• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of Ice-Shaped Surface Roughness Based on Fractal Theory

    2023-05-21 02:37:10,,,,*

    ,,,,*

    1.School of Systems Science and Engineering,Sun Yat-Sen University,Guangzhou 510000,P.R.China;

    2.School of Mathematics,Sun Yat-Sen University,Guangzhou 510000,P.R.China;

    3.Icing and Anti/de-icing Key Laboratory of China Aerodynamics Research and Development Center,Mianyang 621000,P.R.China

    Abstract: The shape of ice accretion on aircraft surfaces is crucial to icing wind tunnel tests.Currently,geometrical parameters of ice,such as height,angle,and location,are used to characterise the ice shape from a 2-D perspective.However,the surface roughness of ice-shape,which is crucial to aerodynamic analysis,is always ignored.In this paper,the fractal theory is used to characterise the ice roughness,and the corresponding characterisation method is explained.An aerofoil-icing test is conducted in a large icing wind tunnel to verify the feasibility and validity of the proposed method.In the test,the icing growth information of the aerofoil surface is collected using laser line scan technology.Then,the 3-D ice shape is reconstructed using the collected data.Subsequently,the 3-D ice shape is analyzed using fractal theory,where the profile curves at different positions of the ice shape are extracted.Additionally,the corresponding fractal dimension and joint roughness characterisation are calculated to summarise the linear regression equations of the fractal dimension.Then,the data points from profile curves are extracted to simulate the fractal interpolation functions of the ice.Correlation analyses show that ice accretion on the aircraft surface exhibits fractal features,and the fractal dimension is proportional to the joint roughness characterisation,which can be used as the assessment parameter of surface roughness of ice.Consequently,the fractal interpolation simulation of the iceshape curves represent an excellent approximation of the ice accretion on aircraft surfaces.The fractal characterisation of rough surfaces provides a new approach for scientifically quantifying 3-D ice features.

    Key words:roughness;fractal theory;box-counting dimension;multiple regression analysis;characterisation

    0 Introduction

    Aircraft icing is a common phenomenon that can cause dangers during flights.Consequently,numerous studies have focused on icing predictions,post-icing aerodynamic characteristics,and aircraft icing-safety protection.In particular,analysis of ice formation mechanisms,ice types,and the ice evolution law on aircraft surfaces is a fundamental research field.Due to the influence of atmospheric conditions and flight parameters,ice accretion on aerofoils occurs in various shapes and sizes,with complex and irregular structures.Consequently,quantitatively evaluating the structural characteristics of ice can be challenging.Some studies focus on quantitatively describing the 3-D ice shape.Currently,2-D quantification methods are used.However,these methods rely on a single parameter,such as the angle and height of the ice horn,making the characteristics of the ice shapes difficult to be fully described.

    Moreover,other studies have shown that roughness greatly affects the aerodynamics of the aircraft,the convective heat transfer of the surface,and the final form of the ice after icing[1-3].Nevertheless,when studying the effect of ice shape fidelity on aerodynamic performance[4-5],smooth simulations can adequately represent the ice accretion by neglecting the roughness of the ice surface.Therefore,establishing a systematic description of the surface roughness of complex ice shapes for aircraft icing research is required.

    Since the 1990s,the effect of ice roughness has been extensively studied by experimental and numerical methods.Some studies have documented the ice growth processes using high-speed cameras.The features are manually extracted to obtain the roughness data from the photographic images[6-9].According to the records of early wind tunnel tests,spectral analysis can be used to calculate roughness parameters,and the results can be used for subsequent research[10-11].

    The NASA Lewis Center developed the concept of effective roughness of icing surfaces[12],which represents the uniform distribution of equivalent particle microelements on the ice surface.Shin et al.[13-14]proposed an empirical formula for surface equivalent particle roughness with respect to liquid water content,temperature,mean droplet diameter,chord length,and other factors.However,few test results are available and even these could be biased because of subjective factors of the researchers,making previous results inadequate.In China,little research has been conducted in this field,and most focused on the relationship between roughness and convective heat transfer,assuming the roughness parameters without systematic research[15-18].Most of the ice-shaped surfaces simulated by these assumed parameters have been uniformly structured with undulating morphologies,while ice surfaces are disordered and uneven.Consequently,the simulated results have differed substantially from the experiments.

    The fractal theory was proposed in the 1970s[19],drawing much attention in the fields of economics,material engineering,chemistry,and various other disciplines[20].As an inimitable branch of mathematics,fractals provide a theoretical foundation to analyse irregular objectives in natural and human society.It should be noted that surface roughness measurements and characterisation have long been research topics in tribological simulations[21-22],and their research methods have certain implications to the scientific characterisation of iceshaped surface roughness.

    Consequently,this study uses the fractal theory to analyze the characteristics of ice surfaces.Firstly,a laser scanning measurement system is used to scan the ice accretion in an ice wind tunnel,process the scanned data,and reconstruct the 3-D digital ice form.Secondly,the ice growth process is examined to verify whether the ice has a fractal structure.Subsequently,the fractal dimension and joint roughness coefficients of the surface profile curve derived from the digital model are calculated,and the correlation between the fractal dimension and joint roughness coefficients is explored.Finally,the fractal dimension of ice used to construct the fractal interpolation curves is determined to reconstruct the ice-shaped surfaces.

    1 Fractal Theory Analysis for Ice Joint Roughness

    1.1 Fractal definition

    A fractal is defined to be a set for which the Hausdorff dimension strictly exceeds the topological dimension.However,this definition excludes some sets with evident fractal characteristics.Thus,the definition is improved and a fractal is defined to be a setFholding the following properties[19]:

    (1)Fhas a fine structure,i.e.,detailed at arbitrarily small scales.

    (2)Fhas many irregularities that can be difficult to describe by traditional geometrical language,both globally and locally.

    (3)Fhas some forms of self-similarity,approximate or statistical.

    (4)Usually,the fractal dimension ofFis greater than its topological dimension.

    (5)In most cases,F(xiàn)can be defined in a simple way,for example,recursively.

    1.2 Fractal dimension

    The fractal dimension is a crucial feature parameter of fractals,usually a non-integer.In particular,the measured relationship between a fractal and the fractal dimension must obey a power law,i.e.,asδ→0,for constantcands,then

    wheresis the dimension of the fractal setF,andcthe dimensional length of the set.If we take the logarithm of both sides of Eq.(1),then

    Whenδis in a suitable range,the value ofscan be obtained by estimating the slope of the function expressed in Eq.(2),i.e.,lgMδ(F) and logδ.

    Various methods can be used to calculate the fractal dimension.In particular,the box-counting method is simple,easy to implement and offers good suitability.It is one of the most widely used methods to calculate the fractal dimension.It uses a series of boxes or lattices whose lengths defineδthat covers the fractal set.The different sizes of lattices intersecting the fractal set,denoted asMδ(F),can then be counted.When the lattice lengthδ→0,the logarithmic rate of increase in the number of covered lattices is the box-counting dimension.

    1.3 Characterisation of fractal dimension of ice-shaped roughness

    The first step to determine the ice surface roughness is to measure the ice shapes in an icing wind tunnel.Subsequently,an image processing method can be used to calculate the box-counting dimension of the ice profile at the cross-sections of ice accretion.The detailed process is shown in Fig.1.

    Fig.1 Algorithm for determining ice-shaped surface roughness

    The steps can be summarised as follows:

    (1)Create 2-D ice profile prints of the crosssections of ice accretion,with pixels ofN×N,N=2k,k∈N+.Then,convert the image into a binary image,and develop a 0 and 1 pixel matrix.

    (2)Divide the pixel matrix into two disjoint blocks,and each block is aω×ωmatrix,whereω=2i(i=0,1,2,…,k).Then,record the number of blocks containing element “1”,denote them asMω(F),and repeat the procedure for all blocks to obtain a sequence of (ω,Mω(F)).

    (3)Obtain a diagram by fitting the data(-lgω,lgMω(F)) using the least square method.Calculate the slope of the fitting line,and the boxcounting dimension will be obtained when the slope takes a negative value.

    2 Measurement of 3-D Ice Shapes in Icing Wind Tunnels

    2.1 Testing equipment and method

    Icing experiments for a straight wing were performed in a 3 m × 2 m icing wing tunnel in China Aerodynamics Research and Development Centre.The span and chord of the wing were 1.98 m and 2.2 m,respectively.The main material was aluminium alloy.The operating condition were as follows:H=3 km,V=50 m/s,Ts=-22.5 ℃,α=3.5°,MVD=20.0 μm,and LWC=0.8 g/m3.

    During the experiments,a visible laser line scanning system was used to recover the 3-D shape development of the continuous growth of ice accretion on the model.The system included a highspeed camera,a laser,and a high-precision rotating platform.The camera imaging resolution was 4 096 pixel×3 000 pixel,and the maximum frame rate under full frame was 68 frame/s.The diameter of the high-precision rotating platform was 102 mm with a rotational angle range of 360°,at a resolution of 0.01°.Moreover,the fastest speed was approximately 20(°)/s with positioning accuracy repeatability of ≤ ±0.005°.The laser output wavelength was approximately 635 nm,and the minimum line width was approximately 1 mm.The output power could be adjusted from 0 to 120 mW.

    When measuring the iced surface,the laser produced a laser sheet that was projected onto a reflector,and the reflection was re-projected onto the iced surface of the model.The reflector was then rotated using a high-precision rotary table,controlling the laser sheet scan of the iced surface.This system did not require spatial movement during measurement,so it could be installed on any side frame of the icing wind tunnel test section.The test site is shown in Fig.2.

    Fig.2 Equipment and test site

    2.2 Testing results

    During the experiment,a single scan was performed at four different time,i.e.,5,10,15,and 20 min.The span of the scanned model was 30 mm,and the ice growth on the wing was measured.The Meshmixer software application was used to reconstruct the digital ice surfaces using 3-D points clouds,as shown in Fig.3.

    Fig.3 Single scan performed at four different time

    Post-processing was performed to intercept the 2-D ice profile at cross-sections of the ice accretion.For example,the profile atX=40 mm andt=10 min is shown in Fig.4.

    Fig.4 Profile curves (X=40 mm, t=10 min)

    2.3 Fractal characteristics of growth ice

    Fig.5 shows an image from a field measurement.At early stages of the icing process,super cooled droplets define the leading edge and waterfilm development.Owing to instability,the surface of the film begins to exhibit roughness[23-24].As the unfrozen water flows back along the chord,it breaks up into individual rivulets.Thus,the roughness elements on the water film can be observed as nucleation points.

    Fig.5 Leading edge ice time sequence

    The rough layer thickens over time,which makes it difficult for the droplets to be collected on the leeward sides.Thus,the icing volume of wake regions decreases.Moreover,the increase in roughness is accompanied with a decrease in the thickness of the boundary layer and the roughness elements interacting with flows,enhancing the convective heat transfer.

    At a later growth stage(t=15—20 min),the distribution of roughness elements on the wing remains practically constant.Moreover,the ice is superimposed in the previous locations,and the growth rate of roughness elements is becoming appropriate.

    It should be noted that the actual objective hardly satisfies the first property of fractals,and is usually restricted to a particular scale.The characteristic scale for this paper is the millimetre scale.For the ice macroscopic roughness characteristics,the ice crystals at the millimetre scale are small structures,so the first property is satisfied.Visually,ice presents a complex and disordered form,both globally and locally.By magnifying the ice profile,the observed icing regions are uncompleted,with several fine peaks.Thus,ice formation has self-similarity,and its growth process is scale-independent.At the mid-growth stage,the constant impact of droplets increases the height of the elements roughness,forming the final ice shape.The growth ice is similar in structure to the final ice shape,which is an iterative process.Subsequently,the fractal dimension of the 2-D ice profile can be calculated using the boxcounting dimension method,as shown in Fig.6(X=40 mm andt=10 min).Its box-counting dimension is 1.173 4,which is greater than its topological dimension.Thus,each fractal property can be verified,demonstrating that the ice on the wing can be considered as a fractal set.

    Fig.6 Box-counting dimension of profile curves (X=40 mm,t=10 min)

    3 Analysis of Ice Roughness and Fractal Dimension

    Fig.7 shows the 2-D ice profile at the cross-sections of the ice accretion.Figs.7(b—e)show the interceptions at different locations(X1=10 mm,X2=20 mm,X3=30 mm,andX4=40 mm)and different time(t1=5 min,t2=10 min,t3=15 min,andt4=20 min).

    Fig.7 Profile curves at different chord wise positions

    3.1 Ice roughness and fractal dimension calculation

    In actual engineering applications,the arithmetical mean deviation of the profile(Ra),the tenpoint height of irregularities(Rz),and the maximum height of the profile(Ry),are the primary evaluation parameters for surface roughness[25].In particular,Rais the absolute arithmetic mean of the contour deviated distance |yi| within a sample range of the part surface,which can be determined as

    Rzis defined as the sum of the average of five contour peak heights and the average of five contour bottom depths.It can be determined as

    Ryis defined as the distance within the sample length from the peak line(ypmax)to the bottom line(yvmax).It can be determined as

    The results of roughness parameters of profile curves are summarized in Table 1.In Table 1,Dis the box-counting dimension.

    Table 1 Calculated results of roughness parameters of profile curves

    3.2 Correlation analysis

    The relationship between the roughness and the fractal dimension was studied.In particular,a correlation analysis was performed to determine if the two variables were correlated[26].Pearson correlation is a typical measure of the degree of correla-tion between two variables,and this measure ranges between -1 and 1.A positive value implies a positive correlation,while a negative value implies a negative correlation.The Pearson correlation coefficients betweenRa,Rz,Ryand the box-counting dimensionDwere calculated,as shown in Fig.8.

    Fig.8 Pearson correlation coefficients

    Fig.8 shows that all coefficients are positive.Thus,the roughness is positively correlated with the fractal dimension.The correlation coefficient betweenRaandDis between 0.6 and 0.8,implying a strong correlation.The correlation coefficients for bothRzandRyare greater than 0.8,implying a very strong correlation.Consequently,fractal analyses can be further evaluated.

    3.3 Multiple regression analysis

    If the fractal dimension associated with a single roughness coefficient is used to express the rough surface,there could be a problem that the fractal dimension may not correspond to the roughness.For instance,the roughness parameters of profileX=40 mm andt=10 min decrease overall,although the fractal dimension increases.Consequently,the problem requires a multi-variable coupling analysis.

    Regression analysis is a set of statistical processes for estimating the relationship between a dependent variable and one or more independent variables.ConsideringRa,Rz,andRyas independent variables and the box-counting dimension as a dependent factor,a multiple regression analysis using two regression models can be performed[27-28].

    3.3.1 Regress regression method

    Regress regression methods are typically used in regression analysis.These methods can remove abnormal samples during the analysis to improve the fit of the regression equation.In this paper,multiple regression analysis was performed,and the residuals for each sample are shown in Fig.9.

    The vertical lines in Fig.9 indicate the confidence intervals of the residuals for each sample,which are close and involve the zero value.The tenth sample does not contain zero values and is an outlier sample,which is removed from subsequent analyses.Thus,only normal samples are considered,and the regression formula of the box-counting dimension is expressed as

    R2=0.939 4,F(xiàn)=56.864 4,P=5.517 6E-07 whereR2measures the goodness of fit and takes values between 0 and 1.The closer to 1 this value is,the better the fit.In this case,R2=0.939 4 implies that the fitted equation has a high fitting degree.Additionally,F(xiàn)is a parameter that allows evaluating whether the sample is appropriate for analysis,i.e.,it can verify eligibility.The probabilityPcorresponding toFrepresents the confidence level of the result.The smaller the value,the higher the confidence in the result.A value ofP=5.517 6E-07 implies a significance level ofα=0.05.

    3.3.2 Stepwise regression method

    Stepwise regression is a variable selection regression analysis method to screen out insignificant samples and reserve variables that greatly affect the outcome of the fitted equation.This method establishes the optimal regression formula with a minimum of variables,as shown in Fig.10.In Fig.10,the variablesX1,X2,andX3in the diagram correspond toRa,Rz,andRy,respectively.The red text and line indicate that the variables are rejected,the blue text and line indicate that the variables are retained,i.e.,onlyRaandRzare considered for fitting the fractal dimension equation

    Fig.10 Stepwise regression analysis

    The results clearly indicate that the fit is good,and the equation holds.The results of the fit for both models can be summarized as follows:

    (1)The regression formulas for both models fit well,demonstrating that the linear relationship between the fractal dimension and the roughness parameters holds.

    (2)Both models are practical and effective.In particular,the stepwise regression model screens out some variables that do not contribute significantly.Thus,this method helps to intuitively understand the variables that have a major influence.Moreover,if multiple independent variables are present,this method can improve data availability and rationality.However,removing the independent variables can cause other problems,such as Edgenuity.

    (3)Due to the small sample size collected,the applicability of the obtained equation is limited.

    4 Fractal Interpolation Simulation of Ice Shape

    Based on the above mathematic model,once the correlation parameters for a particular ice profile have been calculated,a small volume of the original ice data can be combined with these parameters to interpolate an ice profile.Interpolated ice shapes have many applications,such as the numerical simulation of ice accretion on an aerofoil or the product cast of ice shape for wind tunnel tests,which require scaling and simplifying of the ice shape.Moreover,the interpolated ice shapes can be highly effective in generating digital ice shapes by simply using a number of original data points.Additionally,the degree of closeness and simplification from interpolation can be flexible and controllable to satisfy different engineering requirements.

    In this paper,15 points acquired from the ice shape were used as the interpolation data for the fractal interpolation with IFS and linear interpolation[29].For example,the profile atZ=225 mm andt=10 min was considered(Fig.11).

    Fig.11 Fractal interpolation for ice shape

    In general,the generated ice profiles by using the two interpolation methods maintain the basic contours of actual ice shapes.After enlargement,linear interpolation connects adjacent interpolation points with straight lines,covering the irregular characteristics of the data.By contrast,fractal interpolation employs the self-similarity principle to restore the rough surface of ice effectively.In this paper,fractal interpolation outperforms linear interpolation in parts with bigger horn curvature.

    5 Conclusions

    The fractal dimension was considered to characterise the surface roughness of ice shapes.Based on the complex ice shapes obtained from large icing wind tunnel tests,the box-counting dimension was calculated by extracting their surface profile.Subsequently,the relationship between the fractal dimension and the joint roughness coefficient was investigated,and the fractal interpolation method was used to generate digital ice shapes.Ice formation has fractal characteristics and the fractal dimension can be used as one of the quantitative indicators to evaluate the integrity,complexity,and irregularity of ice shapes,with the integer part indicating the topological dimension of the fractal set and the fractional portion indicating the ability of the set to fill the space.The roughness quantitative evaluation method contains real information regarding the ice shape.The combined fractal dimension describes the surface structure of ice and fully reflects the ice morphology.Fractal interpolation can simulate the ice surface and display more realistic results than traditional interpolation methods.

    日韩制服骚丝袜av| 久久精品国产亚洲av涩爱| 高清欧美精品videossex| 国产99久久九九免费精品| 伦理电影免费视频| 伦理电影免费视频| 黄色怎么调成土黄色| 亚洲情色 制服丝袜| 久久热在线av| 啦啦啦中文免费视频观看日本| 人人澡人人妻人| 久久人人爽av亚洲精品天堂| 国产1区2区3区精品| 日韩欧美精品免费久久| 9191精品国产免费久久| 妹子高潮喷水视频| 人人妻人人爽人人添夜夜欢视频| 天天躁夜夜躁狠狠久久av| 国产欧美日韩综合在线一区二区| 人人澡人人妻人| 一二三四在线观看免费中文在| 18禁观看日本| 亚洲在久久综合| 欧美xxⅹ黑人| 在线观看三级黄色| 亚洲欧美中文字幕日韩二区| 国产爽快片一区二区三区| 亚洲成人国产一区在线观看 | 欧美激情高清一区二区三区 | 涩涩av久久男人的天堂| 亚洲成人av在线免费| 亚洲精品日韩在线中文字幕| 七月丁香在线播放| av电影中文网址| 人人妻,人人澡人人爽秒播 | 捣出白浆h1v1| 99香蕉大伊视频| 制服人妻中文乱码| 精品少妇一区二区三区视频日本电影 | avwww免费| 精品国产一区二区三区久久久樱花| a级毛片在线看网站| 高清av免费在线| 91精品国产国语对白视频| 精品国产超薄肉色丝袜足j| 少妇精品久久久久久久| 亚洲成色77777| 国产黄频视频在线观看| 国产精品 欧美亚洲| a级毛片黄视频| 欧美在线黄色| 一级,二级,三级黄色视频| 2018国产大陆天天弄谢| 亚洲欧美精品综合一区二区三区| videos熟女内射| 亚洲中文av在线| av免费观看日本| 欧美另类一区| 亚洲欧美日韩另类电影网站| 国产午夜精品一二区理论片| 欧美最新免费一区二区三区| 国产麻豆69| 国产免费视频播放在线视频| 午夜精品国产一区二区电影| 午夜福利免费观看在线| 日韩伦理黄色片| 亚洲精品久久午夜乱码| 日韩制服丝袜自拍偷拍| 精品酒店卫生间| 亚洲精品久久久久久婷婷小说| 国产精品免费大片| 秋霞在线观看毛片| 国产精品国产av在线观看| 欧美精品一区二区大全| 久久久国产一区二区| 免费在线观看视频国产中文字幕亚洲 | 91老司机精品| 国产精品久久久久久久久免| 另类亚洲欧美激情| 久久免费观看电影| 国产精品欧美亚洲77777| 日本欧美国产在线视频| 乱人伦中国视频| 老汉色av国产亚洲站长工具| 久久久精品国产亚洲av高清涩受| 色播在线永久视频| 日日啪夜夜爽| 欧美xxⅹ黑人| 国产日韩一区二区三区精品不卡| 一级a爱视频在线免费观看| 80岁老熟妇乱子伦牲交| 一区二区三区精品91| 国产一区二区 视频在线| 国产亚洲一区二区精品| 国产精品二区激情视频| 人人妻人人澡人人看| 久久韩国三级中文字幕| 晚上一个人看的免费电影| 国产精品国产av在线观看| 久久天躁狠狠躁夜夜2o2o | 精品第一国产精品| 国产精品国产三级国产专区5o| 熟妇人妻不卡中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 国产97色在线日韩免费| 曰老女人黄片| 欧美黑人精品巨大| 黄片无遮挡物在线观看| 久久综合国产亚洲精品| 久久人人爽人人片av| 午夜影院在线不卡| 国产精品 国内视频| 亚洲欧洲日产国产| 在线 av 中文字幕| 18禁国产床啪视频网站| 香蕉国产在线看| 日本爱情动作片www.在线观看| 侵犯人妻中文字幕一二三四区| 久久国产精品男人的天堂亚洲| 波野结衣二区三区在线| 中文字幕色久视频| 亚洲欧美激情在线| 久久久国产精品麻豆| 亚洲欧洲国产日韩| 丰满少妇做爰视频| 国产xxxxx性猛交| 中文天堂在线官网| 久久久久精品国产欧美久久久 | 国产成人免费观看mmmm| 欧美 亚洲 国产 日韩一| 涩涩av久久男人的天堂| 日韩人妻精品一区2区三区| 免费av中文字幕在线| 国产日韩欧美视频二区| 亚洲,欧美,日韩| 如日韩欧美国产精品一区二区三区| 成人三级做爰电影| 亚洲精品中文字幕在线视频| 99精国产麻豆久久婷婷| 成人影院久久| av在线app专区| 亚洲欧美精品自产自拍| av片东京热男人的天堂| 欧美 亚洲 国产 日韩一| 久久精品aⅴ一区二区三区四区| 亚洲欧美精品自产自拍| 大片电影免费在线观看免费| 丝袜在线中文字幕| 肉色欧美久久久久久久蜜桃| 免费av中文字幕在线| 免费看av在线观看网站| 国产精品一区二区在线观看99| 国产欧美日韩综合在线一区二区| 亚洲四区av| 亚洲欧美色中文字幕在线| 美女大奶头黄色视频| 国产日韩一区二区三区精品不卡| 国产亚洲一区二区精品| 久久天堂一区二区三区四区| 亚洲欧美成人综合另类久久久| 亚洲精品久久午夜乱码| 精品亚洲成国产av| 亚洲精品日韩在线中文字幕| 黄片播放在线免费| 欧美av亚洲av综合av国产av | 欧美日韩av久久| 热99久久久久精品小说推荐| 日韩不卡一区二区三区视频在线| 99久久综合免费| av在线app专区| 午夜福利网站1000一区二区三区| 亚洲av福利一区| 亚洲婷婷狠狠爱综合网| 久久狼人影院| 欧美人与性动交α欧美精品济南到| 天美传媒精品一区二区| 国产成人系列免费观看| 欧美亚洲 丝袜 人妻 在线| 亚洲精品久久午夜乱码| 免费少妇av软件| 色精品久久人妻99蜜桃| av卡一久久| 九九爱精品视频在线观看| 国产欧美亚洲国产| 国产一区二区在线观看av| 亚洲综合精品二区| 久久精品aⅴ一区二区三区四区| 天天操日日干夜夜撸| 精品第一国产精品| 欧美av亚洲av综合av国产av | 热re99久久精品国产66热6| 国产在线免费精品| 久久久精品94久久精品| 另类精品久久| 制服丝袜香蕉在线| 校园人妻丝袜中文字幕| 新久久久久国产一级毛片| 精品福利永久在线观看| 日本爱情动作片www.在线观看| 国产欧美日韩一区二区三区在线| 国产av精品麻豆| 亚洲成国产人片在线观看| 777久久人妻少妇嫩草av网站| 青春草视频在线免费观看| 伊人亚洲综合成人网| 精品第一国产精品| 天天影视国产精品| 69精品国产乱码久久久| 美女国产高潮福利片在线看| 亚洲中文av在线| 亚洲av福利一区| 亚洲精品第二区| 五月开心婷婷网| 狂野欧美激情性xxxx| 亚洲五月色婷婷综合| 亚洲在久久综合| 久久精品久久久久久噜噜老黄| 日韩免费高清中文字幕av| 熟女av电影| 日日撸夜夜添| 日韩中文字幕欧美一区二区 | 欧美人与性动交α欧美精品济南到| 国产在视频线精品| 亚洲人成网站在线观看播放| 国产熟女午夜一区二区三区| www日本在线高清视频| 久久毛片免费看一区二区三区| 日韩人妻精品一区2区三区| 国产99久久九九免费精品| 涩涩av久久男人的天堂| av福利片在线| 九色亚洲精品在线播放| 欧美日韩一区二区视频在线观看视频在线| 国产人伦9x9x在线观看| 国产成人系列免费观看| 国产精品秋霞免费鲁丝片| 免费黄色在线免费观看| 国产成人一区二区在线| 成人国语在线视频| 狠狠精品人妻久久久久久综合| 叶爱在线成人免费视频播放| 人人澡人人妻人| 亚洲第一av免费看| 亚洲欧美成人综合另类久久久| 最近手机中文字幕大全| 18禁国产床啪视频网站| 免费久久久久久久精品成人欧美视频| 三上悠亚av全集在线观看| 国产伦人伦偷精品视频| av卡一久久| 免费少妇av软件| 欧美日韩福利视频一区二区| 最近2019中文字幕mv第一页| 亚洲精品美女久久av网站| 18禁裸乳无遮挡动漫免费视频| av女优亚洲男人天堂| 老汉色av国产亚洲站长工具| 激情五月婷婷亚洲| 97在线人人人人妻| 别揉我奶头~嗯~啊~动态视频 | 日本猛色少妇xxxxx猛交久久| 麻豆精品久久久久久蜜桃| 性高湖久久久久久久久免费观看| 亚洲精品国产一区二区精华液| 免费看av在线观看网站| 国产有黄有色有爽视频| 啦啦啦视频在线资源免费观看| 男女午夜视频在线观看| 国产熟女午夜一区二区三区| 一二三四在线观看免费中文在| 国产一区二区三区综合在线观看| 午夜久久久在线观看| 三上悠亚av全集在线观看| 纵有疾风起免费观看全集完整版| 日本av手机在线免费观看| 久久久久久久大尺度免费视频| 国产精品av久久久久免费| 久久午夜综合久久蜜桃| 国产淫语在线视频| 一区在线观看完整版| 久久精品亚洲熟妇少妇任你| 久久久久久久久久久免费av| 亚洲综合色网址| 国产爽快片一区二区三区| 91老司机精品| 女人被躁到高潮嗷嗷叫费观| av在线观看视频网站免费| 婷婷色综合www| 99国产精品免费福利视频| 亚洲综合色网址| 自线自在国产av| 国产免费福利视频在线观看| 欧美日韩视频高清一区二区三区二| 极品少妇高潮喷水抽搐| 国产精品一国产av| 黄色视频在线播放观看不卡| 你懂的网址亚洲精品在线观看| 国产人伦9x9x在线观看| 国产色婷婷99| 日韩大片免费观看网站| 悠悠久久av| 日韩av不卡免费在线播放| 久久99热这里只频精品6学生| av在线app专区| 中文欧美无线码| 午夜91福利影院| 久久久久精品人妻al黑| 久久午夜综合久久蜜桃| 一区二区日韩欧美中文字幕| av又黄又爽大尺度在线免费看| 性色av一级| 伊人亚洲综合成人网| 一区二区三区乱码不卡18| 国产又色又爽无遮挡免| 日本vs欧美在线观看视频| 亚洲精品国产区一区二| 麻豆av在线久日| 免费在线观看视频国产中文字幕亚洲 | 最近2019中文字幕mv第一页| 国产有黄有色有爽视频| 热re99久久国产66热| 亚洲第一青青草原| 多毛熟女@视频| 亚洲欧美色中文字幕在线| 少妇被粗大猛烈的视频| 妹子高潮喷水视频| 只有这里有精品99| 老司机在亚洲福利影院| 亚洲一码二码三码区别大吗| 我要看黄色一级片免费的| 精品酒店卫生间| 高清av免费在线| 中文字幕制服av| 大话2 男鬼变身卡| 嫩草影院入口| 99国产综合亚洲精品| 伦理电影免费视频| 国产野战对白在线观看| 日韩精品有码人妻一区| 国产精品免费视频内射| 国产男女超爽视频在线观看| 亚洲,一卡二卡三卡| 亚洲成av片中文字幕在线观看| 欧美日韩亚洲国产一区二区在线观看 | 水蜜桃什么品种好| 欧美日韩亚洲综合一区二区三区_| 日本av手机在线免费观看| 热99久久久久精品小说推荐| 制服人妻中文乱码| 亚洲成av片中文字幕在线观看| 国产片内射在线| 赤兔流量卡办理| 精品午夜福利在线看| 一个人免费看片子| 成人国语在线视频| 国产精品麻豆人妻色哟哟久久| 亚洲激情五月婷婷啪啪| 国产精品免费视频内射| 丝袜人妻中文字幕| 一级a爱视频在线免费观看| 交换朋友夫妻互换小说| 免费黄色在线免费观看| 天天躁夜夜躁狠狠久久av| 国产精品嫩草影院av在线观看| videosex国产| 国产免费一区二区三区四区乱码| 成人亚洲精品一区在线观看| netflix在线观看网站| 久久女婷五月综合色啪小说| 91精品国产国语对白视频| 五月开心婷婷网| 国产成人免费无遮挡视频| 啦啦啦 在线观看视频| 制服人妻中文乱码| 人妻一区二区av| 美女扒开内裤让男人捅视频| 日韩制服丝袜自拍偷拍| 久久精品国产亚洲av涩爱| 欧美亚洲 丝袜 人妻 在线| a级毛片黄视频| 国产成人精品福利久久| 99久久综合免费| 亚洲男人天堂网一区| 国产精品女同一区二区软件| 亚洲成人免费av在线播放| 久久99精品国语久久久| 少妇 在线观看| 叶爱在线成人免费视频播放| 老司机亚洲免费影院| 国产一区有黄有色的免费视频| 18在线观看网站| netflix在线观看网站| 美女脱内裤让男人舔精品视频| 一级毛片电影观看| 日本91视频免费播放| 日韩大片免费观看网站| 啦啦啦啦在线视频资源| 亚洲国产精品一区二区三区在线| 中文字幕av电影在线播放| 80岁老熟妇乱子伦牲交| 极品人妻少妇av视频| 久久精品国产a三级三级三级| 亚洲av欧美aⅴ国产| 国产精品久久久久久精品电影小说| 亚洲中文av在线| svipshipincom国产片| 男女无遮挡免费网站观看| 久久久精品国产亚洲av高清涩受| 少妇人妻精品综合一区二区| 汤姆久久久久久久影院中文字幕| 女性被躁到高潮视频| 欧美最新免费一区二区三区| 黄频高清免费视频| 国产成人免费无遮挡视频| 老司机影院毛片| 伦理电影免费视频| 在线观看免费视频网站a站| 丰满乱子伦码专区| 欧美av亚洲av综合av国产av | 丁香六月欧美| 精品人妻在线不人妻| 亚洲精品视频女| 水蜜桃什么品种好| 啦啦啦 在线观看视频| 久久ye,这里只有精品| 欧美人与善性xxx| 免费不卡黄色视频| 日韩一区二区三区影片| 欧美亚洲 丝袜 人妻 在线| 老司机影院成人| 人人妻人人爽人人添夜夜欢视频| 国产一区亚洲一区在线观看| 久久久国产欧美日韩av| 日本色播在线视频| 国产精品嫩草影院av在线观看| 人人妻人人澡人人爽人人夜夜| 国产男人的电影天堂91| 天天躁夜夜躁狠狠躁躁| 久久久久视频综合| 日韩欧美一区视频在线观看| 国产一区二区 视频在线| 黄色视频不卡| 搡老乐熟女国产| 亚洲第一青青草原| 国产亚洲最大av| 一区二区日韩欧美中文字幕| 日日撸夜夜添| 国产成人欧美| 一级毛片 在线播放| 国产一级毛片在线| 日本色播在线视频| 丝袜脚勾引网站| 在线观看人妻少妇| 日本猛色少妇xxxxx猛交久久| 欧美 日韩 精品 国产| 欧美精品人与动牲交sv欧美| 久久人人爽人人片av| av有码第一页| 各种免费的搞黄视频| 精品人妻一区二区三区麻豆| 大香蕉久久成人网| 一边摸一边抽搐一进一出视频| 亚洲,欧美精品.| 日日摸夜夜添夜夜爱| 两个人免费观看高清视频| 丰满迷人的少妇在线观看| 国产精品久久久人人做人人爽| 桃花免费在线播放| 成人午夜精彩视频在线观看| 99香蕉大伊视频| 热re99久久精品国产66热6| 亚洲激情五月婷婷啪啪| 王馨瑶露胸无遮挡在线观看| 99re6热这里在线精品视频| av天堂久久9| 蜜桃在线观看..| 啦啦啦在线免费观看视频4| 1024香蕉在线观看| 卡戴珊不雅视频在线播放| 美女中出高潮动态图| 性少妇av在线| 成人午夜精彩视频在线观看| 国产男人的电影天堂91| 久久毛片免费看一区二区三区| 一级片'在线观看视频| 精品一区二区三卡| 9色porny在线观看| 免费在线观看完整版高清| 丝袜美足系列| 国产精品.久久久| 婷婷色综合大香蕉| 如何舔出高潮| 国产熟女午夜一区二区三区| 午夜福利视频在线观看免费| 最近最新中文字幕免费大全7| 国产色婷婷99| 国产成人啪精品午夜网站| 青春草视频在线免费观看| 国产激情久久老熟女| 少妇精品久久久久久久| av天堂久久9| 少妇被粗大的猛进出69影院| 夫妻午夜视频| 国产一区二区激情短视频 | 国产免费福利视频在线观看| 热re99久久国产66热| 国产精品一区二区在线观看99| 日本猛色少妇xxxxx猛交久久| 欧美黄色片欧美黄色片| 青春草亚洲视频在线观看| 捣出白浆h1v1| 天美传媒精品一区二区| 少妇被粗大的猛进出69影院| 99久久综合免费| 成人亚洲欧美一区二区av| 中文字幕精品免费在线观看视频| 日本黄色日本黄色录像| 一二三四中文在线观看免费高清| 国产毛片在线视频| av卡一久久| 日韩,欧美,国产一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 精品酒店卫生间| 国产成人av激情在线播放| 日本黄色日本黄色录像| 色婷婷久久久亚洲欧美| 国产免费福利视频在线观看| 亚洲国产精品成人久久小说| 高清黄色对白视频在线免费看| 亚洲国产欧美网| a级毛片在线看网站| 一边摸一边做爽爽视频免费| 亚洲av男天堂| videosex国产| 综合色丁香网| 涩涩av久久男人的天堂| 日韩中文字幕视频在线看片| 91精品三级在线观看| 国产精品熟女久久久久浪| 在线观看一区二区三区激情| 天美传媒精品一区二区| 亚洲一码二码三码区别大吗| 久热爱精品视频在线9| 精品一区二区免费观看| 欧美老熟妇乱子伦牲交| 一区二区三区四区激情视频| 岛国毛片在线播放| 啦啦啦中文免费视频观看日本| 亚洲视频免费观看视频| 免费观看性生交大片5| 精品视频人人做人人爽| 欧美精品一区二区大全| 黄色视频在线播放观看不卡| 久久久精品国产亚洲av高清涩受| 久久人人97超碰香蕉20202| 欧美日韩亚洲国产一区二区在线观看 | 国产亚洲欧美精品永久| 伊人久久国产一区二区| 中国国产av一级| 99精国产麻豆久久婷婷| 我要看黄色一级片免费的| 制服诱惑二区| 亚洲专区中文字幕在线 | 国产深夜福利视频在线观看| 一级毛片电影观看| 热99久久久久精品小说推荐| 一级毛片我不卡| 亚洲av电影在线进入| 99九九在线精品视频| 久久99精品国语久久久| 亚洲精品第二区| 精品久久久久久电影网| 亚洲成人免费av在线播放| 精品少妇久久久久久888优播| 熟女av电影| 欧美国产精品va在线观看不卡| 中文字幕另类日韩欧美亚洲嫩草| 丝袜脚勾引网站| 大香蕉久久成人网| 久久久久久人妻| 国产精品 欧美亚洲| 人体艺术视频欧美日本| 国产成人a∨麻豆精品| 女性生殖器流出的白浆| 一边摸一边做爽爽视频免费| 成人黄色视频免费在线看| 午夜免费观看性视频| 国产视频首页在线观看| 波野结衣二区三区在线| 女性被躁到高潮视频| 日本wwww免费看| 嫩草影视91久久| 多毛熟女@视频| 亚洲国产精品999| 2021少妇久久久久久久久久久| 免费观看人在逋| 亚洲欧美中文字幕日韩二区| 美女主播在线视频| 乱人伦中国视频| 天美传媒精品一区二区| 天天操日日干夜夜撸| 国产精品国产三级国产专区5o| 免费不卡黄色视频| 久久久久精品人妻al黑| 国产片特级美女逼逼视频| 1024视频免费在线观看| 丝袜喷水一区| 99久久精品国产亚洲精品| 精品少妇黑人巨大在线播放| 一级a爱视频在线免费观看| 69精品国产乱码久久久| 蜜桃在线观看..| 久久久久网色| 老鸭窝网址在线观看| 女人高潮潮喷娇喘18禁视频|