• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lead spall velocity of fragments of ultra-high-performance concrete slabs under partially embedded cylindrical charge-induced explosion

    2023-05-31 01:33:32YiFnLiChenHengboXingQinFngFngyuHn
    Defence Technology 2023年5期

    Yi Fn ,Li Chen ,Heng-bo Xing ,Qin Fng ,Fng-yu Hn

    a State Key Laboratory of Disaster Prevention & Mitigation of Explosion & Impact, Army Engineering University of PLA, Nanjing, Jiangsu, 210007, China

    b Engineering Research Center of Safety and Protection of Explosion&Impact of Ministry of Education,Southeast University,Nanjing,Jiangsu,211189,China

    c State Key Laboratory of High Performance Civil Engineering Materials, Nanjing, Jiangsu, 211103, China

    Keywords: Ultra-high-performance concrete Reinforced concrete slabs Explosion Fragment velocity Blast resistance

    ABSTRACT When an explosion occurs close to or partially within the face of a concrete structure,fragments are rapidly launched from the opposite face of the structure owing to concrete spalling,posing a significant risk to nearby personnel and equipment.To study the lead fragment velocity of ultra-high-performance concrete (UHPC),partially embedded explosion experiments were performed on UHPC slabs of limited thickness using a cylindrical trinitrotoluene charge.The launch angles and velocities of the resulting fragments were the determined using images collected by high-speed camera to document the concrete spalling and fragment launching process.The results showed that UHPC slabs without fiber reinforcement had a fragment velocity distribution of 0-118.3 m/s,which are largely identical to that for a normal-strength concrete (NSC) slab.In addition,the fragment velocity was negatively correlated to the angle between the velocity vector and vertical direction.An empirical Eq.for the lead spall velocity of UHPC and NSC slabs was then proposed based on a large volume of existing experimental data.

    1.Introduction

    When an explosive charge is detonated in the close-in range of a concrete structure,the compressive stress waves generated by the explosion pass through the concrete structure and reflect off the free surface on the opposite side,converting the compressive waves into tensile waves that cause concrete spalling.High-speed fragments released through this process can cause serious harm to nearby personnel,equipment,or structures.Therefore,examination of the fragmentation of ultra-high-performance concrete(UHPC)and estimation of its fragment size and velocity distribution are important in the design of protective structures for fortification against blast loads.The explosions involved in the study of concrete slab spalling typically employ near,contact,or embedded charges,each with a different spatial relationship to the concrete structure.

    A significant body of research exists on the fragment size distribution of concrete structures subjected to various explosion types.Wu et al.[1]discovered that the concrete fragment sizes generated by near-charge explosions exhibited both a Weibull and a Rosin-Rammler-Sperling-Bennet distribution.Shi et al.[2]collected the reinforced concrete slab fragments generated by nearcharge blasts to analyze their mass and size distribution,finding that the total number of fragments and percentage of small fragments increased with the mass of the explosive charge.Li et al.[3]performed contact-charge explosion experiments on seven different concrete slabs,including two normal-strength concrete(NSC) and five UHPC slabs.The size distributions of the NSC and UHPC slab fragments were best described by the Weibull distribution and log-normal distribution,respectively.

    Moreover,a significant quantity of experimental data has been collected on the fragment velocities generated by concrete structures subjected to blast loads.McVay [4]and the United Facilities Criteria(UFC)[5]studied the fragmentation of concrete slabs at the opposite end of near-charge explosions and measured the fragment velocity distribution in a small number of conditions.Shi et al.[2]measured the distance travelled by fragments from a vertical concrete slab to determine their ejection velocity in the direction normal to the slab.However,these velocities likely contained significant errors because the possibility of continued fragment rolling owing to their inertia was not considered.Furthermore,it was impossible to precisely determine the initial height and velocity direction of the fragments.D?rr et al.[6]measured the debris launch velocities (hereafter referred to as ‘spall velocities’) of concrete structures subjected to internal explosive loads,and on this basis proposed an empirical Eq.for predicting spall velocities.Lu and Xu [7,8]applied the conservation of energy approach to propose spall velocity Eq.s for the concrete fragments generated by internal (near-charge) explosions;the results closely agreed with the experimental data of D?rr et al.[6].

    L?nnqvist[9],Yang et al.[10],and Kuenzel et al.[11]used highspeed cameras to measure the lead spall velocity of fragments launched from the back of contact-charge explosion loaded concrete slabs.These experiments generally demonstrated that spall velocities increased with decreasing thickness for each equivalent trinitrotoluene (TNT) mass;that is,given the same slab thickness,the spall velocities increased with the explosive mass.Yang et al.[10]performed a dimensional analysis to fit the experimentally measured spall velocities and thereby obtain an empirical Eq.describing them.However,the applicability of this Eq.was limited owing to the small volume of data used in their analysis.

    Erik et al.[12]measured the shape,velocity magnitude and angle,and cloud density of the fragments produced by the explosion of a fully embedded charge in concrete,then analyzed the factors affecting the initial debris velocity using their experimental data.Haberacker et al.[13]performed experiments to measure the launch velocities,launch angles,masses,and shapes of the fragments ejected from the backs of brick walls subjected to near,contact,and embedded charges.However,no experimental data could be extracted from these reports,as their contents are confidential.

    Numerical simulations can be used to acquire information that is difficult to obtain experimentally;this is particularly useful in the study of explosions.For example,Zhou and Hao[14]constructed a two-dimensional axially symmetrical model of a concrete material with randomly distributed high-strength coarse aggregates and a low-strength mortar matrix using AUTODYN to study the failure and fracturing of concrete slabs under contact blast loading.They found a significant correlation between the size distribution of the fragments and the aggregate size,and determined that the smaller the fragments,the higher their launch velocities.Wu et al.[15]used LS-DYNA with a zero-thickness cohesive element,which sidesteps the mass loss associated with conventional element erosion algorithms,to simulate the failure of concrete structures owing to internal blast loads created by charges contained in chambers.The explosive charge was placed in a rigid cubic chamber with a concrete slab cover to analyze the size distribution,launch velocities,launch angles,and projectile distances of the fragments generated by various internal blast loads.It was shown that an increase in the blast load decreased the number,average volume,and maximum characteristic length of large debris,and nonlinearly increased the total number of fragments.The fragment launch velocities exhibited a normal distribution in which the average velocity increased with the blast load.Furthermore,60%-70% of the debris was launched at angles between 80°and 90°,i.e.almost vertical to the surface.

    The size distribution of the fragments from blast-loaded concrete structures has been studied by multiple researchers,likely owing to the relative ease of collecting and analyzing blastgenerated fragments.However,there are limited studies on fragment launch velocities (magnitudes and angles) and little publicly available data describing the fragment launch velocities of UHPC structures.Furthermore,only a few Eq.s can be used to calculate fragment velocities.This scarcity of fragment velocity studies can mainly be ascribed to the difficulty of measuring the positional changes,velocities,launch angles,masses,and sizes of randomly generated fragments in a three-dimensional space.In most cases,it was only possible to measure one type of these data in a given experiment,e.g.lead spall velocity.In addition,although numerical simulations are a convenient way to obtain blast-related data,there remain many disparities between the results obtained by numerical simulations and real-world experiments.

    To investigate the distribution of the spall velocities from a UHPC structure subjected to blast loads in this study,a novel experimental device was specially constructed to perform partially embedded explosion experiments on two UHPC slabs and one NSC slab.The mass,size,and spatial distributions of the fragments were examined,and their launch velocities (magnitudes and angles)were obtained by analyzing high-speed camera footage of the concrete spalling process.Finally,an empirical Eq.for the lead spall velocity was derived from the experimental data collected in this and previous studies.

    2.Test program

    2.1. Specimen preparation

    A cross-sectional schematic of the slab specimens employed in this study is shown in Fig.1.The square slabs had a side length of 3000 mm and thickness of 560 mm or 620 mm according to the thickness required for the explosion to perforate the slab.Three slabs were tested:one made of NSC and two made of UHPC.The test program is described in Table 1.

    Table 1 Test program.

    Fig.1.Cross-sectional schematic of the experimental concrete slab specimen.

    The concrete slabs were reinforced with 8 mm diameter HRB400 rebars with a 400 MPa yield strength(Fig.1).These rebars were spaced at 100 mm in the horizontal directions and arranged in three layers with a 30 mm protective cover.The vertical rebar ties were arranged in a 200 × 200 mm2quincunx pattern.

    Cast TNT charges with a density of 1.55 g/cm3were used in the experiments.The diameter,height,aspect ratio,and average mass of the cylindrical TNT charges were 122 mm,561 mm,4.6,and 10,165 g,respectively (Fig.1).The TNT charges were detonated using an electric igniter at an initiation point located on the axis atop the TNT charge.In each concrete slab,the cylindrical TNT charge was placed at the geometric center of the slab's surface in a prefabricated hole,150 mm in diameter and 280 mm deep(half the height of the cylindrical charge).

    Commercial Grade C60 concrete (as defined in the GB/T50107-2010 Chinese Standard) was used as the NSC.Standard tests were conducted to determine that the average compressive strength,elastic modulus,tensile strength,and Poisson's ratio of the NSC were 51.7 MPa,36.0 GPa,2.85 MPa,and 0.2,respectively.The UHPC was provided by Sobute New Materials Co.Ltd.[16],and had a design bulk density of 2480 kg/m3.The UHPC had a water/cement ratio of 0.19,sand percentage of 44% by mass,gravel with particle sizes of 5-16 mm and a compressive strength ≥120 MPa,additive(PCA-I) content of 2.0% by mass,and a total cementitious material content of 680 kg/m3(75%Onoda P II 525 cement and 25%Sobute New Materials HDC(V) UHPC admixture).The standard tests determined the UHPC to have an average compressive strength of 104.0 MPa,an elastic modulus of 43.44 GPa,a tensile strength of 5.0 MPa,and a Poisson's ratio of 0.13-0.16.

    2.2. Experimental setup

    An explosion produces intense flaring and copious amounts of dust that will wrap around the slab and thereby interfere with the observation of fragments being launched from the back of the specimen slab.To address this problem,a blast-resistant chamber was specially designed and constructed as shown in Fig.2.The base(Fig.2(a))was filled with quartz sand to buffer the shockwave and impact load from the fragments.A window sealed with optical glass was installed on one side of the chamber to allow the use of a highspeed camera to photograph the inner chamber from a close distance.A sheet of coordinate paper (comprising alternating black and white blocks with a side length of 0.1 m) was installed on the opposite side of the chamber to measure the speed of the ejected fragments.

    Fig.2.Structural diagrams of the experimental apparatus:(a)Base;(b)Upper surface.

    The top of the experimental apparatus is shown in Fig.2(b).Three removable supporting plates were placed on top of the base,one of which supported the slab in the middle of the base on ledges running parallel along each side of the viewing axis through the optical glass window.The length of the overlap between these ledges on supporting plate and specimen was 0.2 m.The area of this overlap was covered with a~5 cm thick quartz sand layer.The other two sides of the specimen were unsupported.A FASTCAM SA-Z high-speed camera was used in this experiment (Fig.3),protected in a wooden box,and triggered simultaneously with the detonation of the cylindrical charge.

    Fig.3.High-speed camera and its protective box.

    A schematic of the fragment velocity measurement system,illustrating the relative positions of the high-speed camera,fragments,and coordinate paper,is shown in Fig.4.The center of the camera lens was approximately level with the upper surface of the sand cushioning layer.The optical axis of the lens was aimed upward along the center of the specimen slab's bottom surface in the same plane as the vertical centerline of the coordinate paper.In the horizontal plane,the center of the specimen slab was 4.7 m from the camera lens and 4.2 m from the coordinate paper.The fragments generated were expected to spread out in an approximately axisymmetric manner.To calculate the displacement of a fragment between consecutive video frames,it was necessary to establish the relationship between the fragment and coordinate paper in space,and account for the visual biases resulting from the angle of the camera with respect to the coordinate paper.

    Fig.4.Fragment velocity measurement system.

    3.Test results

    3.1. Fragment characteristics

    The typical damage suffered on the top and bottom surfaces of a slab specimen owing to the detonation of a cylindrical charge is shown in Fig.5.All of the slabs in this study were fully penetrated by the explosion.The fragments launched from the slab impacted the quartz sand cushion below the slab,forming a debris pile,as shown in Fig.6.The impact formed a crater on the sand cushioning layer,causing the quartz sand around the debris pile to bulge upwards.The conical debris piles were predominantly located directly below the hole in the slab,while a few fragments of varying size were scattered around the perimeter of the debris pile.These scattered fragments may have bounced off the debris pile or rolled out of it;alternatively,they may have been directly launched from the back of the specimen.

    Fig.5.Damage on the top and bottom surfaces of a specimen slab: (a) Top surface;(b) Bottom surface.

    Fig.6.Top-down view of the debris piles.

    After detonation,GPa-level shockwaves were formed at the locations where the concrete slab was in contact with the explosive,compressing the adjacent material into powder and forming a cavity.At a certain distance from the explosive charge,the concrete broke into smaller fragments.At a further distance,radial and circumferential cracks were formed in the concrete.The blast compression wave eventually reflected off the free surface on the bottom of the specimen slab,transforming it into tensile waves which then caused the spalling of the slab.The intensity of the reflected tensile waves increased toward the center of the slab specimens,whereas the size of the released fragments decreased[17,18].As the blast compression waves travelled farther from the explosive charge,their intensity was weakened by the repeated reflection between the old and new (spalled) free surfaces.This process primarily causes tensile failure in the concrete,leading to the generation of large fragments and explaining the considerable disparities between the fragment volumes shown in Fig.6.

    In the experiment,the finer fragments were usually found in the lower layers of the debris pile with the larger fragments on top.These larger fragments always had one flat surface,indicating that they were ejected from either the top or bottom surfaces of the slab.As shown in Fig.5,several larger fragments remained at the edges of the hole and spalling crater instead of falling off the slab;this can be attributed to mechanical interlocking between the fragments[19],as well as the presence of the rebar.Consequently,it can be concluded that the average launch velocity of the smaller fragments was greater than that of the larger fragments,which is consistent with the findings of [2,14].

    Fig.7 shows a selection of fragments from Test 1.The fragment volumes exhibited a wide distribution.The larger fragments exhibited a flattened shape with relatively sharp edges and were significantly thicker in their middle portions than at their sides.The size of a fragment was defined as the maximum distance between two points on its profile.The smallest fragments only weighed a few grams or were dust-like.Conversely,the largest fragments were always larger than 200 mm and weighed over 2 kg.The largest fragment was obtained from Test 1(260 mm),whereas the heaviest fragment was obtained from Test 2(2.8 kg).In this experiment,there was no significant correlation between the size and mass of the largest fragment,thickness of the slab,and concrete strength.

    Fig.7.Shapes of a sampling of fragments from Test 1.

    3.2. Fragment velocities

    As there was a gap between the specimen slab and supporting plates,the fire and dust generated by the explosion reached the back of the slab through this gap,thus obstructing the high-speed camera.Consequently,only two sets of images were useable for the image analysis.

    3.2.1.Analysis of the fragmentflight process

    The raw images collected by the high-speed camera during Test 2 are shown in Fig.8.These images were cropped to pixels 394-723 along the vertical axis before increasing their brightness.The highspeed camera was configured to take 1000 frames per second,that is,1.0 ms between frames.An analysis of the images determined that each pixel showing the coordinate paper represented a physical length of 6.13 mm;each pixel thus represented a distance of 3.24 mm on the vertical plane passing through the center of the slab specimen,parallel to the coordinate paper.

    Fig.8.Photographs of spall fragments taken using the high-speed camera in Test 2.

    In Test 2,no significant flaring or spalling was observed in the 39th frame,whereas flaring and some spalling were observed in the 40th frame,suggesting that the detonation occurred between these two frames.In Fig.8,fragmentation first occurred at the center of the slab,where the fragments were launched with high velocities and large displacements.The fragments in the middle of the slab covered half the distance between the slab and ground by the 43rd frame,and reached the surface of the sand cushion in the 44th frame.In the 45th frame,some of the sand on the ground can be observed to have been raised by the impact of fragments on the sand cushion.Moreover,it can be observed that the camera was slightly shaking during this frame.However,this will not affect the results because the shaking did not occur until five frames after the explosion;sufficient data was collected in this time to determine fragment velocity and angle.

    Several measurement lines were defined to help characterize the fragment velocity distribution,and the angle between the velocity of a fragment and the vertical direction was defined as α.As shown in Fig.9,a white dotted line-labelled line 1-was drawn at the horizontal center of the fragment (approximately corresponding to a pixel coordinate of 550).The velocity of each fragment was calculated by recording the vertical coordinate where its lower boundary intersected with this line.Additional lines were then drawn 50 pixels away on the left and right sides of line 1,labelled line 2 and line 3,respectively.By analyzing the images,the fragments between measurement line 2 and line 3 always had α values less than 15°,whereas beyond these lines,α ranged between 15°and 27°.Thus,the α value of a fragment generally increased with distance from the central point at line 1.

    Fig.9.Illustration of the measurement lines.

    To account for the effects of α in the measurement of fragment speed,the four red lines labelled a-d in Fig.9 were drawn at an angle of 16.9°to the white lines.As the angle between the velocity of a fragment and lines a-d was always less than 15°,the difference between the measured and actual fragment velocities was generally less than 3.4%.

    For further analysis,the Beyond Compare software was used to perform a pixel-wise comparison between each frame to accurately determine the location of a fragment by identifying the inter-frame differences.The white,blue,and red regions of the resulting comparative image represent fully identical,similar,and different pixels,respectively.Fig.10 shows the pixel-wise comparisons between frames 39/40 and 41/42.As these frames are close to each other in the temporal dimension,their differences are dominated by the fragments moving at high speeds.However,it is clearly necessary to remove interference owing to flare and dust from the explosion using the raw images as guides.By analyzing the effects of different tolerances on the image resolution,a tolerance of 2 was found to be optimal in removing such interference.

    Fig.10.Pixel-wise comparisons performed using the Beyond Compare software: (a) Comparison between the 39th and 40th frames;(b) Comparison between the 41st and 42nd frames.

    3.2.2.Analysis of fragment velocities

    Fig.11 shows the calculated fragment velocities for Test 2.The horizontal and vertical axes of Fig.11(a) depict the frame number and pixel coordinates,respectively.The similar slopes for line 1,line 2,and line 3 indicate similar fragment velocities,which were determined to be 118.3 m/s,113.4 m/s,and 111.5 m/s,respectively,with coefficients of determination (R2) of 0.998,0.997,and 0.989,respectively,using the linear least square method.Based on the specimen geometry,the vertical pixel coordinate of any fragment as it separates from the specimen slab's lower surface(between line 2 and line 3) should range between 524 and 528.Thus,as the detonation occurred between the 39th and 40th frames,the fitted lines should pass through the grey rectangle in Fig.11(a).As all three fitted lines meet this requirement,the credibility of the calculated velocities is confirmed.

    Fig.11.Calculation of fragment velocities in Test 2: (a) Measurement line 1-line 3;(b) Measurement line a-line d.

    In Fig.11(b),the horizontal coordinate is time,with 0 being the start time of the 41st frame,and the vertical coordinate corresponds to the relative displacements from the pixel coordinates in the 40th frame;thus,the velocity of a fragment is defined as the slope of its line in this Fig.11(b).The fragment velocities at inner lines b and c were 98.5 m/s and 83.0 m/s (R2=0.996 and 0.995),respectively,whereas that at outer lines a and d were 44.4 m/s and 49.5 m/s (R2=0.979 and 0.992),respectively.

    Note that the initial kinetic energies of ejected fragments are produced by the tensile waves in the concrete slab,which are formed by the reflection of the compressive wave off the free surface.These fragments are then accelerated by the blast wave penetrating the concrete slab.As the explosion occurs over a short time,the fragments quickly reach their maximum velocities.Therefore,the fragment velocities measured in this experiment can be assumed to be constant within the experimental time frame.

    A summary of the measured fragment velocity distribution in Test 2 is shown in Fig.12.The fragments at the center exhibited the highest velocities with an α of 0°(the vertical direction).The fragment α and launch velocity decreased with increasing distance from the slab center,as the fragments at the center were located directly below the explosive charge.This confirms that the blast stress wave,which will be reflected normally(at 0°)off the back of the concrete slab,was most intense at this point.As this point was also closest to the hole formed by the explosion,a fragment at this point gained the highest energy and acceleration from the blast wave.At locations farther away from the center,the shockwave will be obliquely reflected off the back of the slab,with the angle of reflection increasing with increasing distance from the center.Furthermore,the acceleration provided by the blast wave decreased with increasing distance from the hole formed by the explosion.

    Fig.12.Distribution of the fragment velocities in Test 2.

    The fragment velocities calculated for Test 3 are shown in Fig.13.Owing to the severity of the obstruction caused by the dust,it was only possible to measure the fragment velocity at the central point,which was 81.6 m/s (R2=0.990).Note that because the smoke completely obscured the view of the fragments in Test 1,the fragment velocity could not be measured.

    Fig.13.Fragment velocity calculations for Test 3.

    4.Fragment velocity model

    4.1. Model development

    Fragment velocity calculations are important when evaluating the threat posed by spalling concrete debris and designing structural fortifications.If a concrete slab is sufficiently thick,a contact explosion will not cause concrete spalling at its back.As the slab in question becomes thinner,spalling begins to occur but the launch velocities of the resulting debris usually remain below 1.5 m/s [5].As the thickness of the concrete slab is further reduced,the explosion penetrates the slab,accelerating the fragments to velocities greater than 100 m/s.The energy from the detonation induces severe compression and spalling in the concrete structure before dissipating into the air.Furthermore,the part of the blast wave propagating to the back of the slab will accelerate its spalling fragments.

    As fragment velocity depends on the material characteristics of the explosive and concrete,shape and mass of the explosive charge,size of the concrete slab,and type of reinforcement,it is extremely difficult to derive an analytical solution for fragment velocity.Therefore,this study attempted to derive an empirical equatioin for fragment velocity based on publicly available data and the experimental data from this work.

    In the UFC standard [5],initial fragment velocity is typically calculated using the Gurney method[20],where the initial velocity is a function of the shape,type,and weight of the explosive charge as well as the mass ratio between the explosive charge and its metallic casing,as follows:

    Note that Eq.(1) is applicable to rectangular explosives in contact with a metal plate of equal surface area.As the thickness-tosurface area ratio is small in this scenario,the velocity of the fragment is always perpendicular to the plate.The forms of Eq.s applying to other scenarios are generally similar to that of Eq.(1).Indeed,a term similar to theC/Mcasused in Eq.(1) can be used to calculate concrete fragment velocity when the explosive charge is contained inside a chamber [6-8]as follows:

    whereMconis the mass of the entire concrete slab(kg);γ is the ratio of the mass of the explosive to the volume of the chamber(kg/m3);Lis the ratio of the volume of the chamber to cross-sectional area of the concrete slab (m);andMais the mass per unit area of the concrete slab (kg/m2).

    In a contact explosion on a concrete slab,fragment velocity can be calculated using Eq.(1)only if the concrete slab is infinitesimally thin and the explosion-induced changes in the physical properties of the materials are negligible.IfMcasis infinitesimally small,the maximum velocity isHowever,though concrete spalling is induced by the reflection of the tension wave off of the back free surface of the slab,the basic concept underlying the Gurney method is energy conservation with a one-dimensional assumption.As a result,the Gurney method cannot be directly used to analyze the concrete fragment velocity in this scenario.Thus,an Eq.for the velocity of the concrete fragments generated when an explosive charge is detonated on the surface of a concrete slab of a certain thickness can be derived using the form of Eq.(1)to fit the experimental results as follows:

    However,a contact explosion is a localized interaction between the charge and the plate;therefore,it is obviously unreasonable to use the mass of the entire concrete slab(Mcon)in Eq.(3).When the concrete slab is sufficiently wide,the effects of its width on the damage induced within and the associated fragment velocities will be negligible.Therefore,C/Mconin Eq.(3)can be replaced withwhereHis the thickness of the concrete slab and ρconis the density of the concrete.As the concrete density can be considered constant,Eq.(3) can be revised as

    Thus,a new empirical Eq.for predicting the lead spall velocity of a concrete slab is ultimately obtained.

    4.2. Model verification

    There is a significant body of data demonstrating the close relationship between the damage suffered by concrete slabs in close-in explosions and the value ofH/[4,9,22].Consequently,several methods based onH/have been proposed to predict whether spalling or penetration will occur in a concrete slab during contact explosions.As a rule,the damage suffered by a concrete slab increases with decreasingH/.In this study,v/was therefore plotted againstH/to analyze the effects ofH/on the fragment velocity (Fig.14).Experimental fragment velocity data from the literature were also included in this plot,as shown in Table 2.Though in a contact explosion,His the thickness of the slab,as this study employed partially embedded explosives,Hwas defined as the distance between the bottom of the explosive charge and back of the concrete slab.As the charge was embedded a certain depth inside the slab,the sides of the charge were obstructed by the concrete,increasing the damage compared to that caused by a contact explosion.However,this effect may be diminished if the explosive has an excessively large aspect ratio.The equivalent TNT masses in this study (whoseH/values are indicated by the red arrows in Fig.14) were therefore calculated by accounting for the effects of the embedment and aspect ratio using the methods of Haas and Rinehart [23].

    Fig.14.Comparison of the fragment velocities from concrete spalling.

    Note that if the explosive and slab are separated by a distance(as in a near-charge explosion),the intensity of the shockwave entering the concrete slab will be attenuated by the air between them.However,as this scenario differs completely from a contact explosion,it was not included in the discussion and analysis in this study.

    In Fig.14,increasing the value ofH/decreases the damage in the concrete slab and fragment velocity.The fragment velocity is at its maximumis zero;that is,when the concrete slab is infinitesimally thin.In multiple studies,concrete spalling was not observed to occur at the back of a sufficiently thick slab,i.e.the fragment velocity fell to zero.Morishita [22]experimentally determined the threshold for concrete spalling to be,whereas Zheng [26]obtained a threshold of 0.342.The experimental data of Zhang [25](Fig.14) showed that the fragment velocity falls to zero after

    An empirical equation for fragment velocity based on the International System of Units was therefore obtained by fitting the experimental data in Fig.14 using the least squares method(R2=0.999).In this equation.,the concrete spalling threshold was conservatively set toH/=0.36 as follows:

    Fig.14 shows the curve corresponding to Eq.(5) as well as two other curves corresponding to a 20% increase and decrease in the exponent (25).All the measured fragment velocities are also plotted on the graph.The empirical equation and experimental data agree well with one another.Although the maximum velocity was unaffected by the changes to the exponent,an increase to the absolute exponent value decreased the fragment velocity andthreshold,corresponding to the point at whichvfalls to zero.Note that the correct value of the exponent may depend on factors not otherwise included in Eq.(5),such as the compressive and tensile strengths of the concrete,explosive shape and mode of detonation,or inclusion of rebar/steel fibers.

    4.3. Effects of reinforcement content and concrete strength

    In Fig.14,the experimentally measured fragment velocities obtained by Yang et al.[10]are shown to be generally smaller than those of L?nnqvist [9],whose measurements are in turn smaller than those of Kuenzel et al.[11].Consequently,the presence of steel reinforcing bars (Table 2) may significantly affect fragment velocities.As the reinforcement ratio depends on the diameter and spacing of the rebar as well as the slab thickness,and theH/term already accounts for the effects of slab thickness,it is only necessary to define a parameter that independently characterizes the effects of the rebar content on fragment velocity.As the concrete fragments are located on the opposite face from the explosive(bottom of the slab),the rebar on the bottom of the slab will exert a greater effect on the fragment velocity than that on the top.Thus,the reinforcement content β is defined as a new dimensionless parameter describing the volumetric steel content of a 1000 × 1000 × 20 mm3rectangle that passes through the bottom rebar of the concrete slab,with its height (20 mm)oriented in the same direction as the slab thickness.As these dimensions are larger than the diameters of most rebars,it can be generalized to a wide range of experimental settings.The expression for β is given by

    whereDis the rebar diameter and δ is the rebar spacing (mm).

    The experimental data in Fig.14 were re-plotted to analyze the effect of β as shown in Fig.15.The horizontal and vertical axes are unchanged,but the β value of each data point is indicated using colors.The black data points (β=0) always exhibit the highest fragment velocity at each value offollowed by the blue data points (β=0.64),and finally the red data points (β >3.9).Consequently,it can be concluded that the fragment velocity decreases with increasing β.However,more research is required to quantify the effects of β on the fragment velocity.

    Fig.15.Effects of β on fragment velocity.

    Fig.14 includes the fragment velocity data from Test 2 and Test 3,which used NSC and UHPC slabs with the same reinforcement content.As the compressive strength,reinforcement content,and Gurney constant of the NSC slab used in this study were identical to those of the NSC slab used by Yang et al.[10],the fragment velocities for the NSC slab in this study were similar to those determined by Yang et al.However,owing its relatively higher reinforcement content,the fragment velocities for the NSC slab in this study were lower than those observed by L?nnqvist [9].

    The compressive and tensile strengths of the UHPC employed in this study were approximately twice those of the NSC used by Yang et al.[10],who used commercial Grade C40 concrete.However,the fragment velocities for the UHPC slabs obtained in this study were identical to those obtained by Yang et al.[10]whenH/was the same,as shown in Fig.14.As the UHPC slabs in this study otherwise had a similar reinforcement content to the NSC slabs used by Yang et al.[10],it can be concluded that concrete strength does not significantly affect the fragment velocity.This observation can be explained by analyzing the effects of concrete strength on the explosive damage suffered by concrete slabs.Morishita et al.[22]performed contact explosion experiments on high-strength concrete slabs with a compressive strength of 84.8 MPa(approximately twice that of NSC) with no steel fiber reinforcement.They found that concrete strength did not have a significant effect on concrete spalling.Hence,it follows that concrete strength would not significantly affect fragment velocity.

    Finally,note that as the addition of steel fibers has been found to significantly reduce the damage suffered by a concrete slab (especially UHPC slabs) during a contact explosion [3,27,28]and thus reduce fragment velocities,the proposed Eq.is not applicable to UHPC slabs that have been reinforced with steel fibers.

    5.Conclusions

    In this work,partially embedded explosion experiments were performed on reinforced UHPC and NSC slabs.The characteristics and launch velocities of the fragments ejected from the backs of these concrete slabs were then quantified and used to obtain an equation for lead fragment velocity.The following conclusions were drawn from the results.

    (1) The fragment velocities for the UHPC slab ranged from 0 to 118.3 m/s with a maximum angle of 27°from vertical.The fragment velocities decreased as this angle increased.Wide ranges of fragment volumes were generated by the partially embedded explosions.Smaller fragments exhibited a higher mean velocity than their larger counterparts.

    (2) Fragment velocity was observed to be negatively correlated withH/;that is,the greater the damage suffered by the concrete,the higher the fragment velocity.The fragment velocity was also negatively correlated with the reinforcement content.However,there was no significant correlation observed between the fragment velocity and concrete strength because the fragment velocities of a UHPC slab showed no significant differences compared to those of an equivalent NSC slab.It was not possible to analyze or quantify the relationship between angle and velocity at this time owing to the limitations of the data collected in this study.

    (3) An equation was proposed to describe the lead spall velocity of fragments generated by a contact explosion on a concrete slab based on a theoretical Eq.for the fragment velocities and experimental data collected in this and previous studies.However,further research is required to confirm the effectiveness of the equivalence method used to calculate the effects of an embedded-charge explosion based on a contactcharge explosion.

    Funding

    This work was supported by the National Natural Science Foundation of China [No.51978166].The funding source was not involved in the study design;in the collection,analysis,and interpretation of data;in the writing of the report;and in the decision to submit the article for publication.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    We would like to thank Editage [www.editage.cn]for English language editing.

    2022亚洲国产成人精品| 97热精品久久久久久| 国产精华一区二区三区| 色尼玛亚洲综合影院| 欧美日本视频| 国产av在哪里看| 日韩大片免费观看网站 | 1024手机看黄色片| 18禁动态无遮挡网站| 男女那种视频在线观看| 成人高潮视频无遮挡免费网站| 一区二区三区高清视频在线| 国产精品人妻久久久影院| 综合色丁香网| 亚洲人与动物交配视频| 天堂av国产一区二区熟女人妻| 亚洲中文字幕日韩| 日韩欧美三级三区| 国产在视频线精品| 午夜久久久久精精品| 成人高潮视频无遮挡免费网站| 亚洲精品,欧美精品| 国产亚洲午夜精品一区二区久久 | 我要搜黄色片| 亚洲一区高清亚洲精品| 国产探花极品一区二区| 少妇被粗大猛烈的视频| 国产免费视频播放在线视频 | 欧美成人午夜免费资源| 国产精品一区二区三区四区免费观看| 久久久久精品久久久久真实原创| 99九九线精品视频在线观看视频| 免费黄色在线免费观看| 国产又色又爽无遮挡免| 日产精品乱码卡一卡2卡三| 色哟哟·www| 亚洲av熟女| 18禁在线播放成人免费| 亚洲欧美日韩高清专用| 亚洲五月天丁香| 视频中文字幕在线观看| 日本免费a在线| 在线观看美女被高潮喷水网站| 日日摸夜夜添夜夜爱| 国产一区二区亚洲精品在线观看| 国产私拍福利视频在线观看| 国产av不卡久久| 天美传媒精品一区二区| 国产精品精品国产色婷婷| 精品国产三级普通话版| eeuss影院久久| 九九久久精品国产亚洲av麻豆| 国产伦精品一区二区三区视频9| 男人舔奶头视频| 国产av在哪里看| 波多野结衣高清无吗| 2021天堂中文幕一二区在线观| 人人妻人人澡欧美一区二区| 22中文网久久字幕| 国产精品综合久久久久久久免费| 亚洲精品成人久久久久久| 免费观看人在逋| 三级国产精品片| 国产精品人妻久久久久久| 欧美一区二区精品小视频在线| 黑人高潮一二区| 日韩高清综合在线| 国产 一区 欧美 日韩| 一级黄色大片毛片| 精品国产三级普通话版| 国产精华一区二区三区| 国产欧美日韩精品一区二区| 男人舔奶头视频| 国产亚洲最大av| 水蜜桃什么品种好| 日韩国内少妇激情av| 亚洲欧美精品专区久久| 免费观看人在逋| 亚洲精品456在线播放app| 亚洲在久久综合| 亚洲成人精品中文字幕电影| 欧美激情在线99| 成人亚洲精品av一区二区| 亚洲最大成人中文| 亚洲怡红院男人天堂| 深爱激情五月婷婷| 老司机福利观看| 啦啦啦观看免费观看视频高清| 少妇熟女aⅴ在线视频| 日本免费在线观看一区| 少妇人妻一区二区三区视频| 日本av手机在线免费观看| 男人狂女人下面高潮的视频| 黄色一级大片看看| 高清日韩中文字幕在线| 1024手机看黄色片| 91狼人影院| 欧美日韩在线观看h| 一级二级三级毛片免费看| 麻豆乱淫一区二区| 国产午夜精品论理片| 搡老妇女老女人老熟妇| 亚洲精品456在线播放app| 国产精品乱码一区二三区的特点| 亚洲av男天堂| 亚洲四区av| 青春草视频在线免费观看| 三级国产精品欧美在线观看| 中文字幕熟女人妻在线| 国产久久久一区二区三区| 小说图片视频综合网站| 亚洲av免费在线观看| 一本一本综合久久| 91狼人影院| 97人妻精品一区二区三区麻豆| 日本免费a在线| 欧美成人午夜免费资源| 午夜福利在线观看免费完整高清在| 亚洲自偷自拍三级| 在线免费观看不下载黄p国产| 91精品一卡2卡3卡4卡| 欧美日韩在线观看h| 91久久精品国产一区二区成人| 精品99又大又爽又粗少妇毛片| 精品酒店卫生间| 菩萨蛮人人尽说江南好唐韦庄 | 国产91av在线免费观看| 国产av码专区亚洲av| 国产欧美另类精品又又久久亚洲欧美| 久久久久性生活片| 伦理电影大哥的女人| 国产成人91sexporn| 一区二区三区乱码不卡18| 国产一区有黄有色的免费视频 | 午夜福利在线在线| 毛片一级片免费看久久久久| 久久久a久久爽久久v久久| 我的老师免费观看完整版| 九色成人免费人妻av| 日韩 亚洲 欧美在线| 小蜜桃在线观看免费完整版高清| 草草在线视频免费看| 欧美成人a在线观看| 国产大屁股一区二区在线视频| 欧美三级亚洲精品| 99在线人妻在线中文字幕| 2021少妇久久久久久久久久久| 欧美97在线视频| 免费看a级黄色片| 青青草视频在线视频观看| 晚上一个人看的免费电影| av福利片在线观看| 97超视频在线观看视频| 欧美xxxx性猛交bbbb| 久久久欧美国产精品| 2021天堂中文幕一二区在线观| 亚洲欧美日韩卡通动漫| 久久精品熟女亚洲av麻豆精品 | 深夜a级毛片| 免费搜索国产男女视频| 天堂av国产一区二区熟女人妻| 亚洲成人精品中文字幕电影| 99久久精品国产国产毛片| 一级毛片aaaaaa免费看小| 只有这里有精品99| 能在线免费看毛片的网站| 青春草视频在线免费观看| 国产精品福利在线免费观看| 一边摸一边抽搐一进一小说| 久久久欧美国产精品| 精品久久久久久久久亚洲| 亚洲国产最新在线播放| 久久久久免费精品人妻一区二区| 丰满人妻一区二区三区视频av| 国产老妇伦熟女老妇高清| 国产精品不卡视频一区二区| 国产不卡一卡二| 亚洲综合精品二区| 91精品一卡2卡3卡4卡| 深夜a级毛片| 性插视频无遮挡在线免费观看| 十八禁国产超污无遮挡网站| 汤姆久久久久久久影院中文字幕 | 成人无遮挡网站| 国产淫语在线视频| 五月伊人婷婷丁香| 能在线免费观看的黄片| 看十八女毛片水多多多| 欧美一区二区国产精品久久精品| 精品久久久久久久久久久久久| 在线天堂最新版资源| 男女国产视频网站| 国产乱人偷精品视频| 国产爱豆传媒在线观看| 免费不卡的大黄色大毛片视频在线观看 | 日日摸夜夜添夜夜添av毛片| 小蜜桃在线观看免费完整版高清| 亚洲国产日韩欧美精品在线观看| 大又大粗又爽又黄少妇毛片口| 色网站视频免费| 国产精品人妻久久久影院| 三级毛片av免费| 国产伦在线观看视频一区| 亚洲综合色惰| 建设人人有责人人尽责人人享有的 | 中文字幕av成人在线电影| 两个人视频免费观看高清| av在线老鸭窝| 国产一区二区在线观看日韩| 国产成人aa在线观看| 国产成人freesex在线| 亚洲av.av天堂| 欧美xxxx性猛交bbbb| 黄色一级大片看看| 嫩草影院精品99| 欧美高清性xxxxhd video| 两个人的视频大全免费| 69av精品久久久久久| 国产成人a区在线观看| 午夜福利在线在线| 国产精品嫩草影院av在线观看| 国产成人一区二区在线| 久久精品影院6| 免费看av在线观看网站| 一区二区三区高清视频在线| 一边摸一边抽搐一进一小说| 熟妇人妻久久中文字幕3abv| 亚洲av成人av| 欧美成人午夜免费资源| 少妇人妻一区二区三区视频| 国产麻豆成人av免费视频| 亚洲国产精品合色在线| 久久人人爽人人爽人人片va| 精品久久久久久成人av| 2022亚洲国产成人精品| 国产一级毛片七仙女欲春2| 亚洲欧美日韩无卡精品| 欧美色视频一区免费| 日韩成人伦理影院| 日日撸夜夜添| 干丝袜人妻中文字幕| 99视频精品全部免费 在线| 国产视频首页在线观看| 中文字幕人妻熟人妻熟丝袜美| ponron亚洲| 99国产精品一区二区蜜桃av| 天堂网av新在线| 亚洲国产精品sss在线观看| 禁无遮挡网站| 熟妇人妻久久中文字幕3abv| 又粗又硬又长又爽又黄的视频| 桃色一区二区三区在线观看| 欧美三级亚洲精品| 青春草亚洲视频在线观看| 人妻系列 视频| 黄色配什么色好看| 亚洲国产欧美人成| 又爽又黄a免费视频| 久久久午夜欧美精品| 最近中文字幕高清免费大全6| 亚洲在线观看片| 日本五十路高清| 午夜免费激情av| 日日摸夜夜添夜夜添av毛片| 亚洲av成人av| 在线播放国产精品三级| 久久国产乱子免费精品| 日本黄色片子视频| 国产成人精品久久久久久| 久久精品久久精品一区二区三区| 可以在线观看毛片的网站| 少妇丰满av| av女优亚洲男人天堂| 色综合色国产| 视频中文字幕在线观看| 欧美高清成人免费视频www| 国产精品国产三级国产av玫瑰| 国产亚洲一区二区精品| 国产乱人视频| 国产片特级美女逼逼视频| 黄色一级大片看看| 观看美女的网站| 欧美潮喷喷水| 亚洲怡红院男人天堂| 国产中年淑女户外野战色| 日本黄色视频三级网站网址| 性色avwww在线观看| 亚洲国产日韩欧美精品在线观看| 国产一区二区亚洲精品在线观看| 黄色欧美视频在线观看| 我的女老师完整版在线观看| 九九爱精品视频在线观看| 神马国产精品三级电影在线观看| 亚洲国产色片| 国产女主播在线喷水免费视频网站 | 99国产精品一区二区蜜桃av| 中文字幕av在线有码专区| 色综合亚洲欧美另类图片| 老司机福利观看| 欧美又色又爽又黄视频| 非洲黑人性xxxx精品又粗又长| 亚洲电影在线观看av| 一区二区三区四区激情视频| 少妇熟女aⅴ在线视频| 国产视频首页在线观看| 久久久欧美国产精品| 亚洲国产欧美在线一区| 国产成人精品一,二区| 男人舔女人下体高潮全视频| 午夜精品国产一区二区电影 | 可以在线观看毛片的网站| 亚洲av.av天堂| 欧美成人免费av一区二区三区| 神马国产精品三级电影在线观看| 国产片特级美女逼逼视频| 色网站视频免费| 一区二区三区四区激情视频| 精品少妇黑人巨大在线播放 | 精品少妇黑人巨大在线播放 | 欧美激情久久久久久爽电影| 舔av片在线| 黄色欧美视频在线观看| 亚洲自偷自拍三级| 99热这里只有是精品50| 日日撸夜夜添| 日韩欧美国产在线观看| 久久亚洲精品不卡| 极品教师在线视频| av免费观看日本| 青春草国产在线视频| 午夜福利高清视频| 精品人妻熟女av久视频| 国内少妇人妻偷人精品xxx网站| 男人的好看免费观看在线视频| 三级经典国产精品| 国产黄色小视频在线观看| 久久久欧美国产精品| 一边亲一边摸免费视频| 久久久久久久亚洲中文字幕| 国产私拍福利视频在线观看| 国产一区有黄有色的免费视频 | АⅤ资源中文在线天堂| 级片在线观看| 国产精品一及| 国产色爽女视频免费观看| 精品一区二区免费观看| 国产精品伦人一区二区| 欧美bdsm另类| 欧美另类亚洲清纯唯美| 免费播放大片免费观看视频在线观看 | 黄色欧美视频在线观看| 国产男人的电影天堂91| 国产精品麻豆人妻色哟哟久久 | 一级毛片我不卡| 日韩国内少妇激情av| 99九九线精品视频在线观看视频| 亚洲成av人片在线播放无| 99在线人妻在线中文字幕| 99热这里只有是精品50| 九色成人免费人妻av| 中文字幕人妻熟人妻熟丝袜美| 亚洲av成人精品一二三区| 一级av片app| 亚洲av中文av极速乱| 熟女人妻精品中文字幕| 久久精品人妻少妇| 天天躁日日操中文字幕| 一级毛片aaaaaa免费看小| 日韩中字成人| 成人特级av手机在线观看| 国产久久久一区二区三区| 亚洲中文字幕日韩| 国产精品爽爽va在线观看网站| 国产精品蜜桃在线观看| 国产精品一区二区三区四区免费观看| 日韩大片免费观看网站 | 国产黄色视频一区二区在线观看 | 亚洲欧洲日产国产| 国产精品熟女久久久久浪| 欧美变态另类bdsm刘玥| videossex国产| 中文字幕制服av| av在线蜜桃| 色噜噜av男人的天堂激情| 久久久久久久久中文| www日本黄色视频网| 嫩草影院精品99| 高清毛片免费看| 我的老师免费观看完整版| 男女视频在线观看网站免费| 成人午夜精彩视频在线观看| 人人妻人人看人人澡| 男女啪啪激烈高潮av片| 我要搜黄色片| 丝袜喷水一区| 日本免费在线观看一区| 长腿黑丝高跟| 久热久热在线精品观看| 身体一侧抽搐| 亚洲av熟女| 欧美高清成人免费视频www| 免费电影在线观看免费观看| 国产精品久久久久久久久免| 久久久久久九九精品二区国产| 欧美xxxx黑人xx丫x性爽| 国产精品不卡视频一区二区| 亚洲精品色激情综合| 99久国产av精品| 久久久久久九九精品二区国产| 国产在视频线精品| 亚洲,欧美,日韩| 欧美一区二区国产精品久久精品| 观看免费一级毛片| 久久久久精品久久久久真实原创| 午夜激情福利司机影院| 波野结衣二区三区在线| 亚洲精品国产成人久久av| 观看免费一级毛片| 国产成人精品婷婷| 成人午夜精彩视频在线观看| 在线观看美女被高潮喷水网站| 搞女人的毛片| 国产高清有码在线观看视频| 亚洲经典国产精华液单| 男人的好看免费观看在线视频| 日本-黄色视频高清免费观看| 国产淫片久久久久久久久| 在线观看av片永久免费下载| 韩国高清视频一区二区三区| 久久精品国产自在天天线| 九九爱精品视频在线观看| 99久久中文字幕三级久久日本| 亚洲人成网站高清观看| 欧美精品国产亚洲| 国产午夜精品一二区理论片| 激情 狠狠 欧美| 国产伦一二天堂av在线观看| 卡戴珊不雅视频在线播放| 精品国产露脸久久av麻豆 | 狠狠狠狠99中文字幕| 亚洲最大成人中文| 国产在视频线精品| 国产爱豆传媒在线观看| 超碰97精品在线观看| 日本色播在线视频| 国产精品久久电影中文字幕| 亚洲综合色惰| 亚洲丝袜综合中文字幕| 美女xxoo啪啪120秒动态图| 欧美人与善性xxx| 丝袜美腿在线中文| 欧美区成人在线视频| 久久久色成人| av播播在线观看一区| 成年免费大片在线观看| 亚洲欧美成人综合另类久久久 | 久久精品熟女亚洲av麻豆精品 | 国产高清国产精品国产三级 | 波多野结衣高清无吗| 精品一区二区三区视频在线| 色5月婷婷丁香| 国产精品女同一区二区软件| 丝袜喷水一区| 日韩中字成人| 久热久热在线精品观看| 亚洲精品自拍成人| 插阴视频在线观看视频| 日本熟妇午夜| 最近中文字幕高清免费大全6| 三级经典国产精品| 国产亚洲精品久久久com| 国产三级中文精品| 亚洲精品456在线播放app| 草草在线视频免费看| 啦啦啦观看免费观看视频高清| 淫秽高清视频在线观看| 网址你懂的国产日韩在线| 能在线免费看毛片的网站| 国内少妇人妻偷人精品xxx网站| 99热这里只有是精品在线观看| 国产 一区精品| 国产91av在线免费观看| 黑人高潮一二区| 国产午夜精品一二区理论片| 岛国在线免费视频观看| 寂寞人妻少妇视频99o| 国产中年淑女户外野战色| 久久精品国产自在天天线| 最近最新中文字幕大全电影3| 国产成人精品婷婷| 欧美日韩国产亚洲二区| 18禁在线无遮挡免费观看视频| 日本黄大片高清| 国产亚洲一区二区精品| 精品一区二区免费观看| 国产伦精品一区二区三区四那| 免费大片18禁| 亚洲中文字幕日韩| 日韩 亚洲 欧美在线| 国产一区二区在线观看日韩| 亚洲人成网站高清观看| 青春草亚洲视频在线观看| 国产精品1区2区在线观看.| 国产精品熟女久久久久浪| 国产极品天堂在线| 亚洲精品乱码久久久v下载方式| 少妇的逼好多水| 亚洲精华国产精华液的使用体验| 精品久久久久久久末码| 午夜福利高清视频| 精品久久久久久成人av| АⅤ资源中文在线天堂| 久久久久国产网址| videossex国产| 亚洲激情五月婷婷啪啪| 亚洲欧美精品综合久久99| 99热网站在线观看| 99久久精品一区二区三区| 嫩草影院新地址| 高清午夜精品一区二区三区| 一级黄片播放器| 黄片wwwwww| 午夜精品国产一区二区电影 | 日日摸夜夜添夜夜爱| 亚洲成av人片在线播放无| 少妇的逼好多水| 亚洲丝袜综合中文字幕| av又黄又爽大尺度在线免费看 | 国产精品国产高清国产av| 国国产精品蜜臀av免费| 成人一区二区视频在线观看| 国产精品,欧美在线| 中文在线观看免费www的网站| 男女下面进入的视频免费午夜| 老司机福利观看| 免费观看a级毛片全部| 麻豆精品久久久久久蜜桃| 国产三级在线视频| 韩国高清视频一区二区三区| 汤姆久久久久久久影院中文字幕 | 91久久精品国产一区二区成人| 国产精品99久久久久久久久| 乱人视频在线观看| 欧美潮喷喷水| 变态另类丝袜制服| 一级毛片aaaaaa免费看小| 国产av不卡久久| 午夜免费男女啪啪视频观看| 欧美性猛交黑人性爽| 国产精品人妻久久久久久| 国产视频首页在线观看| 18+在线观看网站| 国产一区亚洲一区在线观看| 亚洲欧美精品综合久久99| 日本色播在线视频| 国产精品久久久久久久久免| 日本午夜av视频| 久久精品国产亚洲av天美| 少妇丰满av| 亚洲av不卡在线观看| 日韩一本色道免费dvd| 插阴视频在线观看视频| 成人亚洲欧美一区二区av| 午夜福利视频1000在线观看| 亚洲成色77777| 免费搜索国产男女视频| 久久久久国产网址| 91久久精品国产一区二区成人| h日本视频在线播放| 丰满少妇做爰视频| 最近中文字幕2019免费版| 一本久久精品| 身体一侧抽搐| 国产成人aa在线观看| 村上凉子中文字幕在线| 啦啦啦啦在线视频资源| 2021天堂中文幕一二区在线观| 国产单亲对白刺激| 亚洲成人中文字幕在线播放| av黄色大香蕉| 亚洲精品乱久久久久久| 天堂av国产一区二区熟女人妻| 美女xxoo啪啪120秒动态图| 国产探花极品一区二区| 成人午夜高清在线视频| 亚洲成人av在线免费| 久久久色成人| 男人舔奶头视频| 一级av片app| 久久久久久伊人网av| 国产 一区 欧美 日韩| 久久精品影院6| 91精品一卡2卡3卡4卡| 综合色丁香网| 永久网站在线| 午夜福利成人在线免费观看| 九九热线精品视视频播放| 黄色日韩在线| 亚洲一区高清亚洲精品| 国产男人的电影天堂91| 天天一区二区日本电影三级| 简卡轻食公司| 菩萨蛮人人尽说江南好唐韦庄 | 久久久成人免费电影| 日日摸夜夜添夜夜添av毛片| 午夜免费激情av| eeuss影院久久| 亚洲欧美成人精品一区二区| 毛片女人毛片| 久久亚洲精品不卡| 国产亚洲精品av在线| 99久国产av精品国产电影| 成人国产麻豆网| 久久亚洲国产成人精品v| 日本欧美国产在线视频|