• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design Principle of Mixed-Wettability Surfaces for Inducing Droplet Directional Rebound

    2023-05-21 02:37:08,,,,4*

    ,,,,4*

    1.School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212013,P.R.China;

    2.R&D Center,Jiangsu Chaoli Electric Co.Ltd.,Zhenjiang 212321,P.R.China;

    3.College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    4.National Key Laboratory of Science and Technology on Aerodynamic Design and Research,Northwestern Polytechnical University,Xi’an 710072,P.R.China

    Abstract: Directional rebound of droplet impacting on solid surfaces is of great significance in engineering applications such as anti-icing/fogging and self-cleaning.Mixed-wettability surfaces have been shown to be as an effective way for droplet manipulation.The impact of droplet on hydrophobic substrate decorated with a hydrophilic stripe is investigated numerically.The validated diffuse interface method is adopted for interface capture.First,the formation of satellite droplets during the impact process is explored,and the role of mixed-wettability surfaces in the droplet spreading,retraction and rebound stages is clarified by analyzing the vertical and lateral velocities of the droplet.After that,the effect of the stripe width on the droplet rebound form and the contact time is studied systematically.Special attention is paid to the mechanisms of dynamics and energy transfer during the evolution of liquid film and droplet bouncing.The obtained results can provide useful guidance for the design of mixed-wettability surfaces and further optimize the control of droplet directional rebound.

    Key words:droplet impact;mixed-wettability surfaces;directional rebound;design principle

    0 Introduction

    Droplet impacting onto solid surfaces is a ubiquitous and important phenomenon in industrial processes,such as spray cooling,inkjet printing,selfcleaning and fluid transportation[1-6].One of the key factors affecting the dynamic behavior of droplets is the surface wettability,and the droplets generally tend to rebound from the hydrophobic surfaces and adhere to the hydrophilic surfaces.Extensive works mainly focused on the contact timetcand spreading diameter of the droplet,which may produce a marked effect on the industrial process.In general,it is advantageous to reduce the contact time between the droplet and the surface,since it controls the exchange of mass,momentum and energy[7-9].For example,rapid droplet detachment can effectively reduce the heat exchange and suppress the ice nucleation,thus preventing the aircraft and wire from icing at low temperature.Richard et al.[8]found thattconly scales with the inertia-capillarity time,whereρ1andR0are the density and the initial radius of the droplet,respectively,andσis the surface tension coefficient.The theoretical limit ofis approximately equal to 2.2 when the droplet undergoes the spread-retraction-rebound stage on flat superhydrophobic surfaces.Recently,the researchers reported that adding single or array structures on surfaces can reduce the contact time by 37%—80%,such as pancake bouncing[10].

    Although the contact time can be reduced by the chemical or physical treatments of the surface,the droplets usually rebound along the original route(in a perpendicular type).This may limit its engineering applications,since the droplets will eventually fall back and adhere to the horizontal surface with the dissipation of kinetic energy.Therefore,the demand for droplet rebound with lateral motion(deflection)emerges,and many attempts have been made in this aspect.The intuitive idea is to exert a lateral force on the droplet during the rebound process,such as introducing the wind-driven,electric or magnetic fields[11-14].However,these methods with external power input are sometimes unstable and hard to control.Recently,the use of engineering surfaces,such as roughness gradient,wettability gradient and bioinspired structures,to realize the spontaneous lateral motion of droplets has attracted wide attention[15-18].

    The development of mixed-wettability surfaces provides a fresh insight into the droplet manipulation,since the forces exerted on various wettability partitions are different.Farshchian et al.[19]reported a directional rebounding phenomenon when the droplet impacted on the borderline between the hydrophobic and hydrophilic portions of a heterogeneous surface.The experimental results showed that the lateral transportation distance can increase with the Weber number(We)in the range of 3.2 to 18.9.Chu et al.[20]further investigated the effect of impacting offset position on the deflection distance at higherWe.The maximum lateral transportation distance can be up to 13 times longer than the droplet diameter.In these studies,the nonorthogonal rebound of the droplet is realized by impacting on the junction region of a dual-textured substrate,and the lateral motion is mainly caused by asymmetric forces generated at the retraction stage.Based on this mechanism,the researchers tried to adopt the hydrophobic substrate decorated with hydrophilic patterns to control the droplets.Schutzius et al.[21]and Zhao et al.[22]designed a hydrophilic “arc” and “stripe” on a superhydrophobic surface,respectively.The impacting droplet could rebound toward the direction of the hydrophilic patterns instead of orthogonal to the surface.Then the simple practical applications were achieved by the well-controlled droplet motion,such as the on-demand chemical reaction system and droplet-driven micro-boat system.Furthermore,Li et al.[23]realized more various rebound behaviors of the droplets,such as gyration,rolling,and deflection,by using the heterogeneous surfaces with different high-adhesion(hydrophilic)patterns.In addition to experimental studies,Russo et al.[24]and Zhang et al.[25]recently numerically investigated the droplet impacting on a wettability-patterned surface.The numerical method coupled with the Kistler dynamic contact angle model and adaptive meshrefinement technique was fully validated,and the dynamic mechanisms of droplet rebound were revealed by analyzing the variation of the contact line and velocity profile.

    In the abovementioned studies,various forms of hydrophilic patterns were designed,and the results showed that their effects on the dynamic behavior of droplets were nonlinear and complex.Taking the distanceabetween the impacting point and hydrophilic pattern as an example,the lateral velocityvxof the droplet continuously increases withafor the arc-shaped pattern,whilevxincreases first and then decreases with the increase ofafor the stripeshaped pattern.To clarify the relationship between hydrophilic patterns and the droplet lateral motion,the parameter of “effective retraction area”Sis proposed to quantify the geometric parameters and position of different patterns in our previous work[25].Furthermore,we systematically investigated the effects of multiple parameters on the dynamic behaviors of the droplet impact,and some scaling laws for droplet rebound with the lateral motion were proposed[26].Thus,the prediction and control of droplet directional rebound were preliminarily achieved.However,the design principle of mixed-wettability surfaces has never been established due to the following two problems.First,small satellite droplets may form during the impact process,which has occurred in both experimental observations and numerical simulations,but has not received much attention[21,24].The energy transfer characteristics between the main and satellite droplets are not known yet,so the role of mixed-wettability surfaces in the formation of satellite droplets remains unclear.Second,although various forms of hydrophilic patterns have been studied in previous works,they were all carried out when the width of patterns was about 10% of the droplet diameter.It is not clear whether a better pattern width exists for droplet directional rebound.And the effect of the size(width)of the hydrophilic pattern on the adhesive force and droplet rebound modes(partial and complete rebound)is also unidentified.Therefore,the above two significant factors need to be further explored to establish the universal design principle.

    In this paper,the impacting dynamics of the droplet on mix-wettability surfaces(hydrophobic substrate decorated with a hydrophilic stripe)are simulated by a reliable numerical method.The role of the hydrophilic stripe in the satellite droplet formation is clarified,and the dynamic and energy transfer mechanisms of the directional rebound of the main droplet are revealed.Then,the effect of the width of the hydrophilic stripe on adhesive force,liquid residual and rebound modes is systematically studied.On this basis,the comprehensive design principle of mix-wettability surfaces for inducing directional rebound is proposed,which provides valuable guidance for the droplet manipulation.

    1 Problem Description and Methodology

    The sketch of droplet impact is illustrated in Fig.1.The mixed-wettability surface is consisted of two parts:The superhydrophobic substrate(yellow region)and the hydrophilic stripe(red region).The droplet with diameterD0is initially very close to the surface,and it impacts the surface with a predetermined impact velocityU0.The water and air are adopted as the working fluids.The size of the computational domain is taken to be 10D0×10D0×10D0so as to guarantee that the results are not affected by the boundaries,and the gravity accelerationgacts in the negativezdirection.In addition,the width of the hydrophilic stripe isw.In this paper,the impact velocity is in the range of [1.25 m/s,2.08 m/s]and the droplet diameter is 2 mm.Since the droplet motion is mainly dominated by the surface tension and inertial forces,the dimensionless parameter ofWeis considered and defined asHere,ρlis the density of the water droplet.

    Fig.1 Sketch of the droplet impacting on a mixed wettability surface

    The droplet-solid interaction is considered as incompressible and isothermal multiphase flow problem in this paper.The evolution of water-air interface is captured by an improved diffuse interface(DI)method,which has been implemented in the OpenFOAM framework[27]

    whereCis the order parameter in the range of [0,1]anduthe fluid velocity.γis an adaptive parameter used to control the magnitude of the interfacecorrection term,which can improve the interface sharpness.In addition,the correction term is only taken into account in the diffuse layer,and it works normal to the interfaces,i.e.,in the directionMis the mobility andφthe chemical potential.Based on the free energy density model[28-29],the chemical potential is defined as1)(2C-1)-ασεΔC.Here,εmeasures the interface thickness,andαis a positive constant,which is equal toThe equilibrium function of the one-dimensional interface profileCcan be written as

    wherezdis the signed normal distance to the interface.

    The flow field is obtained by solving the Navier-Stokes equations,which are written as

    whereFσ=-C?φis the surface tension force.ρa(bǔ)ndμare the density and the dynamic viscosity,respectively,which depend on the order parameterC

    where the subscripts “l(fā)” and “g” denote the water and air,respectively.

    When the two-phase interface interacts with the solid surface,the unit normal vector of the interfacenshould be modified by the contact angleθd,and it is expressed as

    wherenwandtware the unit normal and tangential vectors of the solid surface,respectively.In addition,when the contact line moves on the solid surface,the contact angle is no longer a constant due to the phenomenon of the contact angle hysteresis.In this paper,the variation of the contact angle in the impacting process is predicted by the Cox-Voinov model[32],which is given in the form as

    whereθappis the apparent contact angle;Ca=is the capillary number,hereuclis the contact line velocity;is the capillary length;χdenotes the grid size.Here,θappis obtained with Kistler’ law[33],which is defined as

    whereθadv,θstaandθrecare the advancing,static and receding contact angles,respectively.The Hoffman’s functionfHoffcan be written as

    The Cox-Voinov dynamics contact angle model has extensively been used in the research of the droplet impact[26,32,34].It can accurately predict the variation of the contact angle in the impacting process and obtain satisfactory numerical results.

    The governing equations are discretized by the finite volume method.The detailed discretization procedure can be found in our previous work[26].In addition,the adopted numerical model and grid independence have been well-validated by simulating the problems of droplet impacting on homogeneous and heterogeneous wettability surfaces[25].Thus,the details are not presented in this paper.

    2 Results and Discussion

    In this section,the directional rebound of droplet impacting on mix-wettability surfaces is numerically investigated.The attention is focused on the formation of satellite droplets and the rebound mode of the main droplet.And the design principle of mixwettability surface is proposed for better droplet manipulation.It should be noted that the effects of multiple parameters on the droplet directional rebound have been systematically investigated in our previous works[25-26],including the Weber number(droplet diameter and impact velocity),the arrangement of hydrophilic stripes(position and shape),and the values of contact angles.The obtained results show that the droplet deposits on the surface atWe≤5,and the droplet splashes atWe≥120.The droplet rebound usually occurs when the Weber number is in the range of 10 to 100.Therefore,the Weber numbers of 100 and 120 are selected to explore the droplet breakup in this paper,and a moderate value ofWe=43.3 is adopted to study the droplet rebound with lateral motion under various stripe widths.In addition,all cases are limited in the given contact angles.The advancing,static and receding contact angles on the hydrophobic part are set as 164°,162°,and 160°,respectively,and the corresponding contact angles on the hydrophilic part are 120°,80°,and 40°,respectively.The distanceabetween the impacting point and hydrophilic stripe is 1.5 mm.

    2.1 Formation of satellite droplets

    The formation of satellite droplets after impact is a well-known phenomenon.In order to explore the dynamic characteristics in this process,the droplet impacting on superhydrophobic and mixed-wettability surfaces are carried out,respectively.The evolutions of the liquid film for the cases ofWe=120(D0=2 mm andU0=2.08 m/s)andw=0.2 mm are plotted in Fig.2.After the droplet reaching its maximum spread(t=2 ms),it starts to retract under the action of superhydrophobic substrate.It can be seen that the liquid film on homogeneous surface moves uniformly and radially towards the impacting point,and no satellite droplets are formed in the retraction stage.On the mixed-wettability surface,the right liquid film can retract normally,but the left liquid film gets pinned by the hydrophilic stripe.This prevents the central liquid film from being fully filled,causing the liquid film to thin and form holes(t=5 ms).Finally,small satellite droplets are generated with the breaking of the liquid film.

    In addition,we can observe that there also are satellite droplets when the droplet rebound from the superhydrophobic surface(t=6.5 ms),as shown in Fig.2(a).To further reveal the mechanisms of dynamics and energy transfer,the morphology of bouncing droplet is shown in Fig.3(a).The result of the mixed-wettability surface is also presented for comparison.Here,the impact parameters are set as:We=100(D0=2 mm andU0=1.9 m/s)andw=0.4 mm.The iso-surface is colored by the vertical velocityUz.When the droplet rebounds from the superhydrophobic surface(t=8 ms),it is obvious that the gradient of the vertical velocity is larger than that from the mixed-wettability surface.As a result,the top liquid film is elongated and eventually separated from the main droplet.As shown in Fig.3(b),the liquid film retracts uniformly on the homogeneous surface,so the droplet rebounds vertically and the lateral velocity isUx≈0.However,the liquid film is pinned by the hydrophilic stripe of the mixed-wettability surface,and the rebound kinetic energy of the droplet is partially converted to the lateral direction.Thus,the bouncing droplet has the considerable lateral velocity.

    Fig.2 Time evolution of the droplet impacting on superhydrophobic and mixed-wettability surfaces

    Fig.3 Morphology of the droplet rebound from superhydrophobic and mixed-wettability surfaces

    The formation of satellite droplets is related to two types of instability.One is the Kelvin-Helmholtz instability in the droplet spreading and retraction stages[35].The liquid film is thin and further forms the hole,which will cause the droplet to break.For example,the formation of satellite droplets in Fig.2(b)occurs at the central liquid film,which is caused by the adhesion of the hydrophilic stripe in the retraction stage.Similarly,the splash may occur when the droplet impacts with a large Weber number,which is induced by the liquid film breaking at the edge of spreading droplet.The other is the Plateau-Rayleigh instability in the droplet rebound stage[36].The rebound droplet is elongated under the action of the gradient of the vertical velocity,and excessive elongation will break the liquid film and generate the satellite droplets.Especially on the superhydrophobic surface,two or three satellite droplets may appear during the droplet rebounding process.For the mixed-wettability surface,we conclude that it can suppress the Plateau-Rayleigh instability in the droplet rebound stage,but promote the Kelvin-Helmholtz instability in the droplet retraction stage.No obvious effect is observed in the droplet spreading stage.

    2.2 Effects of stripe width

    In this subsection,the effect of the width of the hydrophilic stripe on the droplet rebound is studied.The value of Weber number is given as 43.3,and the stripe widthwvaries in the range of [0.1 mm,1.6 mm].

    The evolutions of droplet rebounds from the mixed-wettability surfaces with different stripe widths are shown in Fig.4.In each case,the timetfrom left to right is 2,7,9,12,15,and 18 ms.It can be seen that the rebound form and contact time of the droplet vary greatly under different widths.For the case ofw=0.1 mm,the droplet leaves the surface immediately after retraction.The low adhesion exerted by the narrow stripe is not sufficient to hold the droplet,causing the droplet to rebound completely without the liquid residue.For the cases ofw=0.3 mm and 0.8 mm,a liquid bridge is formed between the rebound droplet and the residual liquid film.In the process of the lateral rebound,the liquid bridge is broken and the droplet leaves the surface.It should be noted that the “separate angle”of the droplet(marked with black lines in Figs.4(b,c)is different,which determines the contact time.With the further increase of the stripe width(w=1.2 mm and 1.6 mm),the droplet leaves the surface immediately after retraction,which is similar to the case ofw=0.1 mm.On the contrary,the high adhesion exerted by the wide stripe breaks the connection between the droplet and the liquid film,and a large amount of liquid remains on the hydrophilic stripe.

    Fig.4 Evolutions of droplet rebounds from the mixed-wettability surfaces with different stripe widths

    For the above three typical rebound forms of the droplet,the variation of the contact time with the stripe width is shown in Fig.5.The separation of droplet is mainly determined by the inertial force(rebound)and the surface tension force(adhesion).In the phases of ①and ③,the inertial force and the surface tension force are dominate,respectively.Thus,the droplet can rebound from the surface rapidly,and the contact time is about 8 ms,which is similar to that of the droplet impacting on the superhydrophobic surface(w=0).In the phase of ②,the contact time increases first and then decreases,which is related to the evolution of liquid bridge.For the small stripe width,the broken liquid bridge will leave the surface together with the rebound droplet.With the increase ofw,the adhesion of the hydrophilic stripe is enhanced,and the broken liquid bridge tends to remain on the surface.Here,the maximal contact time is obtained when the stripe width is 0.8 mm.

    Fig.5 Variation of the contact time with the stripe width

    2.3 Design principle

    For the droplet directional rebound,three factors need to be considered in the design of the mixed-wettability surface,including the formation of satellite droplets,the lateral velocity of the rebound droplet and the liquid residue on the hydrophilic stripe.Among of them,the situations of satellite droplets and the liquid residue can be easily obtained from the above results.When the Weber number is in the range of [10,100],the mixed-wettability surface can suppress the formation of the satellite droplets in the rebound stage.However,it may induce the Kelvin-Helmholtz instability at the higher Weber number,thus promoting the formation of satellite droplets.In addition,the liquid residue is usually unfavorable in engineering applications,such as the anti-icing/fogging and self-cleaning.Fig.6 shows the percentage of residual liquid in the total mass of droplets.It is clear that the liquid residue increases with the stripe width.

    Fig.6 Variation of the liquid residue with the stripe width

    This subsection focuses on the effect of the stripe width on the performance of the droplet directional rebound.The kinetic energyEkof the droplet rebound from the mixed-wettability surface with different stripe widths are shown in Fig.7.The impacting droplet undergoes the spreading,retraction and rebound stages,in which part of the energy dissipates due to the surface friction and viscosity.It can be seen that the variation trend of rebounding kinetic energy is opposite to that of contact time(Fig.5).This is mainly because the longer the droplet is pulled by the hydrophilic stripe,the more energy it loses during its movement.Therefore,the minimum kinetic energy is obtained atw=0.8 mm,which corresponds to the maximum contact time.

    Fig.7 Variation of the rebounding kinetic energy Ek with the stripe width

    Furthermore,the effect of the stripe width on the rebounding heightHand the lateral velocityvxof the droplet is shown in Fig.8.The lateral velocity can quantify the performance of droplet directional transportation,and the variation trend ofvxis similar to that of contact time(Fig.5).This means that the energy continually transfer laterally before the droplet leaves the surface.The high lateral velocity can be obtained when the stripe width is in the range of [0.3 mm,1.2 mm].With the increase of the contact time,more energy is lost during the impact process and the more energy is transferred to the lateral direction.Thus,it is easily understood that the droplet rebounding heightHis lower at the medium stripe width.

    Fig.8 Variations of the rebounding height H and the lateral velocity vx with the stripe width

    In summary,two principles can be obtained to provide reference for the design of mixed-wettability surfaces.Firstly,the mixed-wettability surface is more suitable for the droplet directional rebound with Weber number between 5 and 100.In this range,the existence of the hydrophilic stripe can effectively suppress the formation of satellite droplets.Secondly,w=0.3 is a better choice for the purpose of obtaining the larger rebounding kinetic energy,the higher lateral velocity and the lesser liquid residue.

    3 Conclusions

    The dynamics of a droplet impacting on the mixed-wettability surface,which can induce the directional rebound,are systematically investigated.The numerical results show that the mixed-wettability surface can effectively suppress the formation of the satellite droplets in the rebound stage,but promote the Kelvin-Helmholtz instability in the retraction stage.Moreover,three typical droplet rebound forms are observed with different stripe widths.The larger lateral velocity and rebounding kinetic energy of the droplet,and the less liquid residue on the hydrophilic stripe can be obtained whenw=0.3 mm.These results may be useful for the design of the mixed-wettability surface,thus further promoting its application in engineering.

    99久久99久久久精品蜜桃| 国产精品久久久久久久电影 | 亚洲第一电影网av| 亚洲欧美精品综合久久99| 99久久综合精品五月天人人| www.熟女人妻精品国产| 久久亚洲精品不卡| 国产伦精品一区二区三区视频9 | 不卡一级毛片| 又粗又爽又猛毛片免费看| 日韩欧美精品v在线| 巨乳人妻的诱惑在线观看| 午夜福利18| 久久精品夜夜夜夜夜久久蜜豆| avwww免费| 国产免费av片在线观看野外av| 岛国视频午夜一区免费看| 久久香蕉国产精品| 国产精品精品国产色婷婷| 亚洲黑人精品在线| 一边摸一边抽搐一进一小说| 后天国语完整版免费观看| 99在线视频只有这里精品首页| 亚洲国产色片| 亚洲一区高清亚洲精品| 伦理电影免费视频| 国产伦精品一区二区三区四那| 国产伦在线观看视频一区| 欧美不卡视频在线免费观看| 国产精品亚洲一级av第二区| 欧美一区二区精品小视频在线| 神马国产精品三级电影在线观看| 亚洲精品一区av在线观看| 男人舔女人下体高潮全视频| 美女高潮喷水抽搐中文字幕| 亚洲av电影在线进入| 黄频高清免费视频| 一夜夜www| 国产精华一区二区三区| 99久久国产精品久久久| 桃色一区二区三区在线观看| 日本在线视频免费播放| 国产激情欧美一区二区| 老司机深夜福利视频在线观看| 久久久久国产精品人妻aⅴ院| 精品福利观看| 一区二区三区激情视频| 亚洲 国产 在线| 亚洲精品在线观看二区| 久久人人精品亚洲av| 欧美性猛交黑人性爽| 成人性生交大片免费视频hd| 国产精品一区二区免费欧美| www日本在线高清视频| 一本一本综合久久| 丰满的人妻完整版| 国产成年人精品一区二区| 琪琪午夜伦伦电影理论片6080| 免费高清视频大片| 久久中文字幕一级| 中国美女看黄片| 亚洲av第一区精品v没综合| 亚洲国产精品成人综合色| 亚洲五月天丁香| 毛片女人毛片| 99久久国产精品久久久| 国产精品 欧美亚洲| 搡老熟女国产l中国老女人| 亚洲精品在线观看二区| 免费人成视频x8x8入口观看| 国产 一区 欧美 日韩| 国产亚洲精品久久久久久毛片| 国产一区在线观看成人免费| 两个人视频免费观看高清| 婷婷丁香在线五月| 好看av亚洲va欧美ⅴa在| 欧美日韩黄片免| 999久久久精品免费观看国产| 国内少妇人妻偷人精品xxx网站 | 国产欧美日韩精品亚洲av| 九九久久精品国产亚洲av麻豆 | 狂野欧美激情性xxxx| 看黄色毛片网站| 99国产极品粉嫩在线观看| 亚洲av电影在线进入| 三级毛片av免费| 日韩欧美在线乱码| 午夜福利欧美成人| 久久久久九九精品影院| 高潮久久久久久久久久久不卡| 熟女电影av网| 中文字幕熟女人妻在线| 美女高潮的动态| 国产免费男女视频| 国产精品一及| 99久久国产精品久久久| 不卡av一区二区三区| 亚洲精品一区av在线观看| 性色av乱码一区二区三区2| 日本黄色片子视频| 国产黄片美女视频| 老汉色av国产亚洲站长工具| 美女 人体艺术 gogo| 亚洲成av人片在线播放无| 日韩精品青青久久久久久| 天天添夜夜摸| 老司机福利观看| 一级黄色大片毛片| 美女黄网站色视频| 午夜精品在线福利| 午夜久久久久精精品| 91av网站免费观看| 久久久久久大精品| 两性夫妻黄色片| 一个人观看的视频www高清免费观看 | 久久中文字幕一级| 亚洲欧美日韩卡通动漫| 国模一区二区三区四区视频 | 色吧在线观看| 制服丝袜大香蕉在线| 欧美日韩福利视频一区二区| 久久久久国产一级毛片高清牌| 精品国产乱子伦一区二区三区| 亚洲一区二区三区不卡视频| 不卡一级毛片| 男女做爰动态图高潮gif福利片| 欧美一区二区国产精品久久精品| 在线观看午夜福利视频| 亚洲男人的天堂狠狠| 久久精品亚洲精品国产色婷小说| 999精品在线视频| 香蕉av资源在线| 亚洲七黄色美女视频| 在线观看免费午夜福利视频| 亚洲第一电影网av| 亚洲午夜精品一区,二区,三区| 久久精品人妻少妇| 亚洲精品美女久久av网站| 免费观看的影片在线观看| 亚洲精品乱码久久久v下载方式 | 精品不卡国产一区二区三区| 国产一区二区在线观看日韩 | 免费av毛片视频| 最近最新中文字幕大全免费视频| 非洲黑人性xxxx精品又粗又长| 午夜久久久久精精品| 亚洲专区国产一区二区| 国产三级中文精品| 久久久久久大精品| 黄片大片在线免费观看| 国产单亲对白刺激| 日本一本二区三区精品| 不卡av一区二区三区| 国内精品美女久久久久久| 午夜福利欧美成人| 在线观看美女被高潮喷水网站 | h日本视频在线播放| 国产精品免费一区二区三区在线| 亚洲人与动物交配视频| 三级男女做爰猛烈吃奶摸视频| 91麻豆精品激情在线观看国产| 欧美成狂野欧美在线观看| 高潮久久久久久久久久久不卡| 男人舔女人的私密视频| 免费搜索国产男女视频| 天堂av国产一区二区熟女人妻| 欧美日本亚洲视频在线播放| 成年人黄色毛片网站| 美女被艹到高潮喷水动态| 精品久久久久久,| 午夜福利在线观看吧| 欧美成人免费av一区二区三区| 中文字幕高清在线视频| 男人舔女人的私密视频| 亚洲无线在线观看| 免费在线观看亚洲国产| 久久精品亚洲精品国产色婷小说| 久久久国产欧美日韩av| 国产成人精品无人区| 99久久综合精品五月天人人| 成人国产综合亚洲| 国产精品久久久久久精品电影| 母亲3免费完整高清在线观看| 性欧美人与动物交配| 69av精品久久久久久| 色av中文字幕| 小说图片视频综合网站| 国产精品久久久人人做人人爽| 亚洲av第一区精品v没综合| 99久久综合精品五月天人人| 又黄又爽又免费观看的视频| av欧美777| 成人午夜高清在线视频| 午夜福利成人在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 最新中文字幕久久久久 | 中文字幕精品亚洲无线码一区| 国产高清videossex| 久久精品亚洲精品国产色婷小说| www.自偷自拍.com| 亚洲精品美女久久av网站| 一边摸一边抽搐一进一小说| 久久久久精品国产欧美久久久| 欧美激情久久久久久爽电影| 国产精品影院久久| АⅤ资源中文在线天堂| a级毛片在线看网站| 欧美日韩亚洲国产一区二区在线观看| netflix在线观看网站| 一进一出抽搐gif免费好疼| 亚洲国产精品999在线| 淫秽高清视频在线观看| av女优亚洲男人天堂 | 无遮挡黄片免费观看| 欧美黑人欧美精品刺激| 午夜福利在线观看吧| 中文字幕久久专区| 国产一区二区在线观看日韩 | 免费在线观看亚洲国产| 亚洲国产高清在线一区二区三| 露出奶头的视频| 日本在线视频免费播放| 97人妻精品一区二区三区麻豆| 性色avwww在线观看| 国产亚洲精品一区二区www| 黄片小视频在线播放| 国内精品久久久久久久电影| 亚洲 欧美 日韩 在线 免费| 性色av乱码一区二区三区2| 国内久久婷婷六月综合欲色啪| 午夜福利高清视频| 国产精品久久视频播放| 精品久久久久久久久久免费视频| 久久久久性生活片| 男人的好看免费观看在线视频| 亚洲专区中文字幕在线| 一区福利在线观看| 极品教师在线免费播放| 老司机午夜十八禁免费视频| 亚洲专区字幕在线| 久久天堂一区二区三区四区| 美女cb高潮喷水在线观看 | 国产亚洲精品综合一区在线观看| 久久人人精品亚洲av| 51午夜福利影视在线观看| 很黄的视频免费| 99国产精品一区二区三区| 九九久久精品国产亚洲av麻豆 | 国产精品一区二区免费欧美| 小说图片视频综合网站| 一区福利在线观看| 亚洲av第一区精品v没综合| 成人亚洲精品av一区二区| 亚洲色图av天堂| 久久久成人免费电影| 美女cb高潮喷水在线观看 | 久久香蕉国产精品| 久久热在线av| 久久国产乱子伦精品免费另类| 桃红色精品国产亚洲av| 一个人看的www免费观看视频| 久久久久久国产a免费观看| 伦理电影免费视频| 久久这里只有精品中国| 中出人妻视频一区二区| 日本与韩国留学比较| 欧美成狂野欧美在线观看| 国产精品乱码一区二三区的特点| 亚洲av日韩精品久久久久久密| 亚洲国产精品久久男人天堂| 国产一区二区在线观看日韩 | 久久精品国产99精品国产亚洲性色| 日本黄色视频三级网站网址| 中国美女看黄片| 亚洲无线观看免费| 视频区欧美日本亚洲| 国产久久久一区二区三区| 神马国产精品三级电影在线观看| 真人一进一出gif抽搐免费| 日韩国内少妇激情av| 深夜精品福利| 精品一区二区三区视频在线 | 一个人看的www免费观看视频| 波多野结衣高清作品| 人妻久久中文字幕网| 成人特级黄色片久久久久久久| 亚洲精品美女久久av网站| www国产在线视频色| 亚洲成人免费电影在线观看| a级毛片a级免费在线| 久久久久精品国产欧美久久久| 国产高潮美女av| 成人特级av手机在线观看| 欧美极品一区二区三区四区| 人妻夜夜爽99麻豆av| 噜噜噜噜噜久久久久久91| 女人被狂操c到高潮| 亚洲最大成人中文| 久久亚洲精品不卡| 精品久久久久久久末码| 99热这里只有是精品50| 黄色 视频免费看| 天堂√8在线中文| 99热6这里只有精品| 成人高潮视频无遮挡免费网站| 深夜精品福利| 成人18禁在线播放| 18禁黄网站禁片免费观看直播| 国产真实乱freesex| 久久国产精品影院| 69av精品久久久久久| 久久精品亚洲精品国产色婷小说| 亚洲激情在线av| 很黄的视频免费| 成人精品一区二区免费| 一级毛片高清免费大全| av欧美777| 日韩成人在线观看一区二区三区| 欧美xxxx黑人xx丫x性爽| 在线国产一区二区在线| 久久久国产欧美日韩av| 成人无遮挡网站| netflix在线观看网站| 日本 av在线| 一本一本综合久久| 国产午夜精品论理片| 久久天堂一区二区三区四区| www.www免费av| 成人精品一区二区免费| 啦啦啦免费观看视频1| 国产精品久久久久久人妻精品电影| 亚洲第一欧美日韩一区二区三区| 亚洲欧美日韩东京热| 美女黄网站色视频| x7x7x7水蜜桃| 白带黄色成豆腐渣| 亚洲国产欧洲综合997久久,| 欧美3d第一页| 亚洲中文字幕一区二区三区有码在线看 | av视频在线观看入口| 欧美高清成人免费视频www| 久久久久久国产a免费观看| 脱女人内裤的视频| 在线免费观看的www视频| 欧美国产日韩亚洲一区| 免费av毛片视频| 亚洲av电影不卡..在线观看| 亚洲国产高清在线一区二区三| 国产不卡一卡二| 国产男靠女视频免费网站| 国内精品一区二区在线观看| 久久99热这里只有精品18| 免费看日本二区| 国产黄片美女视频| 国产精品一区二区三区四区久久| 1024手机看黄色片| 久久精品亚洲精品国产色婷小说| 岛国视频午夜一区免费看| 18美女黄网站色大片免费观看| 热99re8久久精品国产| 婷婷精品国产亚洲av| 欧美性猛交╳xxx乱大交人| 国产久久久一区二区三区| 国产极品精品免费视频能看的| 国产精品日韩av在线免费观看| 国产精品亚洲av一区麻豆| 国产精品99久久99久久久不卡| 久久中文看片网| 国内精品久久久久久久电影| 国产精品亚洲一级av第二区| 黄片大片在线免费观看| 免费在线观看影片大全网站| 99久久国产精品久久久| 日韩免费av在线播放| 亚洲人成电影免费在线| 亚洲中文字幕一区二区三区有码在线看 | 亚洲第一欧美日韩一区二区三区| 99re在线观看精品视频| 午夜免费激情av| 亚洲成av人片在线播放无| 丰满的人妻完整版| 久久久久性生活片| 国产精品一区二区三区四区免费观看 | 国产成人一区二区三区免费视频网站| 国产成+人综合+亚洲专区| 午夜免费观看网址| 美女 人体艺术 gogo| 免费无遮挡裸体视频| 亚洲无线在线观看| 美女扒开内裤让男人捅视频| 亚洲中文字幕日韩| 亚洲狠狠婷婷综合久久图片| 蜜桃久久精品国产亚洲av| 日韩精品青青久久久久久| 国模一区二区三区四区视频 | 亚洲精品美女久久久久99蜜臀| 国产精品久久电影中文字幕| 色吧在线观看| 国产精品电影一区二区三区| 露出奶头的视频| 国产午夜精品论理片| 欧美日韩精品网址| 老汉色av国产亚洲站长工具| 精品午夜福利视频在线观看一区| 老熟妇仑乱视频hdxx| 俺也久久电影网| 国产av麻豆久久久久久久| 波多野结衣高清作品| 国产又黄又爽又无遮挡在线| 久久这里只有精品中国| 精品日产1卡2卡| 亚洲美女黄片视频| 亚洲成人久久爱视频| 黄色 视频免费看| 在线观看午夜福利视频| 白带黄色成豆腐渣| 中文字幕熟女人妻在线| 欧美最黄视频在线播放免费| 深夜精品福利| 亚洲第一欧美日韩一区二区三区| 色哟哟哟哟哟哟| 日韩高清综合在线| 亚洲国产欧美网| 亚洲美女视频黄频| 国产精品国产三级国产专区5o | 中国国产av一级| 久久人妻av系列| 久久国产乱子免费精品| 国产老妇伦熟女老妇高清| 色网站视频免费| 免费观看性生交大片5| 网址你懂的国产日韩在线| 午夜福利在线观看吧| 国产极品精品免费视频能看的| 午夜精品在线福利| 永久免费av网站大全| 狂野欧美白嫩少妇大欣赏| 特大巨黑吊av在线直播| eeuss影院久久| 尤物成人国产欧美一区二区三区| 亚洲一级一片aⅴ在线观看| 免费人成在线观看视频色| 国产精品爽爽va在线观看网站| 97超碰精品成人国产| 国产黄色小视频在线观看| 内射极品少妇av片p| av卡一久久| 插逼视频在线观看| 国产成人aa在线观看| 自拍偷自拍亚洲精品老妇| 欧美极品一区二区三区四区| 亚洲伊人久久精品综合 | 亚洲自拍偷在线| 欧美成人精品欧美一级黄| 99久久精品热视频| 国产精品电影一区二区三区| 狂野欧美激情性xxxx在线观看| 国产午夜精品论理片| 99久久无色码亚洲精品果冻| 日本免费在线观看一区| 国产中年淑女户外野战色| 自拍偷自拍亚洲精品老妇| 蜜桃久久精品国产亚洲av| 日韩三级伦理在线观看| 日韩成人伦理影院| 国产精品久久视频播放| 国内精品美女久久久久久| 中文字幕精品亚洲无线码一区| 国产精品国产三级专区第一集| 色视频www国产| www日本黄色视频网| 亚洲图色成人| 亚洲欧洲日产国产| 日韩,欧美,国产一区二区三区 | 日韩欧美 国产精品| 麻豆成人午夜福利视频| 只有这里有精品99| 久久精品国产鲁丝片午夜精品| 亚洲av.av天堂| 天堂av国产一区二区熟女人妻| 欧美性猛交╳xxx乱大交人| 伊人久久精品亚洲午夜| 春色校园在线视频观看| 2022亚洲国产成人精品| 别揉我奶头 嗯啊视频| 长腿黑丝高跟| 久久久久免费精品人妻一区二区| 国产高清有码在线观看视频| 亚洲电影在线观看av| 亚洲四区av| 自拍偷自拍亚洲精品老妇| 久久精品国产鲁丝片午夜精品| 国产一区亚洲一区在线观看| 国产伦在线观看视频一区| 久久韩国三级中文字幕| 91久久精品电影网| 免费看日本二区| 精品一区二区免费观看| 成人午夜精彩视频在线观看| 国产免费视频播放在线视频 | 国产精品国产三级国产av玫瑰| 免费人成在线观看视频色| 一个人免费在线观看电影| 中文亚洲av片在线观看爽| 国产老妇伦熟女老妇高清| 国产真实伦视频高清在线观看| 中文字幕制服av| 国产亚洲91精品色在线| 日本熟妇午夜| 男插女下体视频免费在线播放| 男的添女的下面高潮视频| 亚洲欧美精品综合久久99| 七月丁香在线播放| 久久亚洲国产成人精品v| 国模一区二区三区四区视频| 男人舔奶头视频| 亚洲国产成人一精品久久久| 久久精品影院6| 亚洲性久久影院| 插阴视频在线观看视频| 日本与韩国留学比较| 国产大屁股一区二区在线视频| 国产一区二区亚洲精品在线观看| 亚洲最大成人中文| 性色avwww在线观看| 欧美又色又爽又黄视频| 内地一区二区视频在线| 色哟哟·www| 国产精品.久久久| 丰满少妇做爰视频| 国产高清不卡午夜福利| 好男人在线观看高清免费视频| 你懂的网址亚洲精品在线观看 | 亚洲成人av在线免费| 能在线免费看毛片的网站| 人人妻人人澡人人爽人人夜夜 | 久久这里只有精品中国| 九九爱精品视频在线观看| 久久久久久久久大av| 中文在线观看免费www的网站| 国产精品av视频在线免费观看| 欧美另类亚洲清纯唯美| 国产一区二区亚洲精品在线观看| 亚洲国产精品合色在线| 精品欧美国产一区二区三| av播播在线观看一区| 亚洲人成网站高清观看| 久久综合国产亚洲精品| 国产成人精品久久久久久| 日韩在线高清观看一区二区三区| 欧美zozozo另类| 午夜福利在线观看免费完整高清在| 99热全是精品| 国产精品国产三级国产av玫瑰| 赤兔流量卡办理| 好男人视频免费观看在线| 国产极品天堂在线| av黄色大香蕉| 欧美一区二区亚洲| av在线蜜桃| 亚洲久久久久久中文字幕| 亚洲国产欧美人成| 亚洲成人av在线免费| 国产亚洲一区二区精品| 亚洲国产欧美在线一区| 亚洲国产精品合色在线| 国产淫片久久久久久久久| 久久精品久久久久久噜噜老黄 | 91在线精品国自产拍蜜月| 三级国产精品欧美在线观看| 亚洲av电影不卡..在线观看| 99在线人妻在线中文字幕| 色5月婷婷丁香| 99久久精品国产国产毛片| 亚洲精品成人久久久久久| 亚洲三级黄色毛片| 欧美成人a在线观看| av在线观看视频网站免费| 国产成人精品一,二区| av视频在线观看入口| 两个人的视频大全免费| 久久精品国产亚洲av天美| 国产精品精品国产色婷婷| 九九在线视频观看精品| 欧美3d第一页| 亚洲内射少妇av| 三级男女做爰猛烈吃奶摸视频| 熟女人妻精品中文字幕| 免费av毛片视频| 91精品一卡2卡3卡4卡| 99久国产av精品国产电影| 男人舔女人下体高潮全视频| 99久久精品一区二区三区| 国产精品久久视频播放| 久久久午夜欧美精品| 国产 一区 欧美 日韩| av在线播放精品| 亚洲精品日韩在线中文字幕| 亚洲av成人精品一区久久| 国产免费视频播放在线视频 | a级毛片免费高清观看在线播放| 亚洲经典国产精华液单| 建设人人有责人人尽责人人享有的 | 欧美zozozo另类| 亚洲欧美精品自产自拍| 九九爱精品视频在线观看| 偷拍熟女少妇极品色| 欧美精品一区二区大全| 午夜久久久久精精品| 超碰av人人做人人爽久久| ponron亚洲| 久久精品国产鲁丝片午夜精品| 欧美性猛交╳xxx乱大交人| 午夜福利在线观看免费完整高清在| 如何舔出高潮|