jié)構(gòu)和功能類群的影響[J]. 中國資源綜合利用, 2020, 38(10): 1-11.
PENG X W, DING L, ZHANG L, et al. The effect of antibiotic residue organic fertilizer on the community structure and functional groups of corn soil fungi[J]. China resources comprehensive utilization, 2020, 38(10): 1-11.
[17] HU Y M, WANG J L, SHEN Y P. Enhanced performance of anaerobic digestion of cephalosporin C fermentation residues by gamma irradiation-induced pretreatment[J]. Journal of hazardous materials, 2020, 384: 121335.
[18] 安淼, 袁國安, 夏旻. 廢棄物熱化學(xué)處理方法的多角度對比分析[J]. 環(huán)境與可持續(xù)發(fā)展, 2018, 43(4): 151-154.
AN M, YUAN G A, XIA M. Comparison of thermochiemical" technologies" for" waste" treatment[J]. Environment and sustainable development, 2018, 43(4): 151-154.
[19] LI H Q, HU J T, YAO L F, et al. Ultrahigh adsorbability towards different antibiotic residues on fore-modified self-functionalized biochar: competitive adsorption and mechanism" studies[J]." Journal" of" hazardous" materials, 2020, 390: 122127.
[20] LI C X, ZHANG G Y, ZHANG Z K, et al. Hydrothermal pretreatment for biogas production from anaerobic digestion" "of" "antibiotic" "mycelial" "residue[J]." Chemical engineering journal, 2015, 279: 530-537.
[21] 鄒書娟, 王一迪, 張均雅, 等. 抗生素菌渣理化性質(zhì)分析[J]. 環(huán)境科學(xué)與技術(shù), 2018, 41(S1): 47-52.
ZOU S J, WANG Y D, ZHANG J Y, et al. Analysis of physical and chemical properties of antibiotic bacterial residue[J]. Environmental science amp; technology, 2018, 41(S1): 47-52.
[22] 趙文霞, 王克強, 楊朝旭, 等. 慶大霉素菌渣炭的制備及吸附丙酮氣體的性能[J]. 環(huán)境科學(xué)與技術(shù), 2018, 41(4): 34-39.
ZHAO W X, WANG K Q, YANG Z X, et al. Activated carbon prepared from gentamycin bacteria residue and its acetone gas adsorption characteristics[J]. Environmental science amp; technology, 2018, 41(4): 34-39.
[23] 尤占平, 郝長生, 焦永剛, 等. 兩種抗生素菌渣熱解及燃燒特性對比研究[J]. 工業(yè)安全與環(huán)保, 2016, 42(5): 41-43.
YOU Z P, HAO C S, JIAO Y G, et al. Pyrolysis and combustion characteristics comparison studies of two kinds of" " antibiotic" " residues[J]." " Industrial" " safety" " and environmental protection, 2016, 42(5): 41-43.
[24] MA D C, ZHANG G Y, AREEPRASERT C, et al. Characterization of NO emission in combustion of hydrothermally" treated" antibiotic" mycelial" residue[J]. Chemical engineering journal, 2016, 284: 708-715.
[25] RAMASWAMY J, PRASHER S O, PATEL R M, et al. The effect of composting on the degradation of a veterinary pharmaceutical[J]. Bioresource" technology," 2010," 101(7): 2294-2299.
[26] 王夢夢, 劉惠玲, 王璞, 等. 林可霉素菌渣理化性質(zhì)分析[J]. 環(huán)境工程, 2014, 32(S1): 279-281.
WANG M M, LIU H L, WANG P, et al. Physicochemical properties analysis of lincomycin bacterial residues[J]. Environmental engineering, 2014, 32(S1): 279-281.
[27] 高嘉岐, 孟昭虹, 楊迪. 泰樂菌素菌渣理化分析[J]. 哈爾濱師范大學(xué)自然科學(xué)學(xué)報, 2018, 34(2): 101-105.
GAO J Q, MENG Z H, YANG D. Physical and chemical analysis of tylosin bacteria[J]. Natural science journal of Harbin Normal University, 2018, 34(2): 101-105.
[28] 李月海, 劉冬玲, 謝幼梅. 抗生素菌渣的綜合利用[J]. 山東畜牧獸醫(yī), 2000, 21(6): 28-31, 39.
LI Y H, LIU D L, XIE Y M. Comprehensive utilization of antibiotic" "residue[J]." "Shandong" "journal" "of" "animal husbandry and veterinary science, 2000, 21(6): 28-31, 39.
[29] 貢麗鵬, 郭斌, 任愛玲, 等. 抗生素菌渣理化特性[J]. 河北科技大學(xué)學(xué)報, 2012, 33(2): 190-196.
GONG L P, GUO B, REN A L, et al. Physical and chemical" properties" of" antibiotics" bacterial" residue[J]. Journal of Hebei University of Science and Technology, 2012, 33(2): 190-196.
[30] 苑麗梅, 王夢夢, 王璞, 等. 頭孢菌渣理化性質(zhì)研究[J]. 哈爾濱商業(yè)大學(xué)學(xué)報(自然科學(xué)版), 2015, 31(6): 691-693, 703.
YUAN L M, WANG M M, WANG P, et al. Physical and chemical properties of cephalosporin bacterial residue[J]. Journal" "of" "Harbin" "University" "of" "Commerce(natural sciences edition), 2015, 31(6): 691-693, 703.
[31] 陳黎, 孔祥生, 劉秋新, 等. 妥布霉素菌渣的理化性質(zhì)及危害[J]. 環(huán)境科學(xué)與技術(shù), 2019, 42(9): 30-35.
CHEN L, KONG X S, LIU Q X, et al. Physical and chemical properties and harm of tobramycin bacterial residues[J]. Environmental science amp; technology, 2019, 42(9): 30-35.
[32] JI K, KHO Y, PARK C, et al. Influence of water and food consumption on inadvertent antibiotics intake among general population[J]. Environmental research, 2010, 110(7): 641-649.
[33] HAMSCHER G, SCZESNY S, H?PER H, et al. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry[J]. Analytical chemistry, 2002, 74(7): 1509-1518.
[34] WANG R, WANG J, WANG J H, et al. Growth inhibiting effects of four antibiotics on cucumber, rape and Chinese cabbage[J]. Bulletin of environmental contamination and toxicology, 2019, 103(1): 187-192.
[35] 劉鵬霄, 王旭, 馮玲. 自然水環(huán)境中抗生素的污染現(xiàn)狀、來源及危害研究進(jìn)展[J]. 環(huán)境工程, 2020, 38(5): 36-42.
LIU P X, WANG X, FENG L. Occurrences, resources and risk of antibiotics in aquatic environment: a review[J]. Environmental engineering, 2020, 38(5): 36-42.
[36] JIANG L, HU X L, XU T, et al. Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China[J]. Science of the total environment, 2013, 458-460: 267-272.
[37] ASHBOLT N J, AMEZQUITA A, BACKHAUS T, et al. Human health risk assessment (HHRA) for environmental development" and" transfer" of" antibiotic" resistance[J]. Environmental health perspectives, 2013, 121(9): 993-1001.
[38] BEN Y J, FU C X, HU M, et al. Human health risk assessment of antibiotic resistance associated with antibiotic" residues" in" the" environment:" a" review[J]. Environmental research, 2019, 169: 483-493.
[39] SHAO J G, YAN R, CHEN H P, et al. Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry Fourier transform infrared analysis[J]. Energy amp; fuels, 2008, 22(1): 38-45.
[40] ZHANG G Y, LIU H, GE Y X, et al. Gaseous emission and ash characteristics from combustion of high ash content antibiotic mycelial residue in fluidized bed and the impact of additional water vapor[J]. Fuel, 2017, 202: 66-77.
[41] 葛亞昕, 張光義, 崔麗杰, 等. 高含水菌渣流化床燃燒NOx、SO2排放特性[J]. 化工學(xué)報, 2017, 68(8): 3250-3257.
GE Y X, ZHANG G Y, CUI L J, et al. Characteristics of NOx and SO2 emission from combustion of antibiotic mycelial residue with high water content in fluidized bed reactor[J]. CIESC journal, 2017, 68(8): 3250-3257.
[42] 黃維, 范同祥. 水熱碳化法的研究進(jìn)展[J]. 材料導(dǎo)報, 2014, 28(S1): 131-135.
HUANG W, FAN T X. Research progress of hydrothermal carbonization method[J]. Materials review, 2014, 28(S1): 131-135.
[43] ZHAO P T, GE S F, MA D C, et al. Effect of hydrothermal pretreatment on convective drying characteristics" of" paper" sludge[J]." ACS" sustainable chemistry amp; engineering, 2014, 2(4): 665-671.
[44] ZHAO P T, SHEN Y F, GE S F, et al. Energy recycling from sewage sludge by producing solid biofuel with hydrothermal" "carbonization[J]." Energy" "conversion" "and management, 2014, 78: 815-821.
[45] PRAWISUDHA P, NAMIOKA T, YOSHIKAWA K. Coal alternative fuel production from municipal solid wastes employing" hydrothermal" treatment[J]." Applied" energy, 2012, 90(1): 298-304.
[46] ZHANG G Y, MA D C, PENG C N, et al. Process characteristics of hydrothermal treatment of antibiotic residue for solid biofuel[J]. Chemical engineering journal, 2014, 252: 230-238.
[47] NEYENS E, BAEYENS J, DEWIL R, et al. Advanced sludge treatment affects extracellular polymeric substances to" improve" activated" sludge" dewatering[J]." Journal of hazardous materials, 2004, 106(2/3): 83-92.
[48] 陳冠益, 劉環(huán)博, 李健, 等. 抗生素菌渣處理技術(shù)研究進(jìn)展[J]. 環(huán)境化學(xué), 2021, 40(2): 459-473.
CHEN G Y, LIU H B, LI J, et al. Treatment of antibiotic mycelial" fermentation" residue:" the" critical" review[J]. Environmental chemistry, 2021, 40(2): 459-473.
[49] ZHANG X, LI X X, LI R, et al. Hydrothermal carbonization and liquefaction of sludge for harmless and resource purposes: a review[J]. Energy amp; fuels, 2020, 34(11): 13268-13290.
[50] WANG L P, CHANG Y Z, LI A M. Hydrothermal carbonization" for" energy-efficient" processing" of" sewage sludge: a review[J]. Renewable and sustainable energy reviews, 2019, 108: 423-440.
[51] FUNKE A, ZIEGLER F. Hydrothermal carbonization of biomass:a summary and discussion of chemical mechanisms" " for" " process" " engineering[J]." " Biofuels, bioproducts and biorefining, 2010, 4(2): 160-177.
[52] CAI C, HUA Y, LI H P, et al. Hydrothermal treatment of erythromycin fermentation residue: harmless performance and bioresource properties[J]. Resources, conservation and recycling, 2020, 161: 104952.
[53] CHEN X J, LIN Q M, HE R D, et al. Hydrochar production from watermelon peel by hydrothermal carbonization[J]." Bioresource" technology," 2017," 241: 236-243.
[54] ZHANG Y, JIANG Q, XIE W L, et al. Effects of temperature, time and acidity of hydrothermal carbonization on the hydrochar properties and nitrogen recovery" from" corn" stover[J]. Biomass" and" bioenergy, 2020, 161: 105952.
[55] SU H C, ZHOU X Y, ZHENG R D, et al. Hydrothermal carbonization of food waste after oil extraction pre-treatment: study on hydrochar fuel characteristics, combustion behavior, and removal behavior of sodium and potassium[J]. Science of the total environment, 2021, 754: 142192.
[56] WEI X, HUANG S, WU Y Q, et al. Effects of demineralization and devolatilization on fast pyrolysis behaviors and product characteristics of penicillin mycelial residues[J]. Journal of hazardous materials, 2022, 430: 128359.
[57] PAULINE A L, JOSEPH K. Hydrothermal carbonization of organic wastes to carbonaceous solid fuel-a review of mechanisms" and" process" parameters[J]." Fuel," 2020,279: 118472.
[58] ZHUANG X Z,ZHAN H,SONG Y P,et al. Insights into the evolution of chemical structures in lignocellulose and non-lignocellulose" " "biowastes" " " during" " " hydrothermal carbonization (HTC)[J]. Fuel, 2019, 236: 960-974.
[59] SHEN Y F. A review on hydrothermal carbonization of biomass and plastic wastes to energy products[J]. Biomass and bioenergy, 2020, 134: 105479.
[60] ZHANG X, LI X X, LI R, et al. Hydrothermal carbonization and liquefaction of sludge for harmless and resource purposes:a review[J]. Energy amp; fuels, 2020, 34(11): 13268-13290.
[61] WANG L P,CHANG Y Z,LI A M. Hydrothermal carbonization" for" energy-efficient" processing" of" sewage sludge:a review[J]. Renewable and sustainable energy reviews, 2019, 108: 423-440.
[62] HE C, GIANNIS A, WANG J Y. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion" behavior[J]." Applied" energy," 2013," 111: 257-266.
[63] MERZARI F, LANGONE M, ANDREOTTOLA G, et al. Methane production from process water of sewage sludge hydrothermal carbonization. A review. Valorising sludge through hydrothermal carbonization[J]. Critical reviews in environmental science and technology, 2019, 49(11): 947-988.
[64] HUANG R X, ZHANG B, SAAD E M, et al. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges[J]. Water research, 2018, 132: 260-269.
[65] ZHANG H D, GAO Z P, AO W Y, et al. Microwave pyrolysis of textile dyeing sludge in a continuously operated auger reactor: char characterization and analysis[J]. Journal of hazardous materials, 2017, 334: 112-120.
[66] CHEN T, ZHANG Y X, WANG H T, et al. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge[J]. Bioresource technology, 2014, 164: 47-54.
[67] ZHU X D, YANG S J, WANG L, et al. Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology[J]. Environmental pollution, 2016, 211: 20-27.
[68] WANG Q J, ZHANG Z, XU G R, et al. Pyrolysis behaviors of antibiotic fermentation residue and wastewater sludge from penicillin production: kinetics, gaseous products" distribution," and" nitrogen" transformation[J]. Journal of analytical and applied pyrolysis, 2021, 158: 105208.
[69] BULUSHEV D A, ROSS J R H. Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review[J]. Catalysis today, 2011, 171(1): 1-13.
[70] 秦巖. 青霉素菌渣熱解制備熱解油和活性炭[D]. 太原:山西大學(xué), 2020.
QIN Y. Preparation of pyrolysis oil and activated carbon by pyrolysis" "of" "penicillin" "slag[D]." "Taiyuan:" "Shanxi University, 2020.
[71] 周保華, 高勤, 郭斌, 等. 碳酸鉀化學(xué)活化法制備土霉素菌渣活性炭研究[J]. 南京理工大學(xué)學(xué)報, 2012, 36(6): 1070-1074.
ZHOU B H, GAO Q, GUO B, et al. Preparation of oxytetracycline bacterial residue activated carbon by chemical activation with potassium carbonate[J]. Journal of Nanjing University of Science and Technology, 2012, 36(6): 1070-1074.
[72] 梁燕, 牛建瑞. 土霉素菌渣活性炭吸附處理低濃度含鉻廢水[J]. 科學(xué)技術(shù)與工程, 2019, 19(30): 397-404.
LIANG Y, NIU J R. Treatment of low concentration chromium wastewater onto oxytetracycline residue activated carbon[J]. Science technology and engineering, 2019, 19(30): 397-404.
[73] 李復(fù)生, 高慧, 耿中峰, 等. 污泥熱化學(xué)處理研究進(jìn)展[J]. 安全與環(huán)境學(xué)報, 2015, 15(2): 239-245.
LI F S, GAO H, GENG Z F, et al. Progress in research of thermochemical treatment of sewage sludge[J]. Journal of safety and environment, 2015, 15(2): 239-245.
CURRENT RESEARCH AND PROSPECT FOR THERMOCHMICAL TREATMENT OF ANTIBIOTIC MYCELIAL RESIDUE
Wei Xiao1, Huang Sheng1, Wu Youqing1, Wu Shiyong1,2, Yang Jinhui 2
(1. Department of Chemical Engineering for Energy Resources, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; 2. State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China)
Abstract:Based on the current situation of antibiotic mycelial residue in China, this paper introduced briefly the categories, properties and hazards of AMR, and various thermochemical treatment and utilization technologies such as combustion, hydrothermal technology and pyrolysis were systematically reviewed. And the research progress of each technology were analyzed, and some suggestions and prospects for future development are put forward. It is also pointed out that the combination of two or more technologies has good application prospects to realize the reduction and harmless treatment, and efficient utilization of resources and energy of AMR.
Keywords:pyrolysis; hydrothermal; incineration; antibiotic mycelial residue; thermochemical treatment; resource utilization
收稿日期:2022-05-30
基金項目:寧夏回族自治區(qū)重點研發(fā)計劃(2021BEG02001);國家重點研發(fā)計劃(2021YFC2101000);國家自然科學(xué)基金(21878096)
通信作者:吳詩勇(1979—),男,博士、教授,主要從事熱化學(xué)轉(zhuǎn)化技術(shù)及煤的液化方面的研究。wsy@ecust.edu.cn